1
|
Zhang J, Cai Y. CircLPHN3 correlates with prognosis in colorectal cancer and regulates cellular processes by targeting miR-142-5p. Int J Biol Markers 2024; 39:292-300. [PMID: 39420826 DOI: 10.1177/03936155241287219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is often diagnosed late and has a poor prognosis. Circular RNAs (circRNAs) have been identified as prognostic biomarkers in various cancers, including CRC. OBJECTIVE The objective was to elucidate the role of circLPHN3 (hsa_circ_0069865) in CRC progression and to provide a promising prognostic marker for CRC. METHODS CircLPHN3 was identified through bioinformatics analysis of the GSE121842 dataset. The levels of circLPHN3 in CRC samples were analyzed by real time-quantitative polymerase chain reaction. Its clinical significance was assessed using the Kaplan-Meier curve and multivariate Cox regression. Downstream microRNAs of circLPHN3 were predicted with the RNAhybrid, Circular RNA Interactome, and starBase online databases. The target of miR-142-5p was predicted using miRDB, TargetScanHuman, starBase, and miRWalk databases. The relationship between circLPHN3, miR-142-5p, and LDB2 was verified by dual luciferase reporter assay. The function of circLPHN3 on CRC cell growth and metastasis was measured using Transwell and the cell counting kit-8 assay. RESULTS Significant downregulation of circLPHN3 was found in CRC. CircLPHN3 was closely related to higher tumor node metastasis stage, lymph node metastasis, and predicted unfavorable prognosis. miR-142-5p was highly expressed in CRC and its expression was negatively regulated by circLPHN3. Overexpression of circLPHN3 curbed CRC cell growth, migration, and invasion, mediated by miR-142-5p. Moreover, LDB2 was identified as a target of miR-142-5p. CONCLUSION CircLPHN3 acted as a prognostic biomarker and tumor suppressor for CRC via modulating miR-142-5p.
Collapse
Affiliation(s)
- JiWen Zhang
- Department of Gastroenterology, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Yan Cai
- Department of Gastroenterology, Shanghai Baoshan Luodian Hospital, Shanghai, China
| |
Collapse
|
2
|
Pohlers M, Gies S, Taenzer T, Stroeder R, Theobald L, Ludwig N, Kim Y, Bohle RM, Solomayer EF, Meese E, Hart M, Walch‐Rückheim B. Th17 cells target the metabolic miR-142-5p-succinate dehydrogenase subunit C/D (SDHC/SDHD) axis, promoting invasiveness and progression of cervical cancers. Mol Oncol 2024; 18:2157-2178. [PMID: 37899663 PMCID: PMC11467798 DOI: 10.1002/1878-0261.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
During cervical carcinogenesis, T-helper (Th)-17 cells accumulate in the peripheral blood and tumor tissues of cancer patients. We previously demonstrated that Th17 cells are associated with therapy resistance as well as cervical cancer metastases and relapse; however, the underlying Th17-driven mechanisms are not fully understood. Here, using microarrays, we found that Th17 cells induced an epithelial-to-mesenchymal transition (EMT) phenotype of cervical cancer cells and promoted migration and invasion of 2D cultures and 3D spheroids via induction of microRNA miR-142-5p. As the responsible mechanism, we identified the subunits C and D of the succinate dehydrogenase (SDH) complex as new targets of miR-142-5p and provided evidence that Th17-miR-142-5p-dependent reduced expression of SDHC and SDHD mediated enhanced migration and invasion of cancer cells using small interfering RNAs (siRNAs) for SDHC and SDHD, and miR-142-5p inhibitors. Consistently, patients exhibited high levels of succinate in their serum associated with lymph node metastases and diminished expression of SDHD in patient biopsies correlated with increased numbers of Th17 cells. Correspondingly, a combination of weak or negative SDHD expression and a ratio of Th17/CD4+ T cells > 43.90% in situ was associated with reduced recurrence-free survival. In summary, we unraveled a previously unknown molecular mechanism by which Th17 cells promote cervical cancer progression and suggest evaluation of Th17 cells as a potential target for immunotherapy in cervical cancer.
Collapse
Affiliation(s)
- Maike Pohlers
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Selina Gies
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Tanja Taenzer
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Russalina Stroeder
- Department of Obstetrics and GynecologySaarland University Medical CenterHomburg/SaarGermany
| | - Laura Theobald
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Nicole Ludwig
- Institute of Human GeneticsSaarland UniversityHomburg/SaarGermany
| | - Yoo‐Jin Kim
- Institute of PathologySaarland University Medical CenterHomburg/SaarGermany
| | - Rainer Maria Bohle
- Institute of PathologySaarland University Medical CenterHomburg/SaarGermany
| | - Erich Franz Solomayer
- Department of Obstetrics and GynecologySaarland University Medical CenterHomburg/SaarGermany
| | - Eckart Meese
- Institute of Human GeneticsSaarland UniversityHomburg/SaarGermany
| | - Martin Hart
- Institute of Human GeneticsSaarland UniversityHomburg/SaarGermany
| | - Barbara Walch‐Rückheim
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| |
Collapse
|
3
|
Li S, Peng M, Tan S, Oyang L, Lin J, Xia L, Wang J, Wu N, Jiang X, Peng Q, Zhou Y, Liao Q. The roles and molecular mechanisms of non-coding RNA in cancer metabolic reprogramming. Cancer Cell Int 2024; 24:37. [PMID: 38238756 PMCID: PMC10795359 DOI: 10.1186/s12935-023-03186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
One of the key features of cancer is energy metabolic reprogramming which is tightly related to cancer proliferation, invasion, metastasis, and chemotherapy resistance. NcRNAs are a class of RNAs having no protein-coding potential and mainly include microRNAs, lncRNAs and circRNAs. Accumulated evidence has suggested that ncRNAs play an essential role in regulating cancer metabolic reprogramming, and the altered metabolic networks mediated by ncRNAs primarily drive carcinogenesis by regulating the expression of metabolic enzymes and transporter proteins. Importantly, accumulated research has revealed that dysregulated ncRNAs mediate metabolic reprogramming contributing to the generation of therapeutic tolerance. Elucidating the molecular mechanism of ncRNAs in cancer metabolic reprogramming can provide promising metabolism-related therapeutic targets for treatment as well as overcome therapeutic tolerance. In conclusion, this review updates the latest molecular mechanisms of ncRNAs related to cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiewen Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Liu C, Zhou D, Yang K, Xu N, Peng J, Zhu Z. Research progress on the pathogenesis of the SDHB mutation and related diseases. Biomed Pharmacother 2023; 167:115500. [PMID: 37734265 DOI: 10.1016/j.biopha.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
With the improvement of genetic testing technology in diseases in recent years, researchers have a more detailed and clear understanding of the source of cancers. Succinate dehydrogenase B (SDHB), a mitochondrial gene, is related to the metabolic activities of cells and tissues throughout the body. The mutations of SDHB have been found in pheochromocytoma, paraganglioma and other cancers, and is proved to affect the occurrence and progress of those cancers due to the important structural functions. The importance of SDHB is attracting more and more attention of researchers, however, reviews on the structure and function of SDHB, as well as on the mechanism of its carcinogenesis is inadequate. This paper reviews the relationship between SDHB mutations and related cancers, discusses the molecular mechanism of SDHB mutations that may lead to tumor formation, analyzes the mutation spectrum, structural domains, and penetrance of SDHB and sorts out some of the previously discovered diseases. For the patients with SDHB mutation, it is recommended that people in SDHB mutation families undergo regular genetic testing or SDHB immunohistochemistry (IHC). The purpose of this paper is hopefully to provide some reference and help for follow-up researches on SDHB.
Collapse
Affiliation(s)
- Chang Liu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Dayang Zhou
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Kexin Yang
- Department of Surgical oncology, Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, 650118, China
| | - Ning Xu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Jibang Peng
- Department of Surgical oncology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Zhu Zhu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China.
| |
Collapse
|
5
|
Mondal D, Shinde S, Paul S, Thakur S, Velu GSK, Tiwari AK, Dixit V, Amit A, Vishvakarma NK, Shukla D. Diagnostic significance of dysregulated miRNAs in T-cell malignancies and their metabolic roles. Front Oncol 2023; 13:1230273. [PMID: 37637043 PMCID: PMC10448964 DOI: 10.3389/fonc.2023.1230273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
T-cell malignancy is a broad term used for a diverse group of disease subtypes representing dysfunctional malignant T cells transformed at various stages of their clonal evolution. Despite having similar clinical manifestations, these disease groups have different disease progressions and diagnostic parameters. The effective diagnosis and prognosis of such a diverse disease group demands testing of molecular entities that capture footprints of the disease physiology in its entirety. MicroRNAs (miRNAs) are a group of noncoding RNA molecules that regulate the expression of genes and, while doing so, leave behind specific miRNA signatures corresponding to cellular expression status in an altered stage of a disease. Using miRNAs as a diagnostic tool is justified, as they can effectively distinguish expressional diversity between various tumors and within subtypes of T-cell malignancies. As global attention for cancer diagnosis shifts toward liquid biopsy, diagnosis using miRNAs is more relevant in blood cancers than in solid tumors. We also lay forward the diagnostic significance of miRNAs that are indicative of subtype, progression, severity, therapy response, and relapse. This review discusses the potential use and the role of miRNAs, miRNA signatures, or classifiers in the diagnosis of major groups of T-cell malignancies like T-cell acute lymphoblastic lymphoma (T-ALL), peripheral T-cell lymphoma (PTCL), extranodal NK/T-cell lymphoma (ENKTCL), and cutaneous T-cell lymphoma (CTCL). The review also briefly discusses major diagnostic miRNAs having prominent metabolic roles in these malignancies to highlight their importance among other dysregulated miRNAs.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Suresh Thakur
- Centre for Excellence in Genomics, Trivitron Healthcare Pvt. Ltd., Chennai, India
| | - GSK Velu
- Centre for Excellence in Genomics, Trivitron Healthcare Pvt. Ltd., Chennai, India
| | - Atul Kumar Tiwari
- Department of Zoology, Dr. Bhawan Singh Porte Government College, Pendra, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Satguru Jagjit Singh Namdhari College, Gharwa, Jharkhand, India
| | - Ajay Amit
- Department of Forensic Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
6
|
Xiong B, Huang Q, Zheng H, Lin S, Xu J. Recent advances microRNAs and metabolic reprogramming in colorectal cancer research. Front Oncol 2023; 13:1165862. [PMID: 37576895 PMCID: PMC10415904 DOI: 10.3389/fonc.2023.1165862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/07/2023] [Indexed: 08/15/2023] Open
Abstract
Colorectal cancer (CRC) is a cancer with the highest incidence and mortality. Alteration of gene expression is the main pathophysiological mechanism of CRC, which results in disturbed signaling pathways and cellular metabolic processes. MicroRNAs are involved in almost all pathophysiological processes and are correlative with colorectal cancer metabolism, proliferation, and chemotherapy resistance. Metabolic reprogramming, an important feature of cancer, is strongly correlative with the development and prognosis of cancers, including colorectal cancer. MicroRNAs can target enzymes involved in metabolic processes, thus playing a regulatory role in tumor metabolism. The disorder of the signaling pathway is another characteristic of tumor, which induces the occurrence and proliferation of tumors, and is closely correlative with the prognosis and chemotherapy resistance of tumor patients. MicroRNAs can target the components of the signaling pathways to regulate their transduction. Understanding the function of microRNAs in the occurrence and proliferation of CRC provides novel insights into the optimal treatment strategies, prognosis, and development of diagnosis in CRC. This article reviews the relationship between CRC and microRNA expression and hopes to provide new options for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qiaoyi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huida Zheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jianhua Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
7
|
Turano M, Vicidomini R, Cammarota F, D'Agostino V, Duraturo F, Izzo P, Rosa MD. The Epithelial to Mesenchymal Transition in Colorectal Cancer Progression: The Emerging Role of Succinate Dehydrogenase Alterations and Succinate Accumulation. Biomedicines 2023; 11:biomedicines11051428. [PMID: 37239099 DOI: 10.3390/biomedicines11051428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Colorectal cancer (CRC) stands as the third most significant contributor to cancer-related mortality worldwide. A major underlying reason is that the detection of CRC usually occurs at an advanced metastatic stage, rendering therapies ineffective. In the progression from the in situ neoplasia stage to the advanced metastatic stage, a critical molecular mechanism involved is the epithelial-to-mesenchymal transition (EMT). This intricate transformation consists of a series of molecular changes, ultimately leading the epithelial cell to relinquish its features and acquire mesenchymal and stem-like cell characteristics. The EMT regulation involves several factors, such as transcription factors, cytokines, micro RNAs and long noncoding RNAs. Nevertheless, recent studies have illuminated an emerging link between metabolic alterations and EMT in various types of cancers, including colorectal cancers. In this review, we delved into the pivotal role played by EMT during CRC progression, with a focus on highlighting the relationship between the alterations of the tricarboxylic acid cycle, specifically those involving the succinate dehydrogenase enzyme, and the activation of the EMT program. In fact, emerging evidence supports the idea that elucidating the metabolic modifications that can either induce or inhibit tumor progression could be of immense significance for shaping new therapeutic approaches and preventative measures. We conclude that an extensive effort must be directed towards research for the standardization of drugs that specifically target proteins such as SDH and SUCNR1, but also TRAP1, PDH, ERK1/2, STAT3 and the HIF1-α catabolism.
Collapse
Affiliation(s)
- Mimmo Turano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francesca Cammarota
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Valeria D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| |
Collapse
|
8
|
Abdelmaksoud NM, Abulsoud AI, Abdelghany TM, Elshaer SS, Rizk SM, Senousy MA. Mitochondrial remodeling in colorectal cancer initiation, progression, metastasis, and therapy: A review. Pathol Res Pract 2023; 246:154509. [PMID: 37182313 DOI: 10.1016/j.prp.2023.154509] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Colorectal cancer (CRC) is a major health concern with multifactorial pathophysiology representing intense therapeutic challenges. It is well known that deregulation of spatiotemporally-controlled signaling pathways and their metabolic reprogramming effects play a pivotal role in the development and progression of CRC. As such, the mitochondrial role in CRC initiation gained a lot of attention recently, as it is considered the powerhouse that regulates the bioenergetics in CRC. In addition, the crosstalk between microRNAs (miRNAs) and mitochondrial dysfunction has become a newfangled passion for deciphering CRC molecular mechanisms. This review sheds light on the relationship between different signaling pathways involved in metabolic reprogramming and their therapeutic targets, alterations in mitochondrial DNA content, mitochondrial biogenesis, and mitophagy, and the role of polymorphisms in mitochondrial genes as well as miRNAs regulating mitochondrial proteins in CRC initiation, progression, metastasis, and resistance to various therapies.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt.
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Sherine Maher Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| |
Collapse
|
9
|
Wang R, Li L, Wang J, Zhao X, Shen J. CircBRMS1L Participates in Lipopolysaccharide-induced Chondrocyte Injury via the TLR4/NF-κB Pathway through Serving as a miR-142-5p Decoy. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-021-0224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Zhu J, Mao S, Zhen N, Zhu G, Bian Z, Xie Y, Tang X, Ding M, Wu H, Ma J, Zhu Y, Sun F, Pan Q. SNORA14A inhibits hepatoblastoma cell proliferation by regulating SDHB-mediated succinate metabolism. Cell Death Dis 2023; 9:36. [PMID: 36717552 PMCID: PMC9886955 DOI: 10.1038/s41420-023-01325-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
Hepatoblastoma (HB) is the most common paediatric liver malignancy. Dysregulation of small nucleolar RNAs (snoRNAs) is a critical inducer of tumour initiation and progression. However, the association between snoRNAs and HB remains unknown. Here, we conducted snoRNA expression profiling in HB by snoRNA sequencing and identified a decreased level of SNORA14A, a box H/ACA snoRNA, in HB tissues. Low expression of SNORA14A was correlated with PRETEXT stage and metastasis in patients. Functionally, overexpression of SNORA14A suppressed HB cell proliferation and triggered cell apoptosis and G2/M phase arrest. Mechanistically, SNORA14A overexpression promoted the processing and maturation of the 18 S ribosomal RNA (rRNA) precursor to increase succinate dehydrogenase subunit B (SDHB) protein levels. In accordance with SNORA14A downregulation, SDHB protein expression was significantly reduced in HB tissues and cells, accompanied by abnormal accumulation of succinate. Overexpression of SDHB showed antiproliferative and proapoptotic effects and the capacity to induce G2/M phase arrest, while succinate dose-dependently stimulated HB cell growth. Furthermore, the inhibition of SNORA14A in HB malignant phenotypes was mediated by SDHB upregulation-induced reduction of cellular succinate levels. Therefore, the SNORA14A/18 S rRNA/SDHB axis suppresses HB progression by preventing cellular accumulation of the oncometabolite succinate and provides promising prognostic biomarkers and novel therapeutic targets for HB.
Collapse
Affiliation(s)
- Jiabei Zhu
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China ,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127 China
| | - Siwei Mao
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China ,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127 China
| | - Ni Zhen
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Guoqing Zhu
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhixuan Bian
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Yi Xie
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Xiaochen Tang
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Miao Ding
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Han Wu
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Ji Ma
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Yizhun Zhu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, 999078 China
| | - Fenyong Sun
- grid.412538.90000 0004 0527 0050Department of Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, 200072 China
| | - Qiuhui Pan
- grid.16821.3c0000 0004 0368 8293Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China ,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127 China ,grid.415626.20000 0004 4903 1529Sanya Women and Children’s Hospital Managed by Shanghai Children’s Medical Center, Sanya, 572000 China
| |
Collapse
|
11
|
Yan S, Wang S, Wang X, Dai W, Chu J, Cheng M, Guo Z, Xu D. Emerging role of non-coding RNAs in glucose metabolic reprogramming and chemoresistance in colorectal cancer. Front Oncol 2022; 12:954329. [PMID: 35978828 PMCID: PMC9376248 DOI: 10.3389/fonc.2022.954329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming plays a critical role in colorectal cancer (CRC). It contributes to CRC by shaping metabolic phenotypes and causing uncontrolled proliferation of CRC cells. Glucose metabolic reprogramming is common in carcinogenesis and cancer progression. Growing evidence has implicated the modifying effects of non-coding RNAs (ncRNAs) in glucose metabolic reprogramming and chemoresistance in CRC. In this review, we have summarized currently published studies investigating the role of ncRNAs in glucose metabolic alterations and chemoresistance in CRC. Elucidating the interplay between ncRNAs and glucose metabolic reprogramming provides insight into exploring novel biomarkers for the diagnosis and prognosis prediction of CRC.
Collapse
Affiliation(s)
- Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shufeng Wang
- Medical Experimental Training Center, Weifang Medical University, Weifang, China
| | - Xinyi Wang
- Clinical Medicine of Basic Medical School, Shandong First Medical University, Jinan, China
| | - Wenqing Dai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese People’s Liberation Army (PLA), Weifang, China
- *Correspondence: Zhiliang Guo, ; Donghua Xu,
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, China
- *Correspondence: Zhiliang Guo, ; Donghua Xu,
| |
Collapse
|
12
|
Yang F, Xuan G, Chen Y, Cao L, Zhao M, Wang C, Chen E. MicroRNAs Are Key Molecules Involved in the Gene Regulation Network of Colorectal Cancer. Front Cell Dev Biol 2022; 10:828128. [PMID: 35465317 PMCID: PMC9023807 DOI: 10.3389/fcell.2022.828128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer and one of the leading causes of mortality worldwide. MicroRNAs (miRNAs) play central roles in normal cell maintenance, development, and other physiological processes. Growing evidence has illustrated that dysregulated miRNAs can participate in the initiation, progression, metastasis, and therapeutic resistance that confer miRNAs to serve as clinical biomarkers and therapeutic targets for CRC. Through binding to the 3′-untranslated region (3′-UTR) of target genes, miRNAs can lead to target mRNA degradation or inhibition at a post-transcriptional level. During the last decade, studies have found numerous miRNAs and their potential targets, but the complex network of miRNA/Targets in CRC remains unclear. In this review, we sought to summarize the complicated roles of the miRNA-target regulation network (Wnt, TGF-β, PI3K-AKT, MAPK, and EMT related pathways) in CRC with up-to-date, high-quality published data. In particular, we aimed to discuss the downstream miRNAs of specific pathways. We hope these data can be a potent supplement for the canonical miRNA-target regulation network.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Guoyun Xuan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yixin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Lichao Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Min Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Chen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
- *Correspondence: Erfei Chen,
| |
Collapse
|
13
|
RIG-I Promotes Cell Viability, Colony Formation, and Glucose Metabolism and Inhibits Cell Apoptosis in Colorectal Cancer by NF- κB Signaling Pathway. DISEASE MARKERS 2022; 2022:1247007. [PMID: 35242239 PMCID: PMC8888050 DOI: 10.1155/2022/1247007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/03/2022]
Abstract
Background Retinoic acid-inducible gene-I (RIG-I) has crucial effects on various cancers, while RIG-I's detailed roles and mechanism in colorectal cancer (CRC) are uncovered. Methods qRT-PCR was used to detect the expression of RIG-I in CRC, adjacent nontumor specimens, and five cell lines. CCK-8, colony formation, and flow cytometry assays were conducted to study CRC cell viabilities. Extracellular acidification rates, lactate analysis, and ATP analysis were conducted to study the cell viabilities and glucose metabolism of CRC cells. Western blot is used to determine the proteins of NF-κBp65 in the nucleus and cytoplasm. Results This study revealed the upregulation of RIG-I in CRC tissues and cells and that high RIG-I expression was correlated with poor prognosis of CRC patients. In addition, silencing RIG-I inhibited cell viability as well as colony formation and promoted cell apoptosis in CRC cells, while RIG-I knockdown suppressed transplanted tumor growth and facilitated apoptosis in nude mice. Moreover, silencing RIG-I inhibited glucose metabolism by decreasing extracellular acidification rate, lactate production, adenosine triphosphate, and content of hypoxia-inducible factor 1α and pyruvate kinase isoform. 2.2-Deoxy-d-glucose, a glycolysis inhibitor, reduced the growth of CRC cells and promoted apoptosis in vitro and in vivo. In addition, RIG-I knockdown decreased NF-κB nuclear translocation. Besides, inhibiting NF-κB effectively eliminated RIG-I overexpression roles in cell viability and glucose metabolism in CRC cells. Conclusion In summary, this study revealed that RIG-I mediated CRC cell proliferation, apoptosis, and glucose metabolism at least partly by NF-κB signaling pathway.
Collapse
|
14
|
Lu J, Gu B, Lu W, Liu J, Lu J. miR-142-5p regulates lipopolysaccharide-induced bovine epithelial cell proliferation and apoptosis via targeting BAG5. Exp Ther Med 2021; 22:1425. [PMID: 34707706 PMCID: PMC8543189 DOI: 10.3892/etm.2021.10860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Bovine mastitis is a threat to the health of the dairy cow. MicroRNAs (miRs) serve an important role in the progression of bovine mastitis, regulating immune and defense responses. The present study aimed to investigate the possible effects and mechanisms of bovine mastitis underlying miR-142-5p and Bcl-2 associated athanogene 5 (BAG5) in in vitro lipopolysaccharide (LPS)-induced models. Reverse transcription-quantitative PCR and western blotting were performed to determine mRNA and protein expression levels, respectively. ELISAs were conducted to assess the levels of cytokines and an immunofluorescence assay was performed to determine the expression of BAG5. Cell Counting Kit-8, clone formation and 5-ethynyl-2'-deoxyuridine assays were conducted to determine cell viability and proliferation of bovine mammary epithelial MAC-T cells, respectively. Flow cytometry was performed to measure MAC-T cell cycle distribution and apoptosis, and a luciferase assay was conducted to verify whether BAG5 was a target of miR-142-5p. The results indicated that miR-142-5p was upregulated in MAC-T cells treated with LPS compared with the control group. miR-142-5p mimics transfection significantly activated the cytokines TNF-α, IL-1β, IL-6 and IL-8, and significantly increased the expression levels of NF-κB signaling pathway-related proteins in LPS-treated cells. The luciferase activity of MAC-T cells treated with miR-142-5p mimics and BAG5 3'untranslated region wild type decreased, compared with mutant type. By contrast, BAG5 overexpression significantly downregulated the levels of cytokines, including TNF-α, IL-1β, IL-6 and IL-8, in LPS-treated cells. BAG5 overexpression significantly promoted cell proliferation and viability, decreased apoptosis, and regulated Caspase-3, Caspase-9, Bcl-2 and Bax expression in LPS-treated MAC-T cells, which was significantly reversed by transfection with miR-142-5p mimics. In conclusion, the results of the present study suggested that miR-142-5p may promote the progression of bovine mastitis via targeting BAG5. Therefore, the present study provided the foundations for future investigations.
Collapse
Affiliation(s)
- Jinye Lu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Beibei Gu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Lu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Jing Liu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Jiang Lu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
15
|
Zhang Y, Zheng A. MiR-142-5p promotes retinoblastoma cell proliferation, migration and invasion by targeting PTEN. J Biochem 2021; 170:195-202. [PMID: 34562091 DOI: 10.1093/jb/mvaa121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/11/2020] [Indexed: 11/13/2022] Open
Abstract
The study intends to probe the functions of miR-142-5p in retinoblastoma (RB) and the relationship between miR-142-5p and phosphatase and tensin homolog deleted on chromosome ten (PTEN). In our study, miR-142-5p and PTEN mRNA expression in RB tissue, serum of RB patients and RB cell lines were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, migration, invasion and cell apoptosis were measured using MTT assay, BrdU assay, Transwell experiments and flow cytometry analysis, respectively. Binding sites between miR-142-5p and PTEN were predicted by the TargetScan database and were confirmed via qRT-PCR, western blot and dual-luciferase reporter gene assay. It was demonstrated that miR-142-5p expression was elevated in RB tissue, serum of RB patients and RB cell lines. MiR-142-5p overexpression remarkably promoted the proliferation, migration, invasion and inhibited the apoptosis of WERI-RB-1 cells while miR-142-5p knockdown induced opposite effects in Y79 cells. MiR-142-5p decreased PTEN expression in both mRNA and protein expression levels, and PTEN was identified as a target gene of miR-142-5p. Cotransfection of PTEN overexpression plasmids reversed the influences of miR-142-5p on RB cells. In conclusion, miR-142-5p enhances proliferation, migration and invasion of RB cell by targeting PTEN.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining 272029, China
| | - Ailing Zheng
- Department of Ophthalmology, Shanxian Central Hospital, Wenhua Road No. 1, Heze 274300, Shandong, China
| |
Collapse
|
16
|
Cervena K, Novosadova V, Pardini B, Naccarati A, Opattova A, Horak J, Vodenkova S, Buchler T, Skrobanek P, Levy M, Vodicka P, Vymetalkova V. Analysis of MicroRNA Expression Changes During the Course of Therapy In Rectal Cancer Patients. Front Oncol 2021; 11:702258. [PMID: 34540669 PMCID: PMC8444897 DOI: 10.3389/fonc.2021.702258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression in a tissue-specific manner. However, little is known about the miRNA expression changes induced by the therapy in rectal cancer (RC) patients. We evaluated miRNA expression levels before and after therapy and identified specific miRNA signatures reflecting disease course and treatment responses of RC patients. First, miRNA expression levels were assessed by next-generation sequencing in two plasma samplings (at the time of diagnosis and a year after) from 20 RC patients. MiR-122-5p and miR-142-5p were classified for subsequent validation in plasma and plasma extracellular vesicles (EVs) on an independent group of RC patients (n=107). Due to the intrinsic high differences in miRNA expression levels between samplings, cancer-free individuals (n=51) were included in the validation phase to determine the baseline expression levels of the selected miRNAs. Expression levels of these miRNAs were significantly different between RC patients and controls (for all p <0.001). A year after diagnosis, miRNA expression profiles were significantly modified in patients responding to treatment and were no longer different from those measured in cancer-free individuals. On the other hand, patients not responding to therapy maintained low expression levels in their second sampling (miR-122-5p: plasma: p=0.05, EVs: p=0.007; miR-142-5p: plasma: p=0.008). Besides, overexpression of miR-122-5p and miR-142-5p in RC cell lines inhibited cell growth and survival. This study provides novel evidence that circulating miR-122-5p and miR-142-5p have a high potential for RC screening and early detection as well as for the assessment of patients' outcomes and the effectiveness of treatment schedule.
Collapse
Affiliation(s)
- Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia
| | - Vendula Novosadova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Prague, Czechia
| | - Barbara Pardini
- Molecular Genetics Epidemiology Unit, Italian Institute for Genomic Medicine, c/o IRCCS Candiolo,, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alessio Naccarati
- Molecular Genetics Epidemiology Unit, Italian Institute for Genomic Medicine, c/o IRCCS Candiolo,, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Pavel Skrobanek
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
17
|
Zeng G, Deng G, Xiao S, Li F. Fibroblast-like Synoviocytes-derived Exosomal PCGEM1 Accelerates IL-1β-induced Apoptosis and Cartilage Matrix Degradation by miR-142-5p/RUNX2 in Chondrocytes. Immunol Invest 2021; 51:1284-1301. [PMID: 34160339 DOI: 10.1080/08820139.2021.1936010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: Long non-coding RNA (lncRNA) prostate cancer gene expression marker 1 (PCGEM1) has been revealed to participate in the pathogenesis of osteoarthritis (OA). However, the molecular mechanism of PCGEM1 regulating OA progression has not been fully elucidated.Methods: Fibroblast-like synoviocytes (FLSs) were isolated from synovium tissues of OA patients (OA-FLSs) and trauma donors (Normal-FLSs). The size and morphology of the isolated exosomes were analyzed by transmission electron microscopy and nanoparticle tracking analysis. Protein levels were analyzed by western blotting. Expression levels of PCGEM1, microRNA-142-5p (miR-142-5p), runt-related transcription factor 2 (RUNX2) mRNA, and OA related genes were assessed by qRT-PCR. Cell proliferation, viability, and apoptosis were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide or flow cytometry assays. The relationship between miR-142-5p and PCGEM1 or RUNX2 was verified by dual-luciferase reporter and/or RNA pull down assays.Results: PCGEM1 was overexpressed in OA cartilages and exosomes from OA-FLSs. Exosomal PCGEM1 from OA-FLSs facilitated IL-1β-induced apoptosis and cartilage matrix degradation in chondrocytes. MiR-142-5p was downregulated while RUNX2 was upregulated in OA cartilages. Exosomal PCGEM1 from OA-FLSs regulated RUNX2 expression by sponging miR-142-5p in IL-1β-induced chondrocytes. MiR-142-5p inhibitor offset exosomal PCGEM1 knockdown-mediated effects on the apoptosis and cartilage matrix degradation of IL-1β-induced chondrocytes. RUNX2 overexpression counteracted the suppressive effect of miR-142-5p mimic on apoptosis and cartilage matrix degradation of IL-1β-induced chondrocytes.Conclusion: Exosomal PCGEM1 from OA-FLSs facilitated IL-1β-induced apoptosis and cartilage matrix degradation in chondrocytes by sequestering miR-142-5p and upregulating RUNX2, which offered new insights into the pathogenesis of OA.
Collapse
Affiliation(s)
- Guangxuan Zeng
- Department of Sports Medicine, Ganzhou People's Hospital, Ganzhou, China
| | - Gang Deng
- Department of Sports Medicine, Ganzhou People's Hospital, Ganzhou, China
| | - Shiliang Xiao
- Department of Sports Medicine, Ganzhou People's Hospital, Ganzhou, China
| | - Fei Li
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, Ganzhou, China
| |
Collapse
|
18
|
Fang Z, Sun Q, Yang H, Zheng J. SDHB Suppresses the Tumorigenesis and Development of ccRCC by Inhibiting Glycolysis. Front Oncol 2021; 11:639408. [PMID: 34094922 PMCID: PMC8170479 DOI: 10.3389/fonc.2021.639408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic reprogramming is the prominent feature of clear cell renal cell carcinoma (ccRCC). Succinate dehydrogenase subunit B (SDHB) is one of subunits of mitochondrial respiratory chain complex II. The loss of SDHB function is closely related with metabolic changes in kidney cancer cells. However, the role and molecular mechanism of SDHB in ccRCC occurrence and progression are still unclear. In this study, the results of bioinformatics analyses on GEO, TCGA and oncomine databases and immunohistochemistry showed that the expression level of SDHB was downregulated in ccRCC tissues. SDHB level was gradually downregulated as ccRCC stage and grade progressed. The low level of SDHB was associated with poor prognosis of ccRCC patients, especially for advanced ccRCC patients. Increased methylation levels in SDHB gene promoter led to the downregulation of SDHB level in ccRCC tissues. SDHB was correlated with many metabolism related genes and its interacting proteins were enriched in metabolic pathways. SDHB overexpression suppressed the proliferation, colony formation and migration of ccRCC cells by inhibiting aerobic glycolysis. SDHB may be a potential prognostic marker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Zhiyu Fang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qiang Sun
- Blood Purification Center, Beijing Key Laboratory of Pediatric Chronic Kidney Diseases and Blood Purification, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huihui Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Junfang Zheng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Dou Y, Tian W, Wang H, Lv S. Circ_0001944 Contributes to Glycolysis and Tumor Growth by Upregulating NFAT5 Through Acting as a Decoy for miR-142-5p in Non-Small Cell Lung Cancer. Cancer Manag Res 2021; 13:3775-3787. [PMID: 34040437 PMCID: PMC8140396 DOI: 10.2147/cmar.s302814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/15/2021] [Indexed: 01/12/2023] Open
Abstract
Background Circular RNAs (circRNAs) participate in the tumorigenesis of various cancers. CircRNA hsa_circ_0001944 (circ_0001944), derived from the TCONS_l2_00030860 gene, has been uncovered to be upregulated in NSCLC (non-small cell lung cancer). Nevertheless, the influence of circ_0001944 on glycolysis and tumor growth in NSCLC is unclear. Methods Expression trend of circ_0001944 in NSCLC tissues and cells were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Loss-of-function experiments were performed to assess the influence of circ_0001944 knockdown on proliferation, migration, invasion, and glycolysis of NSCLC cells. Protein levels were assessed by Western blotting. The regulatory mechanism of circ_0001944 was analyzed by bioinformatics analysis, dual-luciferase reporter assay, and/or RNA pull-down assay. The tumorigenicity of circ_0001944 was confirmed by xenograft assay. Results Circ_0001944 was highly expressed in NSCLC, and NSCLC patients with high expression of circ_0001944 had a worse prognosis. Circ_0001944 silencing decreased xenograft tumor growth in vivo and repressed proliferation, migration, invasion, and glycolysis of NSCLC cells in vitro. Circ_0001944 was verified as a decoy for microRNA (miR)-142-5p, which targeted NFAT5 (nuclear factor of activated T cells 5). MiR-142-5p was downregulated while NFAT5 was upregulated in NSCLC. Both miR-142-5p inhibition and NFAT5 overexpression offset the suppressive impact of circ_0001944 silencing on proliferation, migration, invasion, and glycolysis of NSCLC cells. Circ_0001944 adsorbed miR-142-5p to elevate NFAT5 expression in NSCLC cells. Conclusion Circ_0001944 promotes proliferation, migration, invasion, and glycolysis of NSCLC cells by upregulating NFAT5 through adsorbing miR-142-5p, offering a novel mechanism for understanding the advancement of NSCLC.
Collapse
Affiliation(s)
- Yawei Dou
- Department of Thoracic Surgery, Shaanxi Province People's Hospital, Xi'an, 710068, People's Republic of China
| | - Wei Tian
- Department of Thoracic Surgery, Shaanxi Province People's Hospital, Xi'an, 710068, People's Republic of China
| | - Hongtao Wang
- Department of Thoracic Surgery, Shaanxi Province People's Hospital, Xi'an, 710068, People's Republic of China
| | - Shanshan Lv
- Department of Cardiovascular Surgery, Xijing Hospital of Airforce Medical University, Xi'an, 710032, People's Republic of China
| |
Collapse
|
20
|
Zhou C, Zhang Y, Yan R, Huang L, Mellor AL, Yang Y, Chen X, Wei W, Wu X, Yu L, Liang L, Zhang D, Wu S, Wang W. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ 2021; 28:715-729. [PMID: 32929219 PMCID: PMC7862304 DOI: 10.1038/s41418-020-00618-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical response to immunotherapy is closely associated with the immunosuppressive tumour microenvironment (TME), and influenced by the dynamic interaction between tumour cells and lymphatic endothelial cells (LECs). Here, we show that high levels of miR-142-5p positively correlate with indoleamine 2,3-dioxygenase (IDO) expression in tumour-associated lymphatic vessels in advanced cervical squamous cell carcinoma (CSCC). The miR-142-5p is transferred by CSCC-secreted exosomes into LECs to exhaust CD8+ T cells via the up-regulation of lymphatic IDO expression, which was abrogated by an IDO inhibitor. Mechanistically, miR-142-5p directly down-regulates lymphatic AT-rich interactive domain-containing protein 2 (ARID2) expression, inhibits DNA methyltransferase 1 (DNMT1) recruitment to interferon (IFN)-γ promoter, and enhances IFN-γ transcription by suppressing promoter methylation, thereby leading to elevated IDO activity. Furthermore, increased serum exosomal miR-142-5p levels and the consequent IDO activity positively correlate with CSCC progression. In conclusion, exosomes secreted by CSCC cells deliver miR-142-5p to LECs and induce IDO expression via ARID2-DNMT1-IFN-γ signalling to suppress and exhaust CD8+ T cells. Our study suggests that LECs act as an integral component of the immune checkpoint(s) in the TME and may serve as a potential new target for CSCC diagnosis and treatment.
Collapse
Affiliation(s)
- Chenfei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yanmei Zhang
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ruiming Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lei Huang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Andrew L Mellor
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Yang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaojing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenfei Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiangguang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lan Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Luojiao Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Dan Zhang
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
21
|
Wang X, Zhu Y. Circ_0000020 elevates the expression of PIK3CA and facilitates the malignant phenotypes of glioma cells via targeting miR-142-5p. Cancer Cell Int 2021; 21:79. [PMID: 33509213 PMCID: PMC7841906 DOI: 10.1186/s12935-021-01767-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/10/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Multiple circular RNAs (circRNAs) have been recently described as crucial oncogenic factors or tumor suppressors. This study aimed to investigate the role of circ_0000020 in glioma progression. METHODS Circ_0000020 and miR-142-5p expressions in glioma samples were assessed through qRT-PCR, and then the association between pathological indexes and circ_0000020 expressions was analyzed. Functional experiment was performed with human glioma cell lines U251 and U87. Gain-of-function and loss-of-function models were established. CCK-8 assay was used to detect glioma cell proliferation. Transwell assay was used to examine glioma cell migration and invasion. The regulatory relationships among circ_0000020, miR-142-5p and phosphatidylinositol 3-kinase C (PIK3CA) were investigated by bioinformatics analysis, luciferase reporter assay, qRT-PCR and Western blot. In vivo tumorigenesis assay was performed with nude mice to further validate the demonstrations of in vitro experiments. RESULTS Circ_0000020 expression in glioma samples was remarkably increased compared with that in normal brain tissues and its high expression was associated with unfavorable pathological indexes. Circ_0000020 overexpression remarkably accelerated proliferation, migration and invasion of glioma cells. Accordingly, circ_0000020 knockdown suppressed the malignant phenotypes of glioma cells. Circ_0000020 overexpression significantly reduced miR-142-5p expression by sponging it, and circ_0000020 could enhance the expression of PIK3CA, which was a target gene of miR-142-5p. CONCLUSIONS Circ_0000020 promotes glioma progression via miR-142-5p/PIK3CA axis.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Street No. 136, Xiangyang, 441021, Hubei, China
| | - Yaozu Zhu
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Street No. 136, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
22
|
Ding H, Wang JJ, Zhang XY, Yin L, Feng T. Lycium barbarum Polysaccharide Antagonizes LPS-Induced Inflammation by Altering the Glycolysis and Differentiation of Macrophages by Triggering the Degradation of PKM2. Biol Pharm Bull 2020; 44:379-388. [PMID: 33390389 DOI: 10.1248/bpb.b20-00752] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipopolysaccharide (LPS)-induced inflammation is the leading cause of multiple organ failure in sepsis. Pyruvate kinase 2 (PKM2) is a protein kinase and transcriptional coactivator that plays an important role in glycolysis. Recent studies have confirmed that glycolysis maintains the M1 differentiation and induces immune activation in macrophages. Lycium barbarum polysaccharide (LBP), the main bioactive component of Chinese wolfberry, suppresses glycolysis and inflammation. Here, RAW264.7 macrophages were treated with LBP for evaluating its effects against LPS-induced inflammation. The differentiation of M1/M2 macrophages was assessed by flow cytometry for assessing the cell surface markers, CD86 and CD206. The enrichment of hypoxia inducible factor (HIF)-1α and ubiquitin in the PKM2 protein complex was determined by co-immunoprecipitation. LBP suppressed LPS-induced glycolysis, differentiation of M1 macrophages, and the production of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and high mobility group (HMG) 1 proteins. The suppressive effects of LBP were similar to those of PKM2 knockdown, but were abolished by the overexpression of PKM2. LPS elevated the mRNA and protein levels of PKM2. LBP reduced the LPS-induced expression of PKM2 protein, but had no effects on the expression of PKM2 mRNA. LPS inhibited the ubiquitination of PKM2, probably by downregulating the expression of ubiquitin ligases, including Nedd4L, Nedd4, and Gnb2. LBP interfered with the inhibition of PKM2 ubiquitination by upregulating the expression of Nedd4L, Nedd4, and Gnb2. In conclusion, LBP suppressed the LPS-induced inflammation by altering glycolysis and the M1 differentiation of macrophages. The effects of LBP were mediated by the downregulation of PKM2 via enhanced ubiquitination.
Collapse
Affiliation(s)
- Huan Ding
- Intensive Care Unit (ICU), Department of Critical Care Unit, General Hospital of Ningxia Medical University
| | - Jing-Jing Wang
- Coronary Care Unit (CCU), Department of Cardiology, General Hospital of Ningxia Medical University
| | - Xiao-Ya Zhang
- Intensive Care Unit (ICU), Department of Critical Care Unit, General Hospital of Ningxia Medical University
| | - Lei Yin
- Intensive Care Unit (ICU), Department of Critical Care Unit, General Hospital of Ningxia Medical University
| | - Tao Feng
- Intensive Care Unit (ICU), Department of Critical Care Unit, Ningxia Third Hospital
| |
Collapse
|
23
|
Taefehshokr S, Taefehshokr N, Hemmat N, Hajazimian S, Isazadeh A, Dadebighlu P, Baradaran B. The pivotal role of MicroRNAs in glucose metabolism in cancer. Pathol Res Pract 2020; 217:153314. [PMID: 33341548 DOI: 10.1016/j.prp.2020.153314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Cancer cells are able to undergo aerobic glycolysis and metabolize glucose to lactate instead of oxidative phosphorylation, which is known as Warburg effect. Accumulating evidence has revealed that microRNAs regulate cancer cell metabolism, which manifest a higher rate of glucose metabolism. Various signaling pathways along with glycolytic enzymes are responsible for the emergence of glycolytic dependence. MicroRNAs are a class of non-coding RNAs that are not translated into proteins but regulate target gene expression or in other words function pre-translationally and post-transcriptionally. MicroRNAs have been shown to be involved in various biological processes, including glucose metabolism via targeting major transcription factors, enzymes, oncogenes or tumor suppressors alongside the oncogenic signaling pathways. In this review, we describe the regulatory role of microRNAs of cancer cell glucose metabolism, including in the glucose uptake, glycolysis, tricarboxylic acid cycle and several signaling pathways and further suggest that microRNA-based therapeutics can be used to inhibit the process of glucose metabolism reprogramming in cancer cells and thus suppressing cancer progression.
Collapse
Affiliation(s)
- Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Dadebighlu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Jia KG, Feng G, Tong YS, Tao GZ, Xu L. miR-206 regulates non-small-cell lung cancer cell aerobic glycolysis by targeting hexokinase 2. J Biochem 2020; 167:365-370. [PMID: 31742336 DOI: 10.1093/jb/mvz099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/10/2019] [Indexed: 12/29/2022] Open
Abstract
Aerobic glycolysis was closely associated with the malignant transformation and prognosis of tumours. miR-206 was found to be downregulated in several cancers. However, whether miR-206 functions in non-small-cell lung cancers (NSCLCs) via the process of aerobic glycolysis remains poorly characterized. Quantitative real-time PCR was performed to detect miR-206 level in NSCLC cells and tissues. The effect of miR-206 on hexokinase 2 (HK2) expression was examined through miR-206 overexpression or miR-206 knockdown. CCK-8 assay and colony formation assay were carried out to explore the role of miR-206 on cell proliferation and colony formation, respectively. The relationship between miR-206 and HK2 was measured by dual-luciferase reporter assay. Glucose consumption, lactate production assay and ATP generation were performed in NSCLC cells following miR-206 and HK2 overexpression. We found that miR-206 was downregulated in NSCLC tissues and cells. miR-206 overexpression downregulated the expression of HK2 via targeting HK2 3'UTR in NSCLC cells. In addition, miR-206 decreased the cell viability and colony formation in NSCLC cells. Furthermore, miR-206 reduced glucose uptake, lactate production and ATP generation in NSCLC cells via HK2 repression. In conclusion, these findings suggested that miR-206 regulated NSCLC cell aerobic glycolysis by targeting HK2.
Collapse
Affiliation(s)
- Ke-Gang Jia
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32 First Ring Road, Qingyang district, Sichuan 610072, China
| | - Gang Feng
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32 First Ring Road, Qingyang district, Sichuan 610072, China
| | - Yu-Suo Tong
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaiyin district, Huaian 223300, China
| | - Guang-Zhou Tao
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaiyin district, Huaian 223300, China
| | - Lian Xu
- Department of Rehabilitation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32 First Ring Road, Qingyang district, Sichuan 610072, China
| |
Collapse
|
25
|
Zhu M, Zou L, Lu F, Ye L, Su B, Yang K, Lin M, Fu J, Li Y. miR-142-5p promotes renal cell tumorigenesis by targeting TFAP2B. Oncol Lett 2020; 20:324. [PMID: 33123240 PMCID: PMC7583739 DOI: 10.3892/ol.2020.12187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/23/2020] [Indexed: 01/28/2023] Open
Abstract
The transcription factor AP-2 β (TFAP2B) serves an important role in kidney development. MicroRNAs (miRNAs) regulate carcinogenic pathways and have gained increasing attention owing to their association with human clear cell renal cell carcinoma (ccRCC) tumorigenesis. However, whether miRNAs could affect renal cell tumorigenesis by regulating TFAP2B expression has not been identified. The aim of this study was to investigate the effects of miRNA on TFAP2B and its potential role in cell growth, invasion and migration. PCR, western blot and dual luciferase reporter assays were performed to analyze the effects of miR-142-5p on TFAP2B. Furthermore, MTT, flow cytometry, wound healing and Transwell migration assays were used to analyze the effect of miR-142-5p on cell proliferation and migration. The results demonstrated that miR-142-5p targeted TFAP2B and downregulated the expression of TFAP2B at the mRNA and protein levels, promoting cell proliferation and migration in two ccRCC cell lines, 786-O and A-498. This phenomenon supported the theory that miR-142-5p may function as an oncogene in ccRCC. The potential clinical significance of miR-142-5p as a biomarker and a therapeutic target provides rationale for further investigation into miR-142-5p-mediated molecular pathways and how these may be associated with ccRCC development.
Collapse
Affiliation(s)
- Maoshu Zhu
- The Central Laboratory, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Liangneng Zou
- Department of Geriatrics, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Fuhua Lu
- Department of Nephrology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Ling Ye
- Department of Respiratory Medicine, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Bin Su
- Department of Pharmacy Education, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Kaichun Yang
- Department of Emergency, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Minghua Lin
- Department of Pathology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Jianqian Fu
- Department of Medical Oncology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Yongwu Li
- Department of Emergency, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| |
Collapse
|
26
|
Regulation of Glycolysis by Non-coding RNAs in Cancer: Switching on the Warburg Effect. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:218-239. [PMID: 33251334 PMCID: PMC7666327 DOI: 10.1016/j.omto.2020.10.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The “Warburg effect” describes the reprogramming of glucose metabolism away from oxidative phosphorylation toward aerobic glycolysis, and it is one of the hallmarks of cancer cells. Several factors can be involved in this process, but in this review, the roles of non-coding RNAs (ncRNAs) are highlighted in several types of human cancer. ncRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, can all affect metabolic enzymes and transcription factors to promote glycolysis and modulate glucose metabolism to enhance the progression of tumors. In particular, the 5′-AMP-activated protein kinase (AMPK) and the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathways are associated with alterations in ncRNAs. A better understanding of the roles of ncRNAs in the Warburg effect could ultimately lead to new therapeutic approaches for suppressing cancer.
Collapse
|
27
|
Prominent roles of microRNA-142 in cancer. Pathol Res Pract 2020; 216:153220. [PMID: 33007646 DOI: 10.1016/j.prp.2020.153220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding RNAs that regulate gene expression post-transcriptionally via mRNA degradation, or translational repression. They have important roles in normal development and homeostasis maintenance. Many studies have revealed that aberrant expression of miRNAs is associated with development of pathological conditions, including cancers. MiRNAs can either promote or suppress tumorigenesis based on the regulation of gene expression by targeting multiple molecules. In recent years, several miRNAs have been reported to be dysregulated in various cancers. Most recent findings have shown that miR-142 gene, located at chromosome 17q22, is involved in cellular migration, proliferation, and apoptosis in different human cancers. The present review discusses some molecular mechanisms and the expression status of miRNA-142 in the pathogenesis of various cancers.
Collapse
|
28
|
Wai Hon K, Zainal Abidin SA, Othman I, Naidu R. Insights into the Role of microRNAs in Colorectal Cancer (CRC) Metabolism. Cancers (Basel) 2020; 12:cancers12092462. [PMID: 32878019 PMCID: PMC7565715 DOI: 10.3390/cancers12092462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, with a high mortality rate globally. The pathophysiology of CRC is mainly initiated by alteration in gene expression, leading to dysregulation in multiple signalling pathways and cellular processes. Metabolic reprogramming is one of the important cancer hallmarks in CRC, which involves the adaptive changes in tumour cell metabolism to sustain the high energy requirements for rapid cell proliferation. There are several mechanisms in the metabolic reprogramming of cancer cells, such as aerobic glycolysis, oxidative phosphorylation, lactate and fatty acids metabolism. MicroRNAs (miRNAs) are a class of non-coding RNAs that are responsible for post-transcriptional regulation of gene expression. Differential expression of miRNAs has been shown to play an important role in different aspects of tumorigenesis, such as proliferation, apoptosis, and drug resistance, as well as metabolic reprogramming. Increasing evidence also reports that miRNAs could function as potential regulators of metabolic reprogramming in CRC cells. This review provides an insight into the role of different miRNAs in regulating the metabolism of CRC cells as well as to discuss the potential role of miRNAs as biomarkers or therapeutic targets in CRC tumour metabolism.
Collapse
|
29
|
Downregulation of LUZP2 Is Correlated with Poor Prognosis of Low-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9716720. [PMID: 32695826 PMCID: PMC7368956 DOI: 10.1155/2020/9716720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022]
Abstract
Background LUZP2 is a protein limitedly expressed in the brain and spinal cord, while there are few studies on it in brain tumors. Low-grade glioma (LGG) is one of the most common brain tumors. However, the biological behavior of LGG is not very clear at present. This study was aimed at exploring the role of LUZP2 in LGG. Methods By data mining in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA), the expression, clinical characteristics, and potential regulatory mechanism of LUZP2 in LGG were assessed. The regulatory miRNAs of LUZP2 were predicted using miRDB, TargetScan, and miRTarBase. Meanwhile, the potential biological function of coexpressed genes was investigated by GO and KEGG analyses. Results LUZP2 expression was downregulated with the increase of tumor grade (p < 0.05). Low LUZP2 expression independently predicted poor OS in LGG in TCGA cohort and the CGGA part B and part C cohorts (all p < 0.001). Additionally, LUZP2 was targeted by miR-142-5p according to 2 prediction databases and 1 validated database, which was negatively related to LUZP2 mRNA expression (p < 0.001). Kaplan-Meier analyses demonstrated that low miR-142-5p expression was significantly associated with poor OS (p < 0.001). Furthermore, coexpression genes of LUZP2 were significantly involved in nervous system development and metabolic pathways. Conclusions LUZP2 may be crucial for nervous system extracellular matrix development and serve as an important clinical biomarker for LGG patients. miR-142-5p upregulation could be the upstream regulator that contributed to LUZP2 downregulation.
Collapse
|
30
|
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Farkhondeh T, Samarghandian S. Wnt-regulating microRNAs role in gastric cancer malignancy. Life Sci 2020; 250:117547. [PMID: 32173311 DOI: 10.1016/j.lfs.2020.117547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is responsible for high morbidity and mortality worldwide. This cancer claims fifth place among other cancers. There are a number of factors associated with GC development such as alcohol consumption and tobacco smoking. It seems that genetic factors play significant role in GC malignancy and progression. MicroRNAs (miRs) are short non-coding RNA molecules with negative impact on the expression of target genes. A variety of studies have elucidated the potential role of miRs in GC growth. Investigation of molecular pathways has revealed that miRs function as upstream modulators of Wnt signaling pathway. This signaling pathway involves in important biological processes such as cell proliferation and differentiation, and its dysregulation is associated with GC invasion. At the present review, we demonstrate that how miRs regulate Wnt signaling pathway in GC malignancy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Rafiei
- Department of Biology, Faculty of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
31
|
Zhang J, Zhang K, Hou Y. Long non‑coding RNA NNT‑AS1 knockdown represses the progression of gastric cancer via modulating the miR‑142‑5p/SOX4/Wnt/β‑catenin signaling pathway. Mol Med Rep 2020; 22:687-696. [PMID: 32468065 PMCID: PMC7339722 DOI: 10.3892/mmr.2020.11158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 04/04/2020] [Indexed: 12/20/2022] Open
Abstract
Patients with advanced gastric cancer (GC) have a poor prognosis with a median overall survival of 10–12 months. Long non-coding RNA nicotinamide nucleotide transhydrogenase-antisense RNA1 (NNT-AS1) and sex-determining region Y-related high mobility group box 4 (SOX4) have been reported to be associated with the progression of various types of cancer; however, the regulatory mechanism between NNT-AS1 and SOX4 in GC is not completely understood. Reverse transcription-quantitative PCR was used to detect the expression levels of NNT-AS1, microRNA (miR)-142-5p and SOX4. Western blotting was performed to assess the protein expression levels of SOX4, β-catenin, c-Myc, Bcl-2 and E-cadherin. The proliferation, apoptosis, migration and invasion of GC cells were determined using MTT, flow cytometry and Transwell assays. The relationship between miR-142-5p and NNT-AS1 or SOX4 was investigated using a dual-luciferase reporter assay. NNT-AS1 and SOX4 were upregulated, whereas miR-142-5p was downregulated in GC tissues and cells compared with normal tissues and cells. Both NNT-AS1 and SOX4 knockdown inhibited GC cell proliferation, migration and invasion, and enhanced GC cell apoptosis. Moreover, the results indicated that NNT-AS1 modulated SOX4 expression by sponging miR-142-5p. In addition, SOX4 overexpression reversed NNT-AS1 knockdown-mediated effects on GC cell proliferation, apoptosis, migration and invasion. NNT-AS1 knockdown blocked the Wnt/β-catenin signaling pathway via the miR-142-5p/SOX4 axis. Collectively, the present study indicated that NNT-AS1 knockdown decreased GC cell proliferation, migration and invasion, and induced GC cell apoptosis by regulating the miR-142-5p/SOX4/Wnt/β-catenin signaling pathway axis.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Department of Gastrointestinal Surgery, The First People's Hospital of Guangyuan, Guangyuan, Sichuan 628017, P.R. China
| | - Kai Zhang
- Department of Gastrointestinal Surgery, The First People's Hospital of Guangyuan, Guangyuan, Sichuan 628017, P.R. China
| | - Yingkui Hou
- Department of Gastrointestinal Surgery, The First People's Hospital of Guangyuan, Guangyuan, Sichuan 628017, P.R. China
| |
Collapse
|
32
|
Kunigenas L, Stankevicius V, Dulskas A, Budginaite E, Alzbutas G, Stratilatovas E, Cordes N, Suziedelis K. 3D Cell Culture-Based Global miRNA Expression Analysis Reveals miR-142-5p as a Theranostic Biomarker of Rectal Cancer Following Neoadjuvant Long-Course Treatment. Biomolecules 2020; 10:E613. [PMID: 32316138 PMCID: PMC7226077 DOI: 10.3390/biom10040613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023] Open
Abstract
Altered expression of miRNAs in tumor tissue encourages the translation of this specific molecular pattern into clinical practice. However, the establishment of a selective biomarker signature for many tumor types remains an inextricable challenge. For this purpose, a preclinical experimental design, which could maintain a fast and sensitive discovery of potential biomarkers, is in demand. The present study suggests that the approach of 3D cell cultures as a preclinical cancer model that is characterized to mimic a natural tumor environment maintained in solid tumors could successfully be employed for the biomarker discovery and validation. Subsequently, in this study, we investigated an environment-dependent miRNA expression changes in colorectal adenocarcinoma DLD1 and HT29 cell lines using next-generation sequencing (NGS) technology. We detected a subset of 16 miRNAs differentially expressed in both cell lines cultivated in multicellular spheroids compared to expression levels in cells grown in 2D. Furthermore, results of in silico miRNA target analysis showed that miRNAs, which were differentially expressed in both cell lines grown in MCS, are involved in the regulation of molecular mechanisms implicated in cell adhesion, cell-ECM interaction, and gap junction pathways. In addition, integrins and platelet-derived growth factor receptors were determined to be the most significant target genes of deregulated miRNAs, which was concordant with the environment-dependent gene expression changes validated by RT-qPCR. Our results revealed that 3D microenvironment-dependent deregulation of miRNA expression in CRC cells potentially triggers essential molecular mechanisms predominantly including the regulation of cell adhesion, cell-cell, and cell-ECM interactions important in CRC initiation and development. Finally, we demonstrated increased levels of selected miR-142-5p in rectum tumor tissue samples after neoadjuvant long course treatment compared to miR-142-5p expression levels in tumor biopsy samples collected before the therapy. Remarkably, the elevation of miR-142-5p expression remained in tumor samples compared to adjacent normal rectum tissue as well. Therefore, the current study provides valuable insights into the molecular miRNA machinery of CRC and proposes a potential miRNA signature for the assessment of CRC in further clinical research.
Collapse
Affiliation(s)
- Linas Kunigenas
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-08412 Vilnius, Lithuania
| | - Vaidotas Stankevicius
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Life Sciences Center, Institute of Biotechnology, Vilnius University, LT-08412 Vilnius, Lithuania
| | - Audrius Dulskas
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-08406 Vilnius, Lithuania
- University of Applied Sciences, Faculty of Health Care, LT-08303 Vilnius, Lithuania
| | - Elzbieta Budginaite
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
| | - Gediminas Alzbutas
- Thermo Fisher Scientific, LT-02241 Vilnius, Lithuania;
- Institute of Informatics, Faculty of Mathematics and Informatics, Vilnius University, LT-08303 Vilnius, Lithuania
| | - Eugenijus Stratilatovas
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-08406 Vilnius, Lithuania
| | - Nils Cordes
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität, D–01307 Dresden, Germany;
- Helmholtz–Zentrum Dresden–Rossendorf, Institute of Radiooncology–OncoRay, D–01328 Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, D–69192 Heidelberg, Germany
- German Cancer Research Center (DKFZ), D–69192 Heidelberg, Germany
| | - Kestutis Suziedelis
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-08412 Vilnius, Lithuania
| |
Collapse
|
33
|
Zhang X, Xu Y, Yamaguchi K, Hu J, Zhang L, Wang J, Tian J, Chen W. Circular RNA circVAPA knockdown suppresses colorectal cancer cell growth process by regulating miR-125a/CREB5 axis. Cancer Cell Int 2020; 20:103. [PMID: 32256212 PMCID: PMC7106619 DOI: 10.1186/s12935-020-01178-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer (CRC) is a malignant tumor, and the overall prognosis of patients with advanced CRC is still unsatisfactory. Circular RNAs (circRNAs) vesicle-associated membrane protein-associated protein A (circVAPA) could act as an underlying biomarker in CRC. This study aimed to explore the mechanism of circVAPA in the regulation of CRC growth. Methods CircVAPA level was measured in CRC tumor tissues. The expression levels of circVAPA, VAPA mRNA, microRNA-125a (miR-125a), and cAMP response element binding 5 (CREB5) in CRC cells were detected by RT-qPCR. Cell cycle progression, migration and invasion, extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were measured by flow cytometry, transwell assays and Seahorse XF96 Glycolysis Analyzer, severally. The levels of glucose uptake, lactate and ATP production were examined by Glucose Uptake Colorimetric Assay kit, Lactate Assay kit and ATP Colorimetric Assay kit, respectively. The interaction between miR-125a and circVAPA or CREB5 was predicted by Starbase or DIANA TOOL, and verified by the dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. Results CircVAPA level was up-regulated in CRC tumor tissues. Expression levels of circVAPA and CREB5 were increased, and miR-125a was decreased in CRC cells. CircVAPA knockdown repressed CRC cells cycle progression, migration, invasion and glycolysis. CircVAPA acted as a miR-125a sponge to regulate CREB5 expression. Rescue assay confirmed that miR-125a deletion or CREB5 overexpression weakened the inhibitory effect of circVAPA knockdown on CRC growth. Conclusion Our studies disclosed that circVAPA knockdown suppressed CRC cells cycle progression, migration, invasion and glycolysis partly by modulating miR-125a/CREB5 axis, suggesting a potential therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- 1Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000 Jilin China
| | - Yingying Xu
- 2Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130000 Jilin China
| | - Kenji Yamaguchi
- 3Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School, Sendai, Japan
| | - Jinping Hu
- 4Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062 Jilin China
| | - Lianbo Zhang
- 5Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Erdao District, Changchun, 130000 Jilin China
| | - Jianfeng Wang
- 6Dapartment of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun, 130000 Jilin China
| | - Jifeng Tian
- 2Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130000 Jilin China
| | - Wanying Chen
- 5Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Erdao District, Changchun, 130000 Jilin China
| |
Collapse
|
34
|
Tomkovich S, Gharaibeh RZ, Dejea CM, Pope JL, Jiang J, Winglee K, Gauthier J, Newsome RC, Yang Y, Fodor AA, Schmittgen TD, Sears CL, Jobin C. Human Colon Mucosal Biofilms and Murine Host Communicate via Altered mRNA and microRNA Expression during Cancer. mSystems 2020; 5:e00451-19. [PMID: 31937674 PMCID: PMC6967385 DOI: 10.1128/msystems.00451-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/21/2019] [Indexed: 01/09/2023] Open
Abstract
Disrupted interactions between host and intestinal bacteria are implicated in colorectal cancer (CRC) development. However, activities derived from these bacteria and their interplay with the host are unclear. Here, we examine this interplay by performing mouse and microbiota RNA sequencing on colon tissues and 16S and small RNA sequencing on stools from germfree (GF) and gnotobiotic ApcMin Δ 850/+ ;Il10-/- mice associated with microbes from biofilm-positive human CRC tumor (BF+T) and biofilm-negative healthy (BF-bx) tissues. The bacteria in BF+T mice differentially expressed (DE) >2,900 genes, including genes related to bacterial secretion, virulence, and biofilms but affected only 62 host genes. Small RNA sequencing of stools from these cohorts revealed eight significant DE host microRNAs (miRNAs) based on biofilm status and several miRNAs that correlated with bacterial taxon abundances. Additionally, computational predictions suggest that some miRNAs preferentially target bacterial genes while others primarily target mouse genes. 16S rRNA sequencing of mice that were reassociated with mucosa-associated communities from the initial association revealed a set of 13 bacterial genera associated with cancer that were maintained regardless of whether the reassociation inoculums were initially obtained from murine proximal or distal colon tissues. Our findings suggest that complex interactions within bacterial communities affect host-derived miRNA, bacterial composition, and CRC development.IMPORTANCE Bacteria and bacterial biofilms have been implicated in colorectal cancer (CRC), but it is still unclear what genes these microbial communities express and how they influence the host. MicroRNAs regulate host gene expression and have been explored as potential biomarkers for CRC. An emerging area of research is the ability of microRNAs to impact growth and gene expression of members of the intestinal microbiota. This study examined the bacteria and bacterial transcriptome associated with microbes derived from biofilm-positive human cancers that promoted tumorigenesis in a murine model of CRC. The murine response to different microbial communities (derived from CRC patients or healthy people) was evaluated through RNA and microRNA sequencing. We identified a complex interplay between biofilm-associated bacteria and the host during CRC in mice. These findings may lead to the development of new biomarkers and therapeutics for identifying and treating biofilm-associated CRCs.
Collapse
Affiliation(s)
- Sarah Tomkovich
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Raad Z Gharaibeh
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Christine M Dejea
- Bloomberg-Kimmel Institute of Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jillian L Pope
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Kathryn Winglee
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Josee Gauthier
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rachel C Newsome
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ye Yang
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Cynthia L Sears
- Bloomberg-Kimmel Institute of Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
35
|
MicroRNA Dysregulation in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20092181. [PMID: 31052530 PMCID: PMC6540078 DOI: 10.3390/ijms20092181] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer in humans and it can be locally invasive and metastatic to distant sites. MicroRNAs (miRNAs or miRs) are endogenous, small, non-coding RNAs of 19–25 nucleotides in length, that are involved in regulating gene expression at a post-transcriptional level. MicroRNAs have been implicated in diverse biological functions and diseases. In cancer, miRNAs can proceed either as oncogenic miRNAs (onco-miRs) or as tumor suppressor miRNAs (oncosuppressor-miRs), depending on the pathway in which they are involved. Dysregulation of miRNA expression has been shown in most of the tumors evaluated. MiRNA dysregulation is known to be involved in the development of cutaneous squamous cell carcinoma (CSCC). In this review, we focus on the recent evidence about the role of miRNAs in the development of CSCC and in the prognosis of this form of skin cancer.
Collapse
|
36
|
Yan J, Yang B, Lin S, Xing R, Lu Y. Downregulation of miR-142-5p promotes tumor metastasis through directly regulating CYR61 expression in gastric cancer. Gastric Cancer 2019; 22:302-313. [PMID: 30178386 DOI: 10.1007/s10120-018-0872-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recurrence is a primary cause of gastric cancer (GC)-related deaths. We reported previously that low expression of miR-142-5p could predict recurrence in GC. The present study aimed to investigate the function and mechanism of miR-142-5p in metastasis of GC. METHODS MiR-142-5p expression was detected in 101 GC samples by qRT-PCR. Its clinical significance was statistically analyzed. The roles of miR-142-5p and its candidate target gene CYR61 in metastasis were determined both in vivo and in vitro. RESULTS MiR-142-5p downregulation was significantly associated with the recurrence (P = 0.031) and poor prognosis of GC (P = 0.043). MiR-142-5p inhibited cancer cell migration and invasion both in vitro and in vivo. CYR61 was identified as a novel direct target of miR-142-5p by bioinformatics analysis of target prediction and luciferase reporter assay. The re-expression and knockdown of CYR61 could, respectively, rescue the effects induced by miR-142-5p overexpression and knockdown. MiR-142-5p attenuated GC cell migration and invasion, at least partially, by inactivation of the canonical Wnt/β-catenin signaling pathway through CYR61. CONCLUSIONS The newly identified miR-142-5p-CYR61-Wnt/β-catenin axis partially illustrates the molecular mechanism of GC recurrence and represents a novel prognosis biomarker for GC.
Collapse
Affiliation(s)
- Jing Yan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Bing Yang
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Shuye Lin
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Rui Xing
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
37
|
Yu W, Li D, Zhang Y, Li C, Zhang C, Wang L. MiR-142-5p Acts as a Significant Regulator Through Promoting Proliferation, Invasion, and Migration in Breast Cancer Modulated by Targeting SORBS1. Technol Cancer Res Treat 2019; 18:1533033819892264. [PMID: 31789129 PMCID: PMC6887818 DOI: 10.1177/1533033819892264] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Numerous researches have demonstrated that miR-142-5p plays significant roles in several cancers, although the functional characteristic of miR-142-5p in breast cancer has not been determined. This study is designed to explore the biological significance of miR-142-5p in breast cancer clinical implication and mechanism of action. Methods: The differential expression patterns of miR-142-5p and Sorbin and SH3 domain-containing protein 1 and correlations between them and clinical significances were analyzed based on data from database. The expression levels of miR-142-5p in breast cancer cells were detected using quantitative real-time polymerase chain reaction. Cell counting kit-8, transwell, and wound healing assays were used to explore the potential functions of miR-142-5p in breast cancer cells. In addition, bioinformatics prediction analysis and luciferase reporter assay were utilized to predict and identify the potential target gene of miR-142-5p. A rescue experiment was conducted by transfecting miR-142-5p inhibitors and si-Sorbin and SH3 domain-containing protein 1 into cells to explore miR-142-5p/Sorbin and SH3 domain-containing protein 1 pairs on breast cancer cells behaviors. Results: The analysis results showed that miR-142-5p was highly expressed in patients with breast cancer, while Sorbin and SH3 domain-containing protein 1 presented a trend of low expression. The clinical significances analysis suggested that the overexpression of miR-142-5p is closely correlated with metastasis, while low expression of Sorbin and SH3 domain-containing protein 1 is correlated with clinicopathological characteristics and poor overall survival in patients with breast cancer. In vitro exploration, the expression of miR-142-5p was upregulated in breast cancer cells and inhibition of miR-142-5p expression significantly reduced the proliferation, invasion, and migration of breast cancer cells. Through rescue experiments, breast cancer cells proliferation, invasion, and migration reduction induced by silencing of miR-142-5p were reversed via knockdown Sorbin and SH3 domain-containing protein 1. Conclusion: Our findings insinuate that miR-142-5p functions as a positive regulator of promoting breast cancer cells biological behaviors and clinical metastasis, possibly regulated by targeting Sorbin and SH3 domain-containing protein 1, thus providing valuable information in the development of preventive or even therapeutic strategies for utilizing miR-142-5p as a promising target.
Collapse
Affiliation(s)
- Weixuan Yu
- Department of General Surgery, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong, China
| | - Dongwei Li
- Department of General Surgery, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong, China
| | - Yunda Zhang
- Department of General Surgery, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong, China
| | - Cheukfai Li
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Libin Wang
- Department of General Surgery, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong, China
| |
Collapse
|
38
|
MicroRNA‑142‑5p modulates breast cancer cell proliferation and apoptosis by targeting phosphatase and tensin homolog. Mol Med Rep 2018; 17:7529-7536. [PMID: 29620260 PMCID: PMC5983952 DOI: 10.3892/mmr.2018.8812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
A total of 60 breast cancer (BC) tissues and adjacent healthy tissues from patients who underwent surgery in Renmin Hospital of Wuhan University were collected for analysis in the present study. Results from reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) demonstrated that, compared with the adjacent healthy tissues, the expression levels of microRNA (miR)‑142‑5p were significantly elevated in BC tissues. Bioinformatics analysis was performed using TargetScan for the prediction of potential target sites that matched the seed region of miR‑142‑5p; phosphatase and tensin homolog (PTEN) exhibited the highest score and was selected for further analysis. Results of RT‑qPCR analysis demonstrated that, compared with the adjacent healthy tissues, the mRNA expression levels of PTEN were significantly decreased in breast cancer tissues. miR‑142‑5p and PTEN expression levels were positively and negatively associated, respectively, with patient tumor size and metastasis. MDA‑MB‑231 cells were divided into three groups including the Control group, the miR‑NC inhibitor group and the miR‑142‑5p inhibitor group. As for alterations in cell behavior, including cell viability and cell apoptosis, and protein expression levels, there were no significant differences between Control and miR‑NC inhibitor groups. MTT assay results revealed that, compared with Control and miR‑NC inhibitor groups, miR‑142‑5p inhibitor reduced MDA‑MB‑231 cell proliferation. Flow cytometric analysis demonstrated that, compared with Control and miR‑NC inhibitor groups, miR‑142‑5p inhibitor treatment induced MDA‑MB‑231 cell apoptosis. Western blotting results demonstrated that, compared with Control and miR‑NC inhibitor groups, miR‑142‑5p inhibitor treatment significantly increased the expression of PTEN, reduced the activation of phosphatidylinositol‑4,5‑bisphosphate 3‑kinase/RACα serine/threonine‑protein kinase signaling. Finally, PTEN was demonstrated to interact with miR‑142‑5p from the results of dual‑luciferase reporter assay in the present study. The findings of the present study suggested that miR‑142‑5p may be a potential therapeutic target for the future investigations and insights for breast cancer.
Collapse
|
39
|
Islam F, Gopalan V, Vider J, Lu CT, Lam AKY. MiR-142-5p act as an oncogenic microRNA in colorectal cancer: Clinicopathological and functional insights. Exp Mol Pathol 2018; 104:98-107. [PMID: 29337244 DOI: 10.1016/j.yexmp.2018.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVES miR-142-5p was noted aberrantly expressed and plays important roles in different pathophysiological conditions in human. The present study aims to examine the expression of miR-142-5p and its association with clinicopathological factors in a large cohort of patients with colorectal cancer. In addition, the cellular effects of miR-142-5p and its interacting targets in colon cancer cells were investigated. METHODS Expression of miR-142-5p in colorectal cancer tissues (n=125) and colon cancer cell lines were analysed using real-time polymerase chain reaction. In vitro assays (cell proliferation, wound healing and colony formation) were used to study the miR-142-5p induced cellular effects. Western blots were used to examine the modulation of FAM134B, KRAS, EPAS1 and KLF6 proteins expression followed by miR-142-5p expression-manipulation. RESULTS Significant high expression of miR-142-5p was noted in cancer tissues and cells when compared to the controls (p<0.001). Overexpression of miR-142-5p in patients with colorectal cancer was common (72%; 90/125). miR-142-5p overexpression was associated with cancer in the proximal colorectum and with B-raf positive patients (p=0.05). Exogenous overexpression of miR-142-5p resulted in significantly increased cell proliferation, colony formation, and wound healing capacities, whereas inhibition of endogenous miR-142-5p led reduced cancer growth properties. The cellular effects of miR-142-5p were mediated by the modulation of tumour suppressor KLF6 expression, as the expression of miR-142-5p and KLF6 protein are inversely correlated in colon cancer cells. CONCLUSION High miR-142-5p expression was associated with the biological aggressiveness of cancer. Thus, suppression of miR-142-5p could be a therapeutic strategy for patients with colorectal cancers.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, 4222, Australia; Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, 4222, Australia; School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Jelena Vider
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Cu-Tai Lu
- Department of Surgery, Gold Coast University Hospital, Gold Coast, Queensland, Australia
| | - Alfred K-Y Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|
40
|
MiR-142 inhibits cecal ligation and puncture (CLP)-induced inflammation via inhibiting PD-L1 expression in macrophages and improves survival in septic mice. Biomed Pharmacother 2018; 97:1479-1485. [DOI: 10.1016/j.biopha.2017.11.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/27/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022] Open
|