1
|
Li J, Guo C, Wen X, Chen H, Du H, Liu D. Chemical composition of Artemisia argyi essential oil and its antifungal activity against dermatophytes by inhibiting oxidative phosphorylation and causing oxidative damage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118344. [PMID: 38754641 DOI: 10.1016/j.jep.2024.118344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dermatophytes are notorious pathogens capable of infecting various mammals skin, posing serious threats to human health and overall life quality worldwide. Artemisia argyi has been recorded and applied for over a thousand years to treat skin itching. Although it has the potential to be developed as a plant-based antifungal agent, it's antifungal activity and action mechanism of active ingredients are still unclear. AIM OF THE STUDY The aim of this study was to investigate the chemical composition, antifungal activity against skin fungi, and potential mechanisms of Artemisia argyi essential oil (AEO). MATERIALS AND METHODS The chemical composition of AEO was analyzed by gas chromatography-mass spectrometry (GC-MS) firstly. Flat growth restraint and double half dilution tests was performed to evaluate AEO antifungal activity against Microsporum gypseum, Trichophyton mentagrophytes, and Trichophyton rubrum. And then, the physiological mechanism of AEO inhibiting dermatophytes was systematically explored through scanning electron microscopy, relative conductivity, membrane leakage, ROS content, and antioxidant enzyme activity. Finally, the main pathways were screened through transcriptome sequencing, while the related genes expression levels and enzyme activity were validated. RESULTS Monoterpenes and sesquiterpenoids were the most highly representative class of AEO. AEO had powerful antifungal activity against M. gypseum, T. mentagrophytes, and T. rubrum, with minimum inhibitory concentration (MIC) values of 0.6, 1.2, and 1.2 μL/mL, respectively. Moreover, AEO can also damage the cell membrane integrity of T. mentagrophytes, resulting in cellular extravasation of intracellular substances. Transcriptome analysis revealed that the main target of AEO is to inhibit electron transfer and oxidative phosphorylation during respiration, ultimately leading to obstruction of normal ATP synthesis and energy metabolism in mitochondria. And a large amount of ROS will generate due to the incompletely catalysis of oxygen under mitochondrial complexes. Coupled with the decrease of antioxidant enzyme (SOD, POD) activity, excessive accumulation of ROS will cause serious oxidative damage to cells and eventually exhibiting antifungal activity against dermatophytes. CONCLUSIONS The present study demonstrated that Artemisia argyi was a valuable source of active compounds with antifungal activity. These findings support AEO as a potential agent to inhibit dermatophytes and prevent related dermatophytoses.
Collapse
Affiliation(s)
- Jinxin Li
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chaowei Guo
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xuejiao Wen
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Hong Chen
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Hongzhi Du
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Dahui Liu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
2
|
Jamal K, Al-Taweel A, Bukhari SI, Orfali R, Moubayed NMS, Al-Qahtani J, Aati H, Taglialatela-Scafati O, Peng J, Perveen S. Isochlorogenic Acid Glucosides from the Arabian Medicinal Plant Artemisia sieberi and Their Antimicrobial Activities. Molecules 2023; 28:7460. [PMID: 38005182 PMCID: PMC10673327 DOI: 10.3390/molecules28227460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
A phytochemical investigation of the stems of the Arabian plant Artemisia sieberi afforded three new isochlorogenic acid derivatives, namely isochlorogenic acid A-3'-O-β-glucopyranoside (1), isochlorogenic acid A-3'-O-β-glucopyranoside methyl ester (2), and isochlorogenic acid C-3'-O-β-glucopyranoside (3), obtained along with thirteen known secondary metabolites belonging to distinct structural classes. The structures of the new metabolites were elucidated by modern spectroscopic techniues based on high-resolution mass spectrometry (HR-ESIMS) and 1D/2D nuclear magnetic resonance (NMR). All isolated compounds were tested for their potential antimicrobial activity against four different bacterial strains (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa), in addition to a fungal strain (Candida tropicalis), The results were expressed as the diameter of the clear zone (in millimetres) around each well. Compounds 1 and 3 (isochlorogenic acid A-3'-O-β-glucopyranoside and isochlorogenic acid C-3'-O-β-glucopyranoside, respectively) displayed remarkable antifungal effect and potent antibacterial activities against B. subtilis and S. aureus, respectively. 3α,4α-10β-trihydroxy-8α-acetyloxyguaian-12,6α-olide (6) and angelicoidenol 2-O-β-d-glucopyranoside (9) emerged as interesting dual antibacterial (selective on P. aeruginosa)/antifungal agents.
Collapse
Affiliation(s)
- Khlood Jamal
- Department of Pharmacognosy, College of Clinical Pharmacy, Baha University, P.O. Box 26553, Taif 3442, Saudi Arabia;
| | - Areej Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (A.A.-T.); (R.O.); (J.A.-Q.); (H.A.)
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (A.A.-T.); (R.O.); (J.A.-Q.); (H.A.)
| | - Nadine M. S. Moubayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
| | - Jawaher Al-Qahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (A.A.-T.); (R.O.); (J.A.-Q.); (H.A.)
| | - Hanan Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (A.A.-T.); (R.O.); (J.A.-Q.); (H.A.)
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy;
| | - Jiangnan Peng
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA;
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA;
| |
Collapse
|
3
|
Phytochemicals Identification and Bioactive Compounds Estimation of Artemisia Species Grown in Saudia Arabia. Metabolites 2023; 13:metabo13030443. [PMID: 36984883 PMCID: PMC10053057 DOI: 10.3390/metabo13030443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Artemisia species are very important medicinal plants, particularly in the Middle East and in developing countries. Their products have been used in traditional and medicine contemporary for the treating of infectious ulcers, gangrenous ulcers, inflammations, and malaria. Artemisinin derived from Artemisia species has been used as a drug in many countries for malaria disease treatment. Hence, this study aimed to identify and evaluate the bioactive compounds of three species of Artemisia (Artemisia judaica, Artemisia monosperma, and Artemisia sieberi) growing in Saudi Arabia. Therefore, several analytical techniques, such as gas chromatography–mass spectrometry (GC-MS), UV-Visible spectrophotometry (UV-Vis), and high-performance liquid chromatography (HPLC), with reference standards, were used. The GC-MS analysis of the artemisia species revealed many bioactive constituents associated with plant secondary metabolites; some of these identified phytochemical components have biological activity. A. Judaica showed the highest number of bioactive compounds, followed by A. sieberi and A. monosperma. Further, the total phenol, total flavonoid, total tannin, terpenoids, and TCA were estimated. Furthermore, biomolecules such gallic acid, tannin acid, quercetin, and artemisinin in different artemisia species were quantified using HPLC with the reference standard. The amount of artemisinin in the leaf extract of these species (A. sieberi, A. Judaica, and A. monosperma) was found to be about 3.01, 2.5, and 1.9 mg/g DW, respectively. Moreover, the antioxidant activity of the samples was estimated. The obtained results have shown that these species possessed high antioxidant activity, and the scavenging of the DPPH radical and hydrogen peroxide were found to be raised with the increase in the plant extract concentration. This reflects the number of bioactive compounds in these species. The findings of this research support and justify the utilization of Artemisia species in folk medicine in the Middle East.
Collapse
|
4
|
Mohammed HA, Qureshi KA, Ali HM, Al-Omar MS, Khan O, Mohammed SAA. Bio-Evaluation of the Wound Healing Activity of Artemisia judaica L. as Part of the Plant’s Use in Traditional Medicine; Phytochemical, Antioxidant, Anti-Inflammatory, and Antibiofilm Properties of the Plant’s Essential Oils. Antioxidants (Basel) 2022; 11:antiox11020332. [PMID: 35204215 PMCID: PMC8868479 DOI: 10.3390/antiox11020332] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Artemisia judaica (ArJ) is a Mediterranean aromatic plant used traditionally to treat gastrointestinal ailments, skin diseases, atherosclerosis, and as an immuno-stimulant. This study describes ArJ essential oil constituents and investigates their wound healing activity. The in vitro antioxidant and antibiofilm activities of ArJ essential oil were investigated. The in vivo pro/anti-inflammatory and oxidative/antioxidant markers were compared with standard silver sulfadiazine (SS) in a second-degree skin burn experimental rat model. The gas chromatography-equipped flame ionization detector (GC-FID) analysis of ArJ essential oil revealed the major classes of compounds as oxygenated monoterpenes (>57%) and cinnamic acid derivatives (18.03%). The antimicrobial tests of ArJ essential oil revealed that Bacillus cereus, Candida albicans, and Aspergillus niger were the most susceptible test organisms. Two second-degree burns (each 1 inch square in diameter) were created on the dorsum of rats using an aluminum cylinder heated to 120 °C for 10 s. The wounds were treated either with ArJ or SS ointments for 21 days, while the negative control remained untreated, and biopsies were obtained for histological and biochemical analysis. The ArJ group demonstrated a significant increase in antioxidant superoxide dismutase (SOD) and catalase (CAT) enzymatic activities, while lipid peroxide (LP) levels remained insignificant compared to the negative control group. Additionally, ArJ and SS groups demonstrated a significant decrease in inflammatory levels of tumor necrosis factor α (TNF-α) compared to the negative group, while interleukin 1 beta (IL-1b) and IL-6 were comparable to the negative group. At the same time, anti-inflammatory IL-10 and transforming growth factor beta 1 (TGF-b1) markers increased significantly in the ArJ group compared to the negative control. The ArJ results demonstrated potent wound healing effects, comparable to SS, attributable to antioxidant and anti-inflammatory effects as well as a high proportion of oxygenated monoterpenes and cinnamate derivatives.
Collapse
Affiliation(s)
- Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
- Correspondence: (H.A.M.); (S.A.A.M.)
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Hussein M. Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Mohsen S. Al-Omar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid 22110, Jordan
| | - Omar Khan
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Correspondence: (H.A.M.); (S.A.A.M.)
| |
Collapse
|
5
|
Ammar NM, Hassan H, Ahmed R, El Gendy AEN, Abd-ElGawad A, Farrag AR, Farag AR, Elshamy A, Afifi S. Gastro-protective effect of Artemisia sieberi essential oil against ethanol-induced ulcer in rats as revealed via biochemical, histopathological and metabolomics analysis. Biomarkers 2022; 27:247-257. [PMID: 34978233 DOI: 10.1080/1354750x.2021.2025428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT Gastric ulcer is regarded as one of the main clinical ailments with high morbidity and mortality rates. MATERIALS AND METHODS Gastro-protective effect of Artemisia sieberi essential oil (AS-EO) in ethanol-induced rats was evaluated via biochemical, histopathological and large-scale metabolomics analyses. Glutathione (GSH), total antioxidant capacity (TAC), prostaglandin (PGE2) and tumor necrosis factor α (TNF-α) alongside with histopathological examination of gastric mucosa were analyzed. Metabolites profiling coupled to Global Natural Products Social molecular networking platform (GNPS) and multivariate data analyses to reveal for changes in rats metabolome with treatments and involved action mechanisms. RESULTS Pretreatment with 100 and 200 mg/kg of AS-EO in EtOH-treated rats restored all parameters towards normal status compared to disease model. AS-EO alleviated the histological and pathological damage of gastric tissue caused by ethanol. Metabolites profiling revealed an increase in uracil, cholesterol and fatty acids/fatty acyl amides levels in ulcer rats and restored to normal levels post AS-EO intervention. These results indicated the efficacy of AS-EO in a dose-dependent manner, and to exert protective effects in ulcer rat model by targeting several metabolic pathways viz. lipid, energy, and nucleotide metabolisms. CONCLUSION AS-EO adds to the known uses of genus Artemisia as anti-ulcerogenic agent by attenuating oxidative stress and inflammatory responses associated with an ulcer. Several novel biomarkers for ulcer progression in rats were identified and have yet to be confirmed in human models.
Collapse
Affiliation(s)
- Naglaa M Ammar
- Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Heba Hassan
- Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Rania Ahmed
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Abd El-Nasser El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, Cairo, Egypt
| | - Ahmed Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Abdel Razik Farrag
- Department of Pathology, National Research Centre, 33 El Bohouth St. Dokki, Giza 12622, Egypt
| | - Abdel Razik Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo P.B. 11562, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Abdelsamed Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Sherif Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| |
Collapse
|
6
|
Ali EM, Abdallah BM. Effective Inhibition of Invasive Pulmonary Aspergillosis by Silver Nanoparticles Biosynthesized with Artemisia sieberi Leaf Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:51. [PMID: 35010001 PMCID: PMC8746907 DOI: 10.3390/nano12010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022]
Abstract
Aspergillus fumigatus is one of the most common fungal pathogens that can cause a diversity of diseases ranging from invasive pulmonary aspergillosis (IPA) and aspergilloma to allergic syndromes. In this study, we investigated the antifungal effect of silver nanoparticles biosynthesized with Artemisia sieberi leaf extract (AS-AgNPs) against A. fumigatus in vitro and in vivo. The biosynthesized AS-AgNPs were characterized by imaging (transmission electron microscopy (TEM)), UV-VIS spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The microdilution method showed the antifungal activity of AS-AgNPs against A. fumigatus, with an MIC of 128 µg/mL. AS-AgNPs significantly inhibited the growth of hyphae in all directions, as imaged by SEM. Additionally, TEM on biofilm revealed invaginations of the cell membrane, a change in the vacuolar system, and the presence of multilamellar bodies within vacuoles. Interestingly, AS-AgNPs displayed low cytotoxicity on the A549 human lung cell line in vitro. Treatment of an invasive pulmonary aspergillosis (IPA) mouse model with AS-AgNPs demonstrated the potency of AS-AgNPs to significantly reduce lung tissue damage and to suppress the elevated levels of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), and interleukin-17 (IL-17). The therapeutic potential of AS-AgNPs was found to be due to their direct action to suppress the fungal burden and gliotoxin production in the lungs. In addition, AS-AgNPs reduced the oxidative stress in the lungs by increasing the enzymatic activities of catalase (CAT) and superoxide dismutase (SOD). Thus, our data indicate the biosynthesized AS-AgNPs as a novel antifungal alternative treatment against aspergillosis.
Collapse
Affiliation(s)
- Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
7
|
Rhimi W, Theelen B, Boekhout T, Aneke CI, Otranto D, Cafarchia C. Conventional therapy and new antifungal drugs against Malassezia infections. Med Mycol 2021; 59:215-234. [PMID: 33099634 DOI: 10.1093/mmy/myaa087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Malassezia yeasts are commensal microorganisms occurring on the skin of humans and animals causing dermatological disorders or systemic infections in severely immunocompromised hosts. Despite attempts to control such yeast infections with topical and systemic antifungals, recurrence of clinical signs of skin infections as well as treatment failure in preventing or treating Malassezia furfur fungemia have been reported most likely due to wrong management of these infections (e.g., due to early termination of treatment) or due to the occurrence of resistant phenomena. Standardized methods for in vitro antifungal susceptibility tests of these yeasts are still lacking, thus resulting in variable susceptibility profiles to azoles among Malassezia spp. and a lack of clinical breakpoints. The inherent limitations to the current pharmacological treatments for Malassezia infections both in humans and animals, stimulated the interest of the scientific community to discover new, effective antifungal drugs or substances to treat these infections. In this review, data about the in vivo and in vitro antifungal activity of the most commonly employed drugs (i.e., azoles, polyenes, allylamines, and echinocandins) against Malassezia yeasts, with a focus on human bloodstream infections, are summarized and their clinical implications are discussed. In addition, the usefulness of alternative compounds is discussed.
Collapse
Affiliation(s)
- Wafa Rhimi
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Chioma Inyang Aneke
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy.,Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy.,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy
| |
Collapse
|
8
|
Drug Repurposing in Medical Mycology: Identification of Compounds as Potential Antifungals to Overcome the Emergence of Multidrug-Resistant Fungi. Pharmaceuticals (Basel) 2021; 14:ph14050488. [PMID: 34065420 PMCID: PMC8161392 DOI: 10.3390/ph14050488] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Immunodepression, whether due to HIV infection or organ transplantation, has increased human vulnerability to fungal infections. These conditions have created an optimal environment for the emergence of opportunistic infections, which is concomitant to the increase in antifungal resistance. The use of conventional antifungal drugs as azoles and polyenes can lead to clinical failure, particularly in immunocompromised individuals. Difficulties related to treating fungal infections combined with the time required to develop new drugs, require urgent consideration of other therapeutic alternatives. Drug repurposing is one of the most promising and rapid solutions that the scientific and medical community can turn to, with low costs and safety advantages. To treat life-threatening resistant fungal infections, drug repurposing has led to the consideration of well-known and potential molecules as a last-line therapy. The aim of this review is to provide a summary of current antifungal compounds and their main resistance mechanisms, following by an overview of the antifungal activity of non-traditional antimicrobial drugs. We provide their eventual mechanisms of action and the synergistic combinations that improve the activity of current antifungal treatments. Finally, we discuss drug repurposing for the main emerging multidrug resistant (MDR) fungus, including the Candida auris, Aspergillus or Cryptococcus species.
Collapse
|
9
|
Ghasemi G, Alirezalu A, Ishkeh SR, Ghosta Y. Phytochemical properties of essential oil from Artemisia sieberi Besser (Iranian accession) and its antioxidant and antifungal activities. Nat Prod Res 2020; 35:4154-4158. [PMID: 32202146 DOI: 10.1080/14786419.2020.1741576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this study, the phytochemical profile, the essential oil composition of an Iranian accession of Artemisia sieberi and their antioxidant and antifungal properties were investigated. The amount of essential oil yield was 1.5% (w/v) and twenty two components were identified by GC-MS analysis being camphor (33.64%), 1,8-cineole (25.66%) and chrysanthenone (7.86%) the major compounds. The amount of total polyphenols and flavonoids, total ascorbic acid and carotenoid content of A. sieberi extract were determined, and resulted in 666.26 mg GAE/100g DW, 54.77 mg QUE/100g DW, 153.585 mg/100g DW, and 907.18 mg/100g FW, respectively. Highest antioxidant activity based on DPPH bioassay was recorded in essential oil (84.04%) and extract (89.33%). Furthermore, the essential oil of A. sieberi tested for its antifungal activity, demonstrated to reduce significantly the mycelium growth rate of Botrytis cinerea, that is, no mycelial growth was observed at concentrations 1000 and 1500 μll-1.
Collapse
Affiliation(s)
- Ghader Ghasemi
- Department of Horticulture Sciences, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Abolfazl Alirezalu
- Department of Horticulture Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
10
|
Mahboubi M, Valian M. Anti-dermatophyte activity of Pelargonium graveolens essential oils against dermatophytes. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0121-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
11
|
Nigam M, Atanassova M, Mishra AP, Pezzani R, Devkota HP, Plygun S, Salehi B, Setzer WN, Sharifi-Rad J. Bioactive Compounds and Health Benefits ofArtemisiaSpecies. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19850354] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Artemisia L. is a genus of small herbs and shrubs found in northern temperate regions. It belongs to the important family Asteraceae, one of the most numerous plant groupings, which comprises about 1000 genera and over 20000 species. Artemisia has a broad spectrum of bioactivity, owing to the presence of several active ingredients or secondary metabolites, which work through various modes of action. It has widespread pharmacological activities and has been used as traditional medicine since ancient times as an anthelmintic, antispasmodic, antirheumatic, and antibacterial agent and for the treatment of malaria, hepatitis, cancer, inflammation, and menstrual-related disorders. This review comprises the updated information about the ethnomedical uses and health benefits of various Artemisia spp. and general information about bioactive compounds and free radicals.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar, India
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, UCTM, Sofia, Bulgaria
| | - Abhay P. Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar, India
| | - Raffaele Pezzani
- OU Endocrinology, Department of Medicine (DIMED), University of Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | | | - Sergey Plygun
- All-Russian Research Institute of Phytopathology, Moscow Region, Russia
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University named after I.S. Turgenev, Orel, Russia
- European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical SciencesBam, Iran
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, AL, USA
- Aromatic Plant Research Center, Lehi, UT, USA
| | - Javad Sharifi-Rad
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, MB, Canada
| |
Collapse
|
12
|
Arockianathan PM, Mishra M, Niranjan R. Recent Status and Advancements in the Development of Antifungal Agents: Highlights on Plant and Marine Based Antifungals. Curr Top Med Chem 2019; 19:812-830. [PMID: 30977454 DOI: 10.2174/1568026619666190412102037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
The developing resistance in fungi has become a key challenge, which is being faced nowadays with the available antifungal agents in the market. Further search for novel compounds from different sources has been explored to meet this problem. The current review describes and highlights recent advancement in the antifungal drug aspects from plant and marine based sources. The current available antifungal agents act on specific targets on the fungal cell wall, like ergosterol synthesis, chitin biosynthesis, sphingolipid synthesis, glucan synthesis etc. We discuss some of the important anti-fungal agents like azole, polyene and allylamine classes that inhibit the ergosterol biosynthesis. Echinocandins inhibit β-1, 3 glucan synthesis in the fungal cell wall. The antifungals poloxins and nikkomycins inhibit fungal cell wall component chitin. Apart from these classes of drugs, several combinatorial therapies have been carried out to treat diseases due to fungal resistance. Recently, many antifungal agents derived from plant and marine sources showed potent activity. The renewed interest in plant and marine derived compounds for the fungal diseases created a new way to treat these resistant strains which are evident from the numerous literature publications in the recent years. Moreover, the compounds derived from both plant and marine sources showed promising results against fungal diseases. Altogether, this review article discusses the current antifungal agents and highlights the plant and marine based compounds as a potential promising antifungal agents.
Collapse
Affiliation(s)
- P Marie Arockianathan
- PG & Research Department of Biochemistry, St. Joseph's College of Arts & Science (Autonomous), Cuddalore-607001, Tamil Nadu, India
| | - Monika Mishra
- Neurobiology laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rituraj Niranjan
- Unit of Microbiology and Molecular Biology, ICMR-Vector Control Research Center, Puducherry 605006, India
| |
Collapse
|
13
|
Pishgahzadeh E, Shafaroodi H, Asgarpanah J. Analgesic and antiinflammatory activities of the essential oil from Artemisia sieberi Besser. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000217011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
In Vitro Activity of 30 Essential Oils against Bovine Clinical Isolates of Prototheca zopfii and Prototheca blaschkeae. Vet Sci 2018; 5:vetsci5020045. [PMID: 29695110 PMCID: PMC6024326 DOI: 10.3390/vetsci5020045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/17/2022] Open
Abstract
Protothecal mastitis poses an emergent animal health problem in dairy herds, with a high impact on dairy industries, causing heavy economic losses. Current methods of treating protothecal infections are ineffective, and no drug is licensed for use in cattle. The aim of the present study was to check the antialgal activity of 30 chemically defined essential oils (EOs) against Prototheca zopfii and Prototheca blaschkeae isolated from the milk of dairy cows with mastitis. A microdilution test was carried out to estimate the antialgal effectiveness of the selected chemically defined EOs. The microdilution test showed different degrees of inhibition among the examined Prototheca species. The activity of some of the examined EOs seem interesting. In particular, Citrus paradisi yielded the lowest minimal inhibitory concentration values (0.75%) for both algal species. P. zopfii appeared to be more sensitive to EOs in comparison to P. blaschkeae. The present study investigated the in vitro susceptibility of P. zopfii and P. blaschkeae to a wide range of EOs, obtained from different botanical families. Further investigations are necessary to evaluate the efficacy of EO-based formulations intended for the disinfection of both udder and milking products.
Collapse
|