1
|
Zhang Q, Zhou Q, Li H. Action and mechanisms of neferine in inflammatory diseases (Review). Mol Med Rep 2025; 32:174. [PMID: 40242976 PMCID: PMC12046375 DOI: 10.3892/mmr.2025.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/17/2025] [Indexed: 04/18/2025] Open
Abstract
Neferine is a bisbenzylisoquinoline alkaloid derived from the seed embryo of Nelumbo nucifera, a traditional Chinese medicine. It has been extensively studied for its therapeutic potential in various disease models. Extensive research has highlighted its diverse pharmacological activities, including antitumor, anti‑inflammatory, anti‑fibrosis, anti‑oxidative stress, anti‑platelet aggregation and anti‑arrhythmic effects. The present review, however, focuses on the anti‑inflammatory properties of neferine, emphasizing its fundamental mechanisms as demonstrated in both in vivo and in vitro studies. By critically evaluating its effect on inflammation and the underlying pathways, this review aims to provide a comprehensive understanding of the potential of neferine in the management of inflammatory diseases. Furthermore, it seeks to establish a foundational framework for the future development of neferine as a novel therapeutic agent for inflammatory conditions.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Nephropathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| | - Qiaoling Zhou
- Department of Nephropathy, Xiangya Hospital Central-South University, Changsha, Hunan 410028, P.R. China
| | - Huihui Li
- Department of Nephropathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| |
Collapse
|
2
|
Sun X, Gu Y, Liu X, Korla PK, Hao J. Neferine Pretreatment Attenuates Isoproterenol-Induced Cardiac Injury Through Modulation of Oxidative Stress, Inflammation, and Apoptosis in Rats. Appl Biochem Biotechnol 2024; 196:7404-7428. [PMID: 38526658 DOI: 10.1007/s12010-024-04917-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Heart attacks, also known as myocardial infarctions (MIs), are one of the main reasons people die from cardiovascular diseases (CVDs) worldwide. Neferine, an alkaloid derived from Nelumbo nucifera seeds, has garnered interest due to its purported medicinal effects. In the current research, we induced MI in rats using the β-adrenergic agonist isoproterenol to investigate whether neferine can improve cardiac dysfunction. The rats were separated into four groups: control, isoproterenol (ISO), and two treatment groups received neferine at doses of 10 or 20 mg/kg once daily for 28 days. On days 27 and 28, the groups undergoing treatment were administered with an ISO injection. Results showed that pretreatment with neferine strongly protected against changes in lipid profiles and cardiac functional markers in ISO-administered rats. Neferine attenuated histopathologic changes, collagen deposition, and myocardial fibrosis in rats administered ISO. Neferine pretreatment significantly inhibited the oxidative stress, inflammatory, and apoptotic markers in the heart of ISO-injected rats. This was achieved through Nrf2/Keap1/ARE signaling stimulation, TLR4/NF-κB/MAPK-mediated signaling inhibition, and activation of the intrinsic apoptotic pathway. Using CB-Dock-2, researchers determined that neferine has a high binding affinity with protein receptors that are pivotal in several biological processes. In conclusion, the study provides strong evidence that pretreatment with neferine protects rats from ISO-induced heart damage.
Collapse
Affiliation(s)
- Xiaoqian Sun
- Cardiovascular Medicine Department, Xi'an Gaoxin Hospital, Xi'an, 710000, China
| | - Yongwen Gu
- Cardiovascular Medicine Department, Suzhou Yongding Hospital, Suzhou, 215200, China
| | - Xinghua Liu
- Cardiovascular Medicine Department, Putuo Center Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Praveen Kumar Korla
- Department of Clinical Science, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Junjun Hao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
3
|
Effects of neferine on retinal tissue in experimental diabetic rat model. Int Ophthalmol 2023; 43:249-260. [PMID: 35852698 DOI: 10.1007/s10792-022-02424-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) immunoreactivities, as well as apoptosis and oxidative stress levels in Streptozotocin (STZ)-induced diabetic rats, and determine how neferine affected these parameters. METHODS Thirty-five male Sprague Dawley rats were divided into five groups of seven. Fasting blood glucose was measured 72 h after diabetes mellitus (DM) induction in 21 rats using 60 mg/kg STZ dissolved in 0.4 ml (0.1 M) sodium-citrate buffer (pH:4.5), with values > 250 mg/dl considered diabetic. Group 1 received no treatment. Group 3 (healthy rats) received daily intraperitoneal (IP) 4 mg/kg neferine. Following DM induction: Group 2 (sham) received daily IP 0.25 ml/kg 0.9% normal saline; Group 4 received single IP 0.01 mL (2.5 mg/kg) bevacizumab, followed by daily IP 0.25 mL/kg 0.9% normal saline; and Group 5 received daily IP 4 mg/kg neferine. Total antioxidant capacity (TAC) and total oxidative stress (TOS) levels in serum and ocular tissue homogenates were evaluated using ELISA. TUNEL method was used for determining apoptosis and immuno-histochemical staining for PCNA and VEGF immunoreactivities. RESULTS Group 5 had significantly higher TAC and lower TOS in serum and ocular tissue homogenates than Group 4 (p < 0.05). Despite significantly lower VEGF levels and apoptosis (p < 0.05), there was no significant change in PCNA immunoreactivity in Group 5 (p > 0.05). CONCLUSIONS DM was associated with lower TAC, higher TOS and apoptotic cells, as well as VEGF and PCNA immunoreactivities in the retina. Neferine altered parameters other than PCNA in the opposite direction, demonstrating reductive effects on DM.
Collapse
|
4
|
Neferine inhibits the growth of human osteosarcoma cells through activating P38/JNK and suppressing Wnt/β-catenin signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Protective Effect of Neferine in Permanent Cerebral Ischemic Rats via Anti-Oxidative and Anti-Apoptotic Mechanisms. Neurotox Res 2022; 40:1348-1359. [PMID: 36018507 DOI: 10.1007/s12640-022-00568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/27/2022]
Abstract
Permanent cerebral ischemia is a consequence of prolonged cerebral artery occlusion that results in severe brain damage. Neurotoxicity occurring after ischemia can induce brain tissue damage by destroying cell organelles and their function. Neferine is a natural compound isolated from the seed embryos of the lotus plant and has broad pharmacological effects, including blockading of the calcium channels, anti-oxidative stress, and anti-apoptosis. This study investigated the ability of neferine to reduce brain injury after permanent cerebral occlusion. Permanent cerebral ischemia in rats was induced by instigation of occlusion of the middle cerebral artery for 24 h. The rats were divided into 6 groups: sham, permanent middle cerebral artery occlusion (pMCAO), pMCAO with neferine and nimodipine treatment. To investigate the severity of the injury, the neurological deficit score and morphological alterations were investigated. After 24 h, the rats were evaluated to assess neurological deficit, infarct volume, morphological change, and the number of apoptotic cell deaths. In addition, the brain tissues were examined by western blot analysis to calculate the expression of proteins related to oxidative stress and apoptosis. The data showed that the neurological deficit scores and the infarct volume were significantly reduced in the neferine-treated rats compared to the vehicle group. Treatment with neferine significantly reduced oxidative stress with a measurable decrease in 4-hydroxynonenal (4-HNE), nitric oxide (NO), neuronal nitric oxide (nNOS), and calcium levels and an upregulation of Hsp70 expression. Neferine treatment also significantly decreased apoptosis, with a decrease in Bax and cleaved caspase-3 and an increase in Bcl-2. This study suggested that neferine had a neuroprotective effect on permanent cerebral ischemia in rats by diminishing oxidative stress and apoptosis.
Collapse
|
6
|
Bharathi Priya L, Huang CY, Hu RM, Balasubramanian B, Baskaran R. An updated review on pharmacological properties of neferine-A bisbenzylisoquinoline alkaloid from Nelumbo nucifera. J Food Biochem 2021; 45:e13986. [PMID: 34779018 DOI: 10.1111/jfbc.13986] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/19/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
Phytochemicals have recently received a lot of recognition for their pharmacological activities such as anticancer, chemopreventive, and cardioprotective properties. In traditional Indian and Chinese medicine, parts of lotus (Nelumbo nucifera) such as lotus seeds, fruits, stamens, and leaves are used for treating various diseases. Neferine is a bisbenzylisoquinoline alkaloid, a major component from the seed embryos of N. nucifera. Neferine is effective in the treatment of high fevers and hyposomnia, as well as arrhythmia, platelet aggregation, occlusion, and obesity. Neferine has been found to have a variety of therapeutic effects such as anti-inflammatory, anti-oxidant, anti-hypertensive, anti-arrhythmic, anti-platelet, anti-thrombotic, anti-amnesic, and negative inotropic. Neferine also exhibited anti-anxiety effects, anti-cancerous, and chemosensitize to other anticancer drugs like doxorubicin, cisplatin, and taxol. Induction of apoptosis, autophagy, and cell cycle arrest are the key pathways that underlying the anticancer activity of neferine. Therefore, the present review summarizes the neferine biosynthesis, pharmacokinetics, and its effects in myocardium, cancer, chemosensitizing to cancer drug, central nervous system, diabetes, inflammation, and kidney diseases. PRACTICAL APPLICATIONS: Natural phytochemical is gaining medicinal importance for a variety of diseases like including cancer, neurodegenerative disorder, diabetes, and inflammation. Alkaloids and flavonoids, which are abundantly present in Nelumbo nucifera have many therapeutic applications. Neferine, a bisbenzylisoquinoline alkaloid from N. nucifera has many pharmacological properties. This present review was an attempt to compile an updated pharmacological action of neferine in different disease models in vitro and in vivo, as well as to summarize all the collective evidence on the therapeutic potential of neferine.
Collapse
Affiliation(s)
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Rouh-Mei Hu
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | | | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
7
|
Sengking J, Oka C, Wicha P, Yawoot N, Tocharus J, Chaichompoo W, Suksamrarn A, Tocharus C. Neferine Protects Against Brain Damage in Permanent Cerebral Ischemic Rat Associated with Autophagy Suppression and AMPK/mTOR Regulation. Mol Neurobiol 2021; 58:6304-6315. [PMID: 34498225 DOI: 10.1007/s12035-021-02554-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/04/2021] [Indexed: 01/26/2023]
Abstract
Neferine is the major alkaloid compound isolated from the seed embryos of lotus. Neferine has many pharmacological effects, such as anti-inflammatory, antioxidative stress, and antiapoptotic effects, and it maintains autophagic balance. The purpose of this study was to explore the mechanism by which neferine attenuates autophagy after permanent cerebral ischemia in rats. We performed permanent cerebral ischemia in rats by middle cerebral artery occlusion (pMCAO) for 12 h with or without administration of neferine or nimodipine, a calcium (Ca2+) channel blocker. Neuroprotective effects were determined by evaluating the infarct volume and neurological deficits. Autophagy and its signaling pathway were determined by evaluating the expression of phosphorylated AMP-activated protein kinase alpha (AMPKα), phosphorylated mammalian target of rapamycin (mTOR), beclin-1, microtubule-associated protein 1A/1B-light chain 3 class II (LC3-II), and p62 by western blotting. Autophagosomes were evaluated by transmission electron microscopy. Neferine treatment significantly reduced infarct volumes and improved neurological deficits. Neferine significantly attenuated the upregulation of autophagy-associated proteins such as LC3-II, beclin-1, and p62 as well as autophagosome formation, all of which were induced by pMCAO. Neferine exerted remarkable protection against cerebral ischemia, possibly via the regulation of autophagy mediated by the Ca2+-dependent AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chio Oka
- Laboratory of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Piyawadee Wicha
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nuttapong Yawoot
- Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
8
|
Neferine Exerts Antioxidant and Anti-Inflammatory Effects on Carbon Tetrachloride-Induced Liver Fibrosis by Inhibiting the MAPK and NF- κB/I κB α Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4136019. [PMID: 33680053 PMCID: PMC7929649 DOI: 10.1155/2021/4136019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/24/2020] [Accepted: 02/07/2021] [Indexed: 12/27/2022]
Abstract
Reversible liver fibrosis is the consequence of diverse liver injuries. Oxidative stress combined with inflammation is the primary cause of carbon tetrachloride- (CCl4-) induced liver fibrosis. Neferine is a bibenzyl isoquinoline alkaloid, which has strong anti-inflammatory and antioxidant properties. The present study attempted to find its antiliver fibrosis effect and explore the potential mechanism to relieve oxidative stress and inflammation in rats with CCl4-induced liver fibrosis. Herein, we found that neferine noticeably mitigated fibrosis and improved liver function. Furthermore, neferine increased the activity of antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and catalase (CAT), but decreased the level of malondialdehyde (MDA). Neferine also decreased the levels of alpha-smooth muscle actin (α-SMA), transforming growth factor β1 (TGF-β1), and inflammatory factors. These results may demonstrate that neferine could effectively inhibit oxidative stress and inflammation in liver fibrosis. To account for the potential mechanism by which neferine relieves oxidative stress and inflammation in liver fibrosis rats, immunohistochemistry analyses and western blotting were performed. The results showed that neferine inhibited the mitogen-activated protein kinase (MAPK) pathway, as evidenced by the reduced phosphorylation of p38 MAPK, ERK 1/2, and JNK. And it inhibited the nuclear factor- (NF-) κB/IκBα pathway, as evidenced by preventing the translocation of NF-κB into nuclei. Our findings indicated a protective role for neferine, acting as an antioxidant and anti-inflammatory agent in CCl4-induced liver fibrosis.
Collapse
|
9
|
Matam S, Kaliyan P, Selvaraj L, Muthu SP, Lohanathan BP, Viswanadhan VP, Makala H, Venkatasubramanian U. Convenient method for the synthesis of some novel chiral methyl 2‐(
2‐oxo‐2H
‐benzo[e][1,3]oxazin‐3(
4H
)‐yl)propanoate derivatives and biological evaluation of their antioxidant, cytotoxic, and molecular docking properties. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sivakumar Matam
- Department of Chemistry The Gandhigram Rural Institute—Deemed to be University Dindigul India
| | - Prabakaran Kaliyan
- Department of Chemistry The Gandhigram Rural Institute—Deemed to be University Dindigul India
| | - Loganathan Selvaraj
- Department of Chemistry The Gandhigram Rural Institute—Deemed to be University Dindigul India
| | - Seenivasa Perumal Muthu
- Department of Chemistry The Gandhigram Rural Institute—Deemed to be University Dindigul India
| | | | | | - Himesh Makala
- Department of Biotechnology School of Chemical and Biotechnology, SASTRA Deemed University Tanjavur India
| | | |
Collapse
|
10
|
Neferine suppresses vascular endothelial inflammation by inhibiting the NF-κB signaling pathway. Arch Biochem Biophys 2020; 696:108595. [PMID: 33157101 DOI: 10.1016/j.abb.2020.108595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/28/2022]
Abstract
The vascular endothelium, as the interface between the blood and the surrounding tissues, plays a pivotal role in inflammation. Neferine, which was isolated from Lotus Plumule, has many biological roles, such as antifibrotic, antioxidative, anti-inflammatory, and antineoplastic activities. We demonstrated the role of neferine in the inhibition of pro-adhesion and pro-inflammatory responses of endothelial cells in vitro. We found that neferine could significantly inhibit the adhesion of Tohoku Hospital Pediatrics-1 (THP-1) cells to primary human umbilical vein endothelial cells (HUVECs). At the molecular level, neferine could significantly alleviate the interleukin 1β (IL-1β)-induced mRNA and protein expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1). Our data showed that neferine suppressed nuclear factor-κB (NF-κB) nuclear translocation and inhibited the NF-κB-p65-induced transcriptional activity of ICAM1 and VCAM1. Therefore, we concluded that neferine suppressed the inflammatory response in endothelial cells in vitro, which could be mainly due to inhibition of NF-κB signaling activation. Moreover, we found that neferine alleviated LPS-induced acute inflammation injury in vivo. Thus, neferine may serve as an effective regulator during the pathogenesis of vascular inflammatory diseases.
Collapse
|
11
|
Neferine alleviates P2X3 receptor in rat dorsal root ganglia mediated neuropathic pain. Neurosci Res 2020; 170:265-272. [PMID: 32882253 DOI: 10.1016/j.neures.2020.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/21/2022]
Abstract
Chronic neuropathic pain is caused by tissue damage or nervous system inflammation and is characterized by sensitivity to painful stimuli. P2X3 receptors play an important role in facilitating pain transmission. Neferine is a bisbenzylisoquinline alkaloid isolated from seed embryos of lotus, which has anti-inflammatory and anti-oxidation pharmacological functions. The present research investigated whether neferine relieves neuropathic pain related to the P2X3 receptor in rat dorsal root ganglia (DRGs). Chronic contraction injury (CCI) in rats was used as a model for neuropathic pain. The results indicated that the expression of P2X3 receptor was significantly increased in the DRGs of CCI rats and that mechanical allodynia and thermal hyperalgesia were also enhanced in CCI rats. Neferine markedly lowered the upregulated P2X3 receptor and interleukin-1beta, inhibited the phosphorylation and activation of ERK1/2 in the DRGs of CCI rats, and relieved neuropathic pain. Therefore, neferine alleviates neuropathic pain by downregulating the expression of P2X3 receptor.
Collapse
|
12
|
Paramasivan P, Kumar JD, Baskaran R, Weng CF, Padma VV. Reversal of doxorubicin resistance in lung cancer cells by neferine is explained by nuclear factor erythroid-derived 2-like 2 mediated lung resistance protein down regulation. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:647-665. [PMID: 35582448 PMCID: PMC8992493 DOI: 10.20517/cdr.2019.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 05/27/2023]
Abstract
Aim: Development of multi drug resistance and dose limiting cardiotoxicity are hindering the use of Doxorubicin (Dox) in clinical settings. Augmented dox efflux induced by lung resistance protein (LRP) over expression has been related to multi drug resistance phenotype in various cancers. An alkaloid from lotus, Neferine (Nef) shows both anticancer and cardioprotective effects. Here, we have investigated the interconnection between nuclear factor erythroid-derived 2-like 2 (NRF2) and LRP in Dox resistance and how Nef can overcome Dox resistance in lung cancer cells by altering this signaling. Methods: Anti-proliferative and apoptotic-inducing effects of Nef and Dox combination in Parental and Dox resistant lung cancer cells were determined in monolayers and 3D spheroids. Intracellular Dox was analyzed using flow cytometry, siRNA knockdown and western blot analysis were used to elucidate NRF2-LRP crosstalk mechanism. Results: We observed that the Dox resistant lung cancer cells expressed higher levels of LRP, reduced glutathione (GSH) and NRF2. Combination of Dox and Nef induced apoptosis, leads to reactive oxygen species (ROS) generation, GSH depletion and reduction in LRP levels contributing to higher intracellular and intranuclear Dox accumulation. The use of N-acetylcysteine and knockdown studies confirmed an important role of ROS and NRF2 in LRP down regulation. Presence of NRF2 binding sites in LRP is support of direct interaction between LRP and NRF2. Conclusion: Nef sensitizes lung cancer cells to Dox by increasing intracellular and/or intra nuclear Dox accumulation via LRP down regulation. This is mediated by redox regulating NRF2. This decoded crosstalk mechanism reinforces the role of NRF2 and LRP in Dox resistance and as an important anticancer target.
Collapse
Affiliation(s)
- Poornima Paramasivan
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
- Laboratory of Molecular Physiology, Institute of Biotechnology, Department of Life Sciences, National Dong Hwa University, Hualien 974, Taiwan
- Division of Science, School of Applied Sciences, University of Abertay Dundee, Dundee DD1 1HG, UK
| | - Jothi Dinesh Kumar
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L3 5TR, UK
| | - Rathinasamy Baskaran
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Ching Feng Weng
- Laboratory of Molecular Physiology, Institute of Biotechnology, Department of Life Sciences, National Dong Hwa University, Hualien 974, Taiwan
| | - Viswanadha Vijaya Padma
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
- Laboratory of Molecular Physiology, Institute of Biotechnology, Department of Life Sciences, National Dong Hwa University, Hualien 974, Taiwan
| |
Collapse
|
13
|
Manogaran P, Beeraka NM, Padma VV. The Cytoprotective and Anti-cancer Potential of Bisbenzylisoquinoline Alkaloids from Nelumbo nucifera. Curr Top Med Chem 2020; 19:2940-2957. [DOI: 10.2174/1568026619666191116160908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
:
Natural product therapy has been gaining therapeutic importance against various diseases,
including cancer. The failure of chemotherapy due to its associated adverse effects promoted adjunct
therapy with natural products. Phytochemicals exert anti-carcinogenic activities through the regulation
of various cell signaling pathways such as cell survival, inflammation, apoptosis, autophagy and metastasis.
The ‘small molecule-chemosensitizing agents’ from plants induce apoptosis in drug-resistant and
host-immune resistant cancer cells in in vitro as well as in vivo models. For example, alkaloids from Nelumbo
nucifera, liensinine, isoliensinine and neferine exert the anticancer activity through enhanced
ROS generation, activation of MAP kinases, followed by induction of autophagy and apoptotic cell
death. Likewise, these alkaloids also exert their cytoprotective action against cerebrovascular
stroke/ischemic stroke, diabetes, and chemotherapy-induced cytotoxicity. Therefore, the present review
elucidates the pharmacological activities of these bisbenzylisoquinoline alkaloids which include the cytoprotective,
anticancer and chemosensitizing abilities against various diseases such as cardiovascular
diseases, neurological diseases and cancer.
Collapse
Affiliation(s)
- Prasath Manogaran
- Translational Research Lab, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Narasimha Murthy Beeraka
- Translational Research Lab, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Viswanadha Vijaya Padma
- Translational Research Lab, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
14
|
Li H, Chen W, Chen Y, Zhou Q, Xiao P, Tang R, Xue J. Neferine Attenuates Acute Kidney Injury by Inhibiting NF-κB Signaling and Upregulating Klotho Expression. Front Pharmacol 2019; 10:1197. [PMID: 31680971 PMCID: PMC6804424 DOI: 10.3389/fphar.2019.01197] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose: Morbidity associated with and mortality from acute kidney injury (AKI) is gradually increasing, and no efficient drug is available. We explored whether neferine, a bisbenzylisoquinoline alkaloid, attenuated AKI, and the possible mechanisms in play in vivo and in vitro. Methods: We induced AKI using ischemia-reperfusion (I/R) or lipopolysaccharide (LPS) in vivo. C57 BL/6 male mice were randomized into two groups each containing four subgroups: control, neferine, I/R or LPS, and I/R or LPS + neferine. Mice were sacrificed 24 h after AKI induction and kidneys and sera were collected. NRK-52E cells were exposed to hypoxia/reoxygenation (H/R) or LPS in vitro. Results: Neferine pretreatment significantly alleviated kidney functional loss and pathological damage. In the AKI mouse models induced by I/R or LPS, neferine inhibited the infiltration of inflammatory cells, including granulocytes and macrophages. Both in vivo and in vitro, neferine attenuated apoptosis, suppressed inflammatory cytokine production, decreased degradation of IκB-α, and inhibited nuclear translocation of NF-κB. Furthermore, it also upregulated Klotho expression in AKI. Conclusion: Neferine mitigated renal injury in AKI models, perhaps by suppressing the activation of NF-κB and upregulating the expression of Klotho.
Collapse
Affiliation(s)
- Huihui Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenhang Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yusa Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Xue
- Institute of Hospital Administration, Xiangya Hospital, Central South University, Changsha, China.,Department of Scientific Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Marthandam Asokan S, Mariappan R, Muthusamy S, Velmurugan BK. Pharmacological benefits of neferine - A comprehensive review. Life Sci 2018; 199:60-70. [PMID: 29499283 DOI: 10.1016/j.lfs.2018.02.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/12/2022]
Abstract
This article recapitulates the existing in vitro and in vivo studies focusing on the effects of neferine-an alkaloid derivative of lotus plant, in various disease models and its effects on key signaling molecules. The review also compiles a large number of research studies that demonstrate methods for isolation and extraction, biosynthetic pathway, pharmacological activity and mode of action of neferine and their underlying mechanisms at cellular level. Neferine is a unique bis-benzylisoquinoline alkaloid that possesses a number of therapeutic effects such as anti-cancer, anti-diabetic, anti-aging, anti-microbial, anti-thrombotic, anti-arrhythmic, anti-inflammatory and even anti-HIV. It also enhances the anti-cancer properties of other anti-cancer drugs like cisplatin, adriamycin, taxol, etc. It is also reported to reverse chemo-resistance and enhance sensitivity of the cancer cells towards anti-cancer drugs. The underlying mechanisms for its activities mainly include apoptosis, autophagy and G1 arrest. Neferine protects them against the effect of drugs like cisplatin. The therapeutic properties of neferine is widely diverse, while it shows toxicity to cancer it also shows cyto-protective effects against cardio-vascular diseases, pulmonary disease, and is also effective against Alzheimer's disease and elicits anti-oxidative effect in many cellular systems. This article thus is the first ever attempt to review the therapeutic activities of neferine established in in vitro and in vivo models and to compile all the fragmented data available on the omnipotent activities of neferine.
Collapse
Affiliation(s)
| | - Ravichandran Mariappan
- Department of Biotechnology, Jawaharlal Nehru Technological University, Hyderabad 500 055, Telangana, India
| | | | | |
Collapse
|
16
|
Shibu MA, Kuo CH, Chen BC, Ju DT, Chen RJ, Lai CH, Huang PJ, Viswanadha VP, Kuo WW, Huang CY. Oolong tea prevents cardiomyocyte loss against hypoxia by attenuating p-JNK mediated hypertrophy and enhancing P-IGF1R, p-akt, and p-Bad ser136 activity and by fortifying NRF2 antioxidation system. ENVIRONMENTAL TOXICOLOGY 2018; 33:220-233. [PMID: 29139225 DOI: 10.1002/tox.22510] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Tea, the most widely consumed natural beverage has been associated with reduced mortality risk from cardiovascular disease. Oolong tea is a partially fermented tea containing high levels of catechins, their degree of oxidation varies between 20%-80% causing differences in their active metabolites. In this study we examined the effect of oolong tea extract (OTE) obtained by oxidation at low-temperature for short-time against hypoxic injury and found that oolong tea provides cyto-protective effects by suppressing the JNK mediated hypertrophic effects and by enhancing the innate antioxidant mechanisms in neonatal cardiomyocytes and in H9c2 cells. OTE effectively attenuates 24 h hypoxia-triggered cardiomyocyte loss by suppressing caspase-3-cleavage and apoptosis in a dose-dependent manner. OTE also enhances the IGFIR/p-Akt associated survival-mechanism involving the elevation of p-Badser136 in a dose-dependent manner to aid cellular adaptations against hypoxic challenge. The results show the effects and mechanism of Oolong tea to provide cardio-protective benefits during hypoxic conditions.
Collapse
Affiliation(s)
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Bih-Cheng Chen
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Pei-Jane Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|