1
|
Sun X, Liao H, Han Z, Liu Y, Li R. Inonotus obliquus alleviates proteinuria of MRL/lpr mice by inhibiting ROS-NLRP3-mediated podocyte pyroptosis via facilitating Nrf2 translocation. J Funct Foods 2025; 128:106764. [DOI: 10.1016/j.jff.2025.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
|
2
|
Johnson BE, Haritha CV, Mathesh K, Vamadevan B, Sharma A, Aneesha VA, Jadhav SE, Parida S, Singh TU, Lingaraju MC. Weekly administration of betulinic acid prevents development of chronic renal failure from acute renal failure in folic acid-induced mouse model of kidney injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03728-x. [PMID: 39820546 DOI: 10.1007/s00210-024-03728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025]
Abstract
Betulinic acid (BA) has been shown to exhibit various pharmacological activities and it has shown the protective effect on acute renal failure (ARF) and chronic renal failure (CRF); however, no reports are available on its effect on ARF-CRF transition. Therefore, we aimed to investigate the effects of BA on ARF-CRF transition. A single dose of 250 mg/kg body weight (BW) intraperitoneal injection of folic acid was given in mice for inducing ARF-CRF transition (injury group; I) on day 1. Further, excess of these mice received BA at 30 mg/kg BW dose for 3 days (on days 1, 2, 3) in one group (IT3) and for 7 days (on days 1, 2, 3, 7, 14, 21, 28) in another group (IT7). All mice were sacrificed on day 28. Mice in injury group (I) showed elevated serum creatinine along with oxidative stress markers like urine nitrite, tissue lipid peroxidation, nitrotyrosine and fibrotic markers such as tissue α-smooth muscle actin and matrix metalloproteinase-2 activity. They had attenuated levels of urine creatinine and tissue reparative cytokines viz. interleukin-4 and interleukin-13. Excess of fibroblasts and extracellular matrix in the interstitia and periglomerular area in microscopy further support these findings. Seven days of BA treatment regimen (IT7) significantly improved serum and urine parameters accompanied by reduced oxidative stress, improved reparative cytokines and lesser maladaptive matrix deposition. The above findings reveal that weekly BA treatment regimen has potential to prevent development of CRF after ARF.
Collapse
Affiliation(s)
- Bency Elsa Johnson
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - C V Haritha
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Karikalan Mathesh
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Beena Vamadevan
- Regulatory Toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Anshuk Sharma
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - V A Aneesha
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Sunil E Jadhav
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | | |
Collapse
|
3
|
Ma D, Yang F, Yu Q, Zhou X, Li Z, Wang Y, Chen J. Betulin gel alleviates esophageal stricture following endoscopic submucosal dissection: an animal study. Esophagus 2025; 22:105-114. [PMID: 39407007 DOI: 10.1007/s10388-024-01091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/16/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Esophageal stenosis is a troublesome complication after circumferential ESD. This study examined the efficacy of betulin gel in preventing esophageal stenosis after ESD in a porcine model. METHODS Twelve pigs were randomized to betulin group and control group evenly. At the distal esophagus, circumferential ESD was performed in all animals. In the betulin group, betulin gel was applied at days 1, 3, and 7. Endoscopy examination was performed at day 3, 1 week, 2 weeks, and 4 weeks post-ESD. Then pigs were killed for macroscopic and histologic esophageal evaluation. RESULTS The rate of esophageal stricture was lower in the betulin group (53.3 ± 12.5% vs 88.3% ± 2.9, p = 0.02). Betulin-treated pigs had lower dysphagia score (2.0 ± 0 vs 3.3 ± 0.5, p < 0.001), less weight loss (11.78% ± 2.16 vs 15.85% ± 3.63, p = 0.04), and better passability of the open and closed biopsies forceps (83.33% vs. 0%, p = 0.015, and 100% vs. 0%, p = 0.002) 4 weeks post-ESD. Histologically, better re-epithelization (63.2 ± 10.7 mm vs 22.8 ± 10.1 mm, p < 0.001), slighter submucosal fibrosis (0.95 ± 0.17 mm vs 2.32 ± 0.48 mm, p = 0.002), lower muscularis propria damage score (1 vs 3, p < 0.001), and less inflammatory cells (307 vs 675 per high-power field, p = 0.002) were noted in the betulin group. The expression levels of TGF-β1, collagen i, collagen III, and α-SMA were significantly lower in the betulin group compared to the control group (p < 0.05). CONCLUSIONS Betulin gel shows promise in reducing fibrosis, enhancing repair, and preventing esophageal stricture after ESD, suggesting a potential new strategy for prevention.
Collapse
Affiliation(s)
- Dan Ma
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, NO. 168, Changhai Road, Shanghai, 200433, China
| | - Fan Yang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, NO. 168, Changhai Road, Shanghai, 200433, China
- Department of Gastroenterology, People's Hospital of Leshan, Leshan, Sichuan, China
| | - Qihong Yu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, NO. 168, Changhai Road, Shanghai, 200433, China
| | - Xin Zhou
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, NO. 168, Changhai Road, Shanghai, 200433, China
| | - Yunfeng Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, NO. 168, Changhai Road, Shanghai, 200433, China.
| | - Jie Chen
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, NO. 168, Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
4
|
Zhong W, Jia H, Zhu H, Tian Y, Huang W, Yang Q. Sarcopenia is attenuated by mairin in SAMP8 mice via the inhibition of FAPs fibrosis through the AMPK-TGF-β-SMAD axis. Gene 2024; 931:148873. [PMID: 39159793 DOI: 10.1016/j.gene.2024.148873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Sarcopenia has become a prominent health problem among the elderly because of its adverse consequence, including physical disabilities and death. Fibro-adipogenic progenitors (FAPs) exhibit adipogenic and fibrogenic potencies and regulate skeletal muscle development, which plays important role in sarcopenia. Mairin, as an ingredient of Astragalus membranaceus, has the effect of anti-fibrosis. Therefore, we predicted that mairin targeted the fibrosis of FAPs and then affected sarcopenia. To verify our ideas, mairin (30 mg/kg/day or 60 mg/kg/day) was given to senescence accelerated mouse-prone 8 (SAMP8) mice by oral administration. Aging led to loss of weight, skeletal muscle mass, strength, and function, and an increase in muscle atrophy and fibrosis, while mairin administration inhibited physiological decline caused by aging. Similarly, mairin (20 μM or 40 μM) treatment enhanced FAP proliferation but blocked the differentiation into fibroblasts. Mechanically, mairin played an anti-fibrotic role via AMP-activated protein kinase-transforming growth factor beta-drosophila mothers against decapentaplegic protein (AMPK-TGF-β-SMAD) axis, as evidenced by increased phosphorylation of AMPKα and decreased TGF-β and phosphorylated-SMAD2/3. In addition, the potential target genes of mairin were explored by mRNA sequencing in our study. In conclusion, mairin may interfere with the AMPK/TGF-β/SMAD pathway to repress the fibrosis of FAPs and eventually ameliorate sarcopenia.
Collapse
Affiliation(s)
- Wen Zhong
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huanan Jia
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiyan Zhu
- Clinical Medical College, Chengdu Medical College, Chengdu, China
| | - Yuan Tian
- College of Geriatric Health, Chengdu Medical College, Chengdu, China
| | - Wei Huang
- Department of Geriatrics, Hanyuan County Chinese Medicine Hospital, Ya'an, China.
| | - Qiyue Yang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Wang S, Wang R, Li R, Li Y. Research Progress on Application of Inonotus obliquus in Diabetic Kidney Disease. J Inflamm Res 2023; 16:6349-6359. [PMID: 38161352 PMCID: PMC10756068 DOI: 10.2147/jir.s431913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the prime causes of end-stage renal disease. At present, the treatment of DKD is mainly confined to inhibiting the renin-angiotensin-aldosterone system, but the therapeutic effects is not satisfactory. As a kind of very rare and precious medicinal fungi, Inonotus obliquus has a very high medicinal value. Due to its special hypoglycemic and pharmacological effect, researchers currently have attached great importance to it. In this paper, the biological activities, pharmacological effects and application status in the treatment of DKD-related diseases of Inonotus obliquus and the latest progress of metabolites isolated from it in DKD were summarized, thus providing detailed insights and basic understanding of the potential application prospects in DKD.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Ruihua Wang
- The Third Clinical College, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030002, People’s Republic of China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| |
Collapse
|
6
|
Ern PTY, Quan TY, Yee FS, Yin ACY. Therapeutic properties of Inonotus obliquus (Chaga mushroom): A review. Mycology 2023; 15:144-161. [PMID: 38813471 PMCID: PMC11132974 DOI: 10.1080/21501203.2023.2260408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/13/2023] [Indexed: 05/31/2024] Open
Abstract
Inonotus obliquus, also known as Chaga, is a medicinal mushroom that has been used for therapeutic purposes since the sixteenth century. Collections of folk medicine record the application of Chaga for the treatment of diseases such as gastrointestinal cancer, diabetes, bacterial infection, and liver diseases. Modern research provides scientific evidence of the therapeutic properties of I. obliquus extracts, including anti-inflammatory, antioxidant, anticancer, anti-diabetic, anti-obesity, hepatoprotective, renoprotective, anti-fatigue, antibacterial, and antiviral activities. Various bioactive compounds, including polysaccharides, triterpenoids, polyphenols, and lignin metabolites have been found to be responsible for the health-benefiting properties of I. obliquus. Furthermore, some studies have elucidated the underlying mechanisms of the mushroom's medicinal effects, revealing the compounds' interactions with enzymes or proteins of important pathways. Thus, this review aims to explore available information on the therapeutic potentials of Inonotus obliquus for the development of an effective naturally sourced treatment option.
Collapse
Affiliation(s)
- Phoebe Tee Yon Ern
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Tang Yin Quan
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Fung Shin Yee
- Department of Molecular Medicine, Faculty of Medicine Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeline Chia Yoke Yin
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
7
|
PRE-084 ameliorated kidney injury by reducing endoplasmic reticulum stress in the rat model of adenine-induced chronic kidney disease. Mol Biol Rep 2023; 50:3681-3691. [PMID: 36826683 DOI: 10.1007/s11033-023-08303-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress plays an important role in the development of chronic kidney disease (CKD). Sigma-1 receptors (σ1Rs) are novel chaperone proteins that regulate ER stress. However, effect of σ1R activation on renal ER stress is yet unexplored. So, in the present study we investigated the effects of PRE-084, a σ1R agonist on renal injury and ER stress in the rat model of CKD. METHODS CKD group rats were fed adenine for 28 days and CKD treatment group rats were additionally administered PRE-084 intraperitoneally at 1, 3 and 10 mg/kg body weight dose from Day 22-28. ER stress markers were evaluated using molecular biology techniques such as immunohistochemistry and Western blot. RESULTS Marked kidney injury was observed in CKD rats as revealed by biochemical and histological findings. Expression of ER stress proteins such as phosphorylated protein kinase R-like ER kinase (p-PERK), cleaved activating transcription factor-6 (ATF-6f), phosphorylated inositol requiring enzyme1α (p-IRE1α) and caspase-12 were higher in CKD rats. Nevertheless, CKD rats treated with PRE-084 particularly at 10 mg/kg dose showed considerably lesser kidney injury along with higher expression of σ1R and marked reduction of all the ER stress proteins studied. CONCLUSION Results reveal that PRE-084 likely ameliorated the adenine-induced kidney injury by lowering ER stress through increased σ1R expression.
Collapse
|
8
|
Zhu L, Luo C, Ma C, Kong L, Huang Y, Yang W, Huang C, Jiang W, Yi J. Inhibition of the NF-κB pathway and ERK-mediated mitochondrial apoptotic pathway takes part in the mitigative effect of betulinic acid on inflammation and oxidative stress in cyclophosphamide-triggered renal damage of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114150. [PMID: 36215883 DOI: 10.1016/j.ecoenv.2022.114150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Betulinic acid (BA), an occurring pentacyclic triterpenoid, has various biological activities, such as anti-inflammation and antioxidation. Previous studies found that BA attenuated cyclophosphamide (CYP)-induced intestinal mucosal damage by inhibiting intestinal mucosal barrier dysfunctions and cell apoptosis. However, the effects and regulation mechanisms of BA on CYP-induced renal damage has not been reported in literature. Here, we found that BA pretreatment alleviated the elevation of serum urea level and inhibited the increase in serum neutrophil gelatinase-associated lipocalin level induced by CYP. Meanwhile, BA ameliorated renal tubular epithelial cell edema, and vacuolization of renal cortical tubular and renal glomerulus. Moreover, pretreatment with BA inhibited the mRNA expressions of pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and increased mRNA expressions of anti-inflammatory cytokines such as IL-10 and transforming growth factor-β by inactivation nuclear factor kappa-B. Simultaneously, BA decreased the accumulation of reactive oxygen species and malondialdehyde, and lowered the levels of superoxide dismutase and glutathione, while increased the activity of glutathione peroxidase in CYP-induced kidney damage mice. Besides, BA reduced the phosphorylation of extracellular signal-regulated kinases (ERK), inhibited the ratio of Bcl-2/Bax and cell apoptosis in CYP-triggered kidney damage. Furthermore, BA and/or PD98059 (an inhibitor of ERK) regulated mitigation of CYP-elicited renal injury and deactivation of the ERK pathway and mitochondrial apoptotic pathway, indicating that the protective effect of BA on CYP-induced renal damage may be associated with the down-regulation of ERK-mediated mitochondrial apoptotic pathway. Thus, BA could be a candidate agent against chemotherapy drug-induced nephrotoxicity by reducing inflammation and oxidative stress through suppression of ERK-mediated mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chenxi Luo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chaoyang Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Weiwei Jiang
- College of Medical Technology, Hunan Polytechnic of Environment and Biology, Hengyang 421005, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
9
|
Curcumin Modulates Oxidative Stress, Fibrosis, and Apoptosis in Drug-Resistant Cancer Cell Lines. Life (Basel) 2022; 12:life12091427. [PMID: 36143462 PMCID: PMC9504331 DOI: 10.3390/life12091427] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
In cancer management, drug resistance remains a challenge that reduces the effectiveness of chemotherapy. Several studies have shown that curcumin resensitizes cancer cells to chemotherapeutic drugs to overcome resistance. In the present study, we investigate the potential therapeutic role of curcumin in regulating the proliferation of drug-resistant cancers. Six drug-sensitive (MCF7, HCT116, and A549) and -resistant (MCF7/TH, HCT116R, and A549/ADR) cancer cell lines were treated with curcumin followed by an analysis of cytotoxicity, LDH enzyme, total reactive oxygen species, antioxidant enzymes (SOD and CAT), fibrosis markers (TGF-β1 protein, fibronectin, and hydroxyproline), and expression of cellular apoptotic markers (Bcl-2, Bax, Bax/Bcl-2 ratio, Annexin V, cytochrome c, and caspase-8). Additionally, the expression of cellular SIRT1 was estimated by ELISA and RT-PCR analysis. Curcumin treatment at doses of 2.7–54.3 µM significantly reduced the growth of sensitive and resistant cells as supported with decreased viability and increased cellular LDH enzyme of treated cells compared to controls non-treated cells. Curcumin also at doses of 2.7 and 54.3 µM regulated the fibrogenesis by reducing the expression of fibrotic markers in treated cells. Analysis of apoptotic markers indicated increased Bax, Bax, Bax/Bcl-2 ratio, Annexin V, caspase-8, and cytochrome c expression, while Bcl-2 expressions were significantly reduced. In curcumin-treated cells at 2.7 μM, non-significant change in ROS with significant increase in SOD and CAT activity was observed, whereas an increase in ROS with a reduction in respective antioxidant enzymes were seen at higher concentrations along with significant upregulation of SIRT1. In conclusion, the present study shows that curcumin induces anticancer activity against resistant cancer cell lines in a concentration- and time-dependent manner. The protective activities of curcumin against the growth of cancer cells are mediated by modulating oxidative stress, regulating fibrosis, SIRT1 activation, and inducing cellular apoptosis. Therefore, curcumin could be tested as an auxiliary therapeutic agent to improve the prognosis in patients with resistant cancers.
Collapse
|
10
|
Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part II). Int J Mol Sci 2022; 23:ijms23168896. [PMID: 36012159 PMCID: PMC9408012 DOI: 10.3390/ijms23168896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.
Collapse
|
11
|
Tian L, Wang Y, Qing J, Zhou W, Sun L, Li R, Li Y. A review of the pharmacological activities and protective effects of Inonotus obliquus triterpenoids in kidney diseases. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Kidney diseases are common health problems worldwide. Various etiologies ultimately lead to the development of chronic kidney disease and end-stage renal disease. Natural compounds from herbs or medicinal plants are widely used for therapy and prevention of various ailments, among which is Inonotus obliquus. I. obliquus is rich in triterpenoids and the main active ingredients include betulinic acid, trametenolic acid, inotodiol, and ergosterol. New evidence suggests that I. obliquus triterpenes may be an effective drug for the treatment and protection of various kidney diseases. The aim of this review is to highlight the pharmacological activities and potential role of I. obliquus triterpenes in the kidney disease treatment and protection.
Collapse
Affiliation(s)
- Lingling Tian
- The Third Clinical College, Shanxi University of Chinese Medicine , Taiyuan , Shanxi, 030001 , China
| | - Yi Wang
- The Third Clinical College, Shanxi University of Chinese Medicine , Taiyuan , Shanxi, 030001 , China
| | - Jianbo Qing
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- The Fifth Clinical Medical College of Shanxi Medical University , Taiyuan , Shanxi, 030001 , China
| | - Wenjing Zhou
- School of Medical Sciences, Shanxi University of Chinese Medicine , jinzhong , 030619 , China
| | - Lin Sun
- College of Taditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine , jinzhong , 030619 , China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University ; Taiyuan , 030001 , China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan, 030012 , Shanxi , China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030012, Shanxi , China
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- Academy of Microbial Ecology, Shanxi Medical University , Taiyuan , 030001 , China
| |
Collapse
|
12
|
Basist P, Parveen B, Zahiruddin S, Gautam G, Parveen R, Khan MA, Krishnan A, Shahid M, Ahmad S. Potential nephroprotective phytochemicals: Mechanism and future prospects. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114743. [PMID: 34655670 DOI: 10.1016/j.jep.2021.114743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kidney disease (KD) is one of the serious health issues, which causes worrisome morbidity and economic burden. Therapeutic strategies are available however majority of them are associated with severe adverse effects and poor patient compliance and adherence. This explorative article was undertaken to provide a holistic review of known nephroprotective (NP) phytoconstituents along with their research-based evidences on mechanism, sources, and clinical trials that may play essential role in prevention and cure of KD. AIM OF THE STUDY The present systematic review aimed to provide in-depth and better evidences of the global burden of KD, phytoconstituents as NP with emphasis on mechanism of action both in vitro and in vivo, their wide biological sources as well as their clinical efficacy in management of kidney disease and its related disorders. MATERIAL AND METHODS Comprehensive information was searched systematically from electronic databases, namely, PubMed, Sciencedirect, Wiley, Scopus, Google scholar and Springer until February 2021 to find relevant data for publication on phytoconstituents with nephroprotective potential. RESULTS In total, 24,327 articles were screened in first search for "phytoconstituents and medicinal plants for nephroprotection and kidney disorder". On the basis of exclusion and inclusion criteria, 24,091 were excluded. Only 236 papers were spotted to have superlative quality data, which is appropriate under titles and sub-titles of the present review. The phytoconstituents having multiple research evidence along with wide number of medicinal plants sources and mechanism reported for nephroprotection have been selected and reviewed. CONCLUSION This review, based on pre-clinical and clinical data of NP phytoconstituents, provides scientific-basis for the rational discovery, development and utilization of these upcoming treatment practices. Further,-more clinical studies are warranted to improve the pharmacodynamic and pharmacokinetic understanding of phytoconstituents. Also, more specific evaluation for natural sources is needed.
Collapse
Affiliation(s)
- Parakh Basist
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Bushra Parveen
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Gaurav Gautam
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Rabea Parveen
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Anuja Krishnan
- Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Shahid
- Department of Pharmaceutical Sciences, Chicago State University College of Pharmacy, Chicago, IL, 60423, USA
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
13
|
Magalhães EP, Silva BP, Aires NL, Ribeiro LR, Ali A, Cavalcanti MM, Nunes JVS, Sampaio TL, de Menezes RRPPB, Martins AMC. (-)-α-Bisabolol as a protective agent against epithelial renal cytotoxicity induced by amphotericin B. Life Sci 2021; 291:120271. [PMID: 34974077 DOI: 10.1016/j.lfs.2021.120271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Amphotericin B (AmB), used for systemic fungal infections, has a limited clinical application because of its high nephrotoxicity. Natural antioxidant and anti-inflammatory substances have been widely studied for protection against drug-induced nephrotoxicity. α-Bisabolol (BIS) has demonstrated a nephroprotective effect on both in vitro and in vivo models. AIMS The aim of this work was to evaluate the effect of BIS against AmB-induced nephrotoxicity in vitro. MATERIAL AND METHODS LLC-MK2 cells were pre- and post-treated with non-toxic BIS concentrations and/or AmB IC50 (13.97 μM). Cell viability was assessed by MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)] assay. Flow cytometry analyses were used to assess cell death mechanism, production of reactive oxidative stress (ROS) and mitochondrial transmembrane potential. Kidney Injury Molecule-1 (KIM-1) levels were measured via ELISA. KEY FINDINGS The present work showed that BIS pretreatment (125; 62.5 and 31.25 μM) increased cell viability when compared to the group treated only with AmB IC50. AmB treatment induced both necrosis (7-AAD-labeled cells) and late apoptosis (AnxV-labeled). BIS was able to prevent the occurrence of these events. These effects were associated with a decrease of ROS accumulation, improving transmembrane mitochondrial potential and protecting against tubular cell damage, highlighted by the inhibition of KIM-1 release after BIS treatment. SIGNIFICANCE BIS presented a potential effect on model of renal cytotoxicity induced by AmB, bringing perspectives for the research of new nephroprotective agents.
Collapse
Affiliation(s)
- Emanuel Paula Magalhães
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Brenna Pinheiro Silva
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Natália Luna Aires
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lyanna Rodrigues Ribeiro
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Arif Ali
- Postgraduate Program in Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - João Victor Serra Nunes
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Tiago Lima Sampaio
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
14
|
Molecular Mechanistic Pathways Targeted by Natural Antioxidants in the Prevention and Treatment of Chronic Kidney Disease. Antioxidants (Basel) 2021; 11:antiox11010015. [PMID: 35052518 PMCID: PMC8772744 DOI: 10.3390/antiox11010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic kidney disease (CKD) is the progressive loss of renal function and the leading cause of end-stage renal disease (ESRD). Despite optimal therapy, many patients progress to ESRD and require dialysis or transplantation. The pathogenesis of CKD involves inflammation, kidney fibrosis, and blunted renal cellular antioxidant capacity. In this review, we have focused on in vitro and in vivo experimental and clinical studies undertaken to investigate the mechanistic pathways by which these compounds exert their effects against the progression of CKD, particularly diabetic nephropathy and kidney fibrosis. The accumulated and collected data from preclinical and clinical studies revealed that these plants/bioactive compounds could activate autophagy, increase mitochondrial bioenergetics and prevent mitochondrial dysfunction, act as modulators of signaling pathways involved in inflammation, oxidative stress, and renal fibrosis. The main pathways targeted by these compounds include the canonical nuclear factor kappa B (NF-κB), canonical transforming growth factor-beta (TGF-β), autophagy, and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid factor 2-related factor 2 (Nrf2)/antioxidant response element (ARE). This review presented an updated overview of the potential benefits of these antioxidants and new strategies to treat or reduce CKD progression, although the limitations related to the traditional formulation, lack of standardization, side effects, and safety.
Collapse
|
15
|
Lou H, Li H, Zhang S, Lu H, Chen Q. A Review on Preparation of Betulinic Acid and Its Biological Activities. Molecules 2021; 26:5583. [PMID: 34577056 PMCID: PMC8468263 DOI: 10.3390/molecules26185583] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Betulinic acid, a pentacyclic triterpene, is distributed in a variety of plants, such as birch, eucalyptus and plane trees. It shows a wide spectrum of biological and pharmacological properties, such as anti-inflammatory, antibacterial, antiviral, antidiabetic, antimalarial, anti-HIV and antitumor effects. Among them, the antitumor activity of betulinic acid has been extensively studied. However, obtaining betulinic acid from natural resources can no longer meet the needs of medicine and nutrition, so methods such as chemical synthesis and microbial biotransformation have also been used to prepare betulinic acid. At the same time, with the development of synthetic biology and genetic engineering, and the elucidation of the biosynthetic pathways of terpenoid, the biosynthesis of betulinic acid has also been extensively researched. This article reviews the preparation of betulinic acid and its pharmacological activities, in order to provide a reference for the research and utilization of betulinic acid.
Collapse
Affiliation(s)
| | | | | | | | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (H.L.); (S.Z.); (H.L.)
| |
Collapse
|
16
|
Chen X, Zhou Y, Sun Y, Ji T, Dai H. Transplantation of decellularized and lyophilized amniotic membrane inhibits endometrial fibrosis by regulating connective tissue growth factor and tissue inhibitor of matrix metalloproteinase-2. Exp Ther Med 2021; 22:968. [PMID: 34335910 PMCID: PMC8290472 DOI: 10.3892/etm.2021.10400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Intrauterine adhesion (IUA) is a disease characterized by endometrial fibrosis caused by injury to the endometrium. In the present study, decellularized and lyophilized human amniotic membrane (DL-AM) material was transplanted in a rat model to explore the preventive effect against IUA. A total of 24 Sprague Dawley rats were randomly divided into an IUA (n=12) group and an IUA + DL-AM (n=12) group. To establish the model, the endometrium of the left uterus was scraped, while that of the right uterus was used as a control. In the IUA group, scraped uteri were sutured without any other treatment, whereas DL-AM was transplanted onto the scraped uteri in the IUA + DL-AM group. Uteri were resected for histological and immunohistochemical evaluation at 3, 7, 14 and 28 days after surgery. The results confirmed the development of IUA, which was accompanied by an increase in the rate of fibrotic area. Integral optical density (IOD) values of connective tissue growth factor (CTGF) were elevated in the IUA group, while matrix metalloproteinase-2 (MMP-2) decreased relative to the control group (P<0.05). After DL-AM transplantation, the IOD value of CTGF dropped, while MMP-2 increased compared with the IUA group (P<0.05). However, compared with that in the control group, the IOD value of CTGF was still higher, whereas MMP-2 was still lower in the IUA + DL-AM group (P<0.05). Furthermore, no evidence of endometrial regeneration was detected in both the IUA and IUA + DL-AM groups. Overall, these results indicated that in the rat model of IUA, transplantation of DL-AM had the potential to prevent the formation of fibrosis to a certain extent and may thus be an alternative strategy for managing the condition.
Collapse
Affiliation(s)
- Xing Chen
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Yan Zhou
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Ying Sun
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Tonghui Ji
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Huihua Dai
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| |
Collapse
|
17
|
Li M, Zhang FX, Wei ZC, Li ZT, Zhang GX, Li HJ. Systematically characterization of in vivo substances of Ziziphi Spinosae Semen in rats by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis. J Pharm Biomed Anal 2020; 193:113756. [PMID: 33217708 DOI: 10.1016/j.jpba.2020.113756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/28/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023]
Abstract
Ziziphi Spinosae Semen (ZSS), the seeds of Ziziphus jujuba var. spinosa, is widely used in China or other Asian countries for the treatment of insomnia and palpitation. In our previous work, chemical constituents in ZSS were profiled by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF MS). Notably, characterization of substances in vivo was of great importance to reveal the therapy basis or mechanism in further work. Till now, there were few reports about in vivo substances' investigation of ZSS. In the present study, an integrated strategy contained represented compounds and diagnostic ions extraction was applied to characterize metabolism feature of ZSS in rats based on UHPLC/Q-TOF MS method. First, the metabolic information of four compounds (spinosin, isovitexin, jujuboside B, betulinic acid) featuring three representative chemical structures (flavonoids, saponins, terpenes) in ZSS was conducted, and their metabolism features were summarized, especially for flavonoid C-glycosides. Second, the absorbed compounds and representative compounds-related metabolites were quickly screened out; during this time, the diagnostic ions were sorted out. Last, with the help of diagnostic ions and summarized metabolic reactions, other metabolites were characterized. As a result, a total of 151 xenobiotics (58 prototypes and 93 metabolites) were identified or tentatively characterized in rats after ingestion of ZSS. Among them, 16 substances were presented in plasma, 114 in urine, 51 in bile, and 120 in feces, respectively. Hydrogenation, hydrolysis, and glucuronidation were the major metabolic reactions of ZSS in rats. The present study provided meaningful data for further pharmacological mechanism research or pharmacokinetics evaluation of ZSS.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China; Institute of Traditional Chinese Medicine Emergency Research, Emergency and Trauma College, Hainan Medical University, Haikou 571199, China
| | - Feng-Xiang Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhuo-Chun Wei
- Department of Pharmacy, The Dongguan Affiliated Hospital of Medical College of Jinan University, Marina Bay Central Hospital of Dongguan City (Also Called The Fifth People's Hospital of Dongguan), Guandong 523900, China
| | - Zi-Ting Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guo-Xun Zhang
- The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Hai-Jun Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China; Institute of Traditional Chinese Medicine Emergency Research, Emergency and Trauma College, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
18
|
Zhang WD, Jin MM, Jiang HH, Yang JX, Wang Q, Du YF, Cao L, Xu HJ. Study on the metabolites of betulinic acid in vivo and in vitro by ultra high performance liquid chromatography with time-of-flight mass spectrometry. J Sep Sci 2018; 42:628-635. [PMID: 30427118 DOI: 10.1002/jssc.201800960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022]
Abstract
Betulinic acid is a triterpenoid organic acid with remarkable antitumor properties and is naturally present in many fruits, condiments and traditional Chinese medicines. Currently, a strategy was developed for the identification of metabolites following the in vivo and in vitro biotransformation of Betulinic acid with rat intestinal bacteria utilizing ultra high performance liquid chromatography with time-of-flight mass spectrometry with polymeric solid-phase extraction. As a result, 46 metabolites were structurally characterized. The results demonstrated that Betulinic acid is universally metabolized in vivo and in vitro, and Betulinic acid could undergo general metabolic reactions, including oxidation, methylation, desaturation, loss of O and loss of CH2 . Additionally, the main metabolic pathways in vivo and in vitro were determined by calculating the relative content of each metabolite. This is the first study of Betulinic acid metabolism in vivo, whose results provide novel and useful data for better understanding of the safety and efficacy of Betulinic acid.
Collapse
Affiliation(s)
- Wen-Dan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Miao-Miao Jin
- Department of Pharmacy, Kailuan General Hospital, Tangshan, P. R. China
| | - Hong-Hong Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Jian-Xi Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Qiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Ying-Feng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Liang Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Hui-Jun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| |
Collapse
|
19
|
Thakur R, Sharma A, Lingaraju MC, Begum J, Kumar D, Mathesh K, Kumar P, Singh TU, Kumar D. Ameliorative effect of ursolic acid on renal fibrosis in adenine-induced chronic kidney disease in rats. Biomed Pharmacother 2018; 101:972-980. [PMID: 29635907 DOI: 10.1016/j.biopha.2018.02.143] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/18/2022] Open
Abstract
Ursolic acid (UA), an ursane-type pentacyclic triterpenoid commonly found in apple peels and holy basil has been shown to possess many beneficial effects. Renal fibrosis is a complication of kidney injury and associated with increased risk of morbidity and mortality. In our previous investigation, a lupane-type pentacyclic triterpenoid, betulinic acid (BA) was found to have protective effect on chronic kidney disease (CKD) and renal fibrosis. This prompted us to explore the therapeutic value of UA, a chemically related compound to BA in CKD. CKD was induced by feeding adenine with the feed at a concentration of 0.75% for 28 days. UA at the dose rate of 30 mg/kg in 0.5% carboxy methyl cellulose (CMC) was administered by oral route, simultaneously with adenine feeding for 28 days. Adenine feeding increased the kidney weight to body weight index, decreased the kidney function due to injury as indicated by increased markers like serum urea, uric acid, creatinine, cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) and initiated the fibrotic response in kidney by increasing the profibrotic proteins viz. transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), fibronectin and collagen. However, treatment with UA reversed the damage induced by adenine as shown by reduced kidney injury and fibrosis markers which was further clearly evident in histological picture indicating the suitability of UA for use in CKD.
Collapse
Affiliation(s)
- Richa Thakur
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Anshuk Sharma
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Madhu C Lingaraju
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India.
| | - Jubeda Begum
- Department of Veterinary Microbiology, College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar, 263153, UK, India
| | - Dhirendra Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Karikalan Mathesh
- Centre for Wildlife Conservation Management and Disease Surveillance, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Pawan Kumar
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| |
Collapse
|
20
|
Li QM, Chena HR, Zha XQ, Lu CQ, Pan LH, Luo JP. Renoprotective effect of Chinese chive polysaccharides in adenine-induced chronic renal failure. Int J Biol Macromol 2018; 106:988-993. [DOI: 10.1016/j.ijbiomac.2017.08.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
|
21
|
Betulinic acid alleviates dextran sulfate sodium-induced colitis and visceral pain in mice. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:285-297. [PMID: 29279966 DOI: 10.1007/s00210-017-1455-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
|