1
|
Omics Approaches in Drug Development against Leishmaniasis: Current Scenario and Future Prospects. Pathogens 2022; 12:pathogens12010039. [PMID: 36678387 PMCID: PMC9866966 DOI: 10.3390/pathogens12010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis is a zoonotic disease transmitted in humans by the bite of Leishmania-infected phlebotomine sandflies. Each year approximately 58,500 cases of leishmaniasis are diagnosed across the globe, with a mortality rate of nearly seven percent. There are over 20 parasitic strains of Leishmania which are known to cause distinct types of leishmaniasis and pose an endemic threat to humans worldwide. Therefore, it is crucial to develop potential medications and vaccines to combat leishmaniasis. However, the task of developing therapeutic solutions is challenging due to Leishmania's digenetic lifecycle. The challenge is further intensified by cases of resistance against the available drugs. Owing to these challenges, the conventional drug development regimen is further limited by target discovery and ligand suitability for the targets. On the other hand, as an added advantage, the emergence of omics-based tools, such as high-end proteomics, transcriptomics and genomics, has hastened the pace of target discovery and target-based drug development. It is now becoming apparent that multi-omics convergence and an inter-connected systems approach is less time-consuming and more cost-effective for any drug-development process. This comprehensive review is an attempt to summarize the current knowledge on the muti-omics approach in drug development against leishmaniasis. In particular, it elaborates the potential target identification from secreted proteins in various stages of Leishmania infection and also illustrates the convergence of transcriptomic and genomic data towards the collective goal of drug discovery. This review also provides an understanding of the potential parasite's drug targets and drug resistance characteristics of the parasite, which can be used in designing effective and specific therapeutics.
Collapse
|
2
|
Valentim-Silva JR, de Barros NB, Macedo SRA, Ferreira ADS, Silva RS, Dill LSM, Zanchi FB, do Nascimento JR, do Nascimento FRF, Lourenzoni MR, Soares AM, Calderon LDA, Nicolete R. Antileishmanial activity, cytotoxicity and cellular response of amphotericin B in combination with crotamine derived from Crotalus durissus terrificus venom using in vitro and in silico approaches. Toxicon 2022; 217:96-106. [PMID: 35977615 DOI: 10.1016/j.toxicon.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVE To investigate the in vitro activity, synergism, cytotoxicity and cellular immunological response, as well as the molecular affinity between amphotericin B (AmB) and crotamine (CTA), derived from Crotalus durissus terrificus venom against Leishmania amazonensis. METHODS This study performed the inhibition of promastigotes and amastigotes' growth under different concentrations of the drug and pharmacological combinations (AmB + CTA) based on the Berimbaum method (synergism study). The lactate dehydrogenase (LDH) quantification method was used to determine the cytotoxicity of the drug and combinations employing four cell lines (J774, HepG2, VERO, and C2C12). Following, the levels of Tumour Necrose Factor-alpha (TNF-α) and Interleukin-12 (IL-12) cytokines, using enzyme-linked immunosorbent assay (ELISA) and nitrites, as an indirect measure of Nitric Oxide (NO), using the Griess reaction were assessed in the supernatants of infected macrophages. In silico approach (molecular docking and dynamics) and binding affinity (surface plasmon resonance) between the drug and toxin were also investigated. RESULTS CTA enhanced AmB effect against promastigote and amastigote forms of L. amazonensis, decreased the drug toxicity in different cell lines and induced the production of important Th1-like cytokines and NO by infected macrophages. The pharmacological combination also displayed consistent molecular interactions with low energy of coupling and a concentration-dependent profile. CONCLUSION Our data suggest that this pharmacological approach is a promising alternative treatment against L. amazonensis infection due to the improved activity (synergistic effect) achieved against the parasites' forms and to the decreased cytotoxic effect.
Collapse
Affiliation(s)
- João R Valentim-Silva
- Post-Doctoral Fellow in Health Sciences, Federal University of Acre (UFAC), Rio Branco, AC, Brazil; Physical Education Department of Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil; Oswaldo Cruz Foundation (Fiocruz Rondônia), Porto Velho, RO, Brazil
| | | | | | | | - Rodrigo S Silva
- Center of Study of Biomolecules Applied in Medicine (CEBio), Oswaldo Cruz Foundation (Fiocruz Rondônia) and Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Leandro S M Dill
- Center of Study of Biomolecules Applied in Medicine (CEBio), Oswaldo Cruz Foundation (Fiocruz Rondônia) and Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Fernando B Zanchi
- Center of Study of Biomolecules Applied in Medicine (CEBio), Oswaldo Cruz Foundation (Fiocruz Rondônia) and Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Johnny R do Nascimento
- Immunophysiology Laboratory, Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | - Flávia R F do Nascimento
- Immunophysiology Laboratory, Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | | | - Andreimar M Soares
- Center of Study of Biomolecules Applied in Medicine (CEBio), Oswaldo Cruz Foundation (Fiocruz Rondônia) and Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil; eCentro Universitário São Lucas (UniSL), Porto Velho, RO, Brazil
| | - Leonardo de A Calderon
- Center of Study of Biomolecules Applied in Medicine (CEBio), Oswaldo Cruz Foundation (Fiocruz Rondônia) and Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Roberto Nicolete
- Oswaldo Cruz Foundation (Fiocruz Rondônia), Porto Velho, RO, Brazil; Oswaldo Cruz Foundation (Fiocruz Ceará), Eusébio, CE, Brazil.
| |
Collapse
|
3
|
Ortalli M, Varani S, Cimato G, Veronesi R, Quintavalla A, Lombardo M, Monari M, Trombini C. Evaluation of the Pharmacophoric Role of the O-O Bond in Synthetic Antileishmanial Compounds: Comparison between 1,2-Dioxanes and Tetrahydropyrans. J Med Chem 2020; 63:13140-13158. [PMID: 33091297 PMCID: PMC8018184 DOI: 10.1021/acs.jmedchem.0c01589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Leishmaniases are neglected diseases that can be treated with a limited drug arsenal; the development of new molecules is therefore a priority. Recent evidence indicates that endoperoxides, including artemisinin and its derivatives, possess antileishmanial activity. Here, 1,2-dioxanes were synthesized with their corresponding tetrahydropyrans lacking the peroxide bridge, to ascertain if this group is a key pharmacophoric requirement for the antileishmanial bioactivity. Newly synthesized compounds were examined in vitro, and their mechanism of action was preliminarily investigated. Three endoperoxides and their corresponding tetrahydropyrans effectively inhibited the growth of Leishmania donovani promastigotes and amastigotes, and iron did not play a significant role in their activation. Further, reactive oxygen species were produced in both endoperoxide- and tetrahydropyran-treated promastigotes. In conclusion, the peroxide group proved not to be crucial for the antileishmanial bioactivity of endoperoxides, under the tested conditions. Our findings reveal the potential of both 1,2-dioxanes and tetrahydropyrans as lead compounds for novel therapies against Leishmania.
Collapse
Affiliation(s)
- Margherita Ortalli
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Stefania Varani
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
- Department of Experimental, Diagnostic and Specialty
Medicine, Alma Mater Studiorum - University of Bologna, Via
Massarenti 9, 40138 Bologna, Italy
| | - Giorgia Cimato
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Ruben Veronesi
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Arianna Quintavalla
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Marco Lombardo
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Magda Monari
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Claudio Trombini
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| |
Collapse
|
4
|
Valentim Silva JR, de Barros NB, Aragão Macedo SR, Ferreira ADS, Moreira Dill LS, Zanchi FB, do Nascimento JR, Fernandes do Nascimento FR, Lourenzoni MR, de Azevedo Calderon L, Soares AM, Nicolete R. A natural cell-penetrating nanopeptide combined with pentavalent antimonial as experimental therapy against cutaneous leishmaniasis. Exp Parasitol 2020; 217:107934. [PMID: 32698075 DOI: 10.1016/j.exppara.2020.107934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/22/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
The inadequacy of available treatments for leishmaniasis has presented up to 40% therapeutic failure. This fact suggests an urgency in the discovery of new drugs or alternative approaches for treating this disease. The objective of this study was to evaluate the antileishmanial activity of combined therapy between crotamine (CTA) from Crotalus durissus terrificus and the pentavalent antimonial Glucantime® (GLU). The assays were in vitro performed measuring the inhibition of Leishmania amazonensis amastigotes, followed by the evaluation of cellular production of cytokines and nitrites. After that, analytical methods were performed in order to characterize the molecules involved in the study by Mass Spectrometry, molecular affinity through an in silico assay and Surface Plasmon Resonance. In vivo experiments with BALB/c mice were performed by analyzing parasitemia, lesion size and immunological mediators. In the in vitro experiments, the pharmacological association improved the inhibition of the amastigotes, modulated the production of cytokines and nitric oxide. The therapy improved the effectiveness of the GLU, demonstrating a decreased parasitemia in the infected tissues. Altogether, the results suggest that the combined approach with CTA and GLU may be a promising alternative for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- João Rafael Valentim Silva
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz - Rondônia, Porto Velho, RO, Brazil; Physical Education Department of Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil; Physical Education Department of University Center UNINORTE, Rio Branco, AC, Brazil
| | - Neuza Biguinati de Barros
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz - Rondônia, Porto Velho, RO, Brazil
| | - Sharon Rose Aragão Macedo
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz - Rondônia, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, Fiocruz - Rondônia e Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Amália Dos Santos Ferreira
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz - Rondônia, Porto Velho, RO, Brazil
| | - Leandro Soares Moreira Dill
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, Fiocruz - Rondônia e Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Fernando Berton Zanchi
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, Fiocruz - Rondônia e Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Johnny Ramos do Nascimento
- Laboratory of Immunophysiology, Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | - Flávia Raquel Fernandes do Nascimento
- Laboratory of Immunophysiology, Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | | | - Leonardo de Azevedo Calderon
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, Fiocruz - Rondônia e Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, Fiocruz - Rondônia e Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; eCentro Universitário São Lucas (UniSL), Porto Velho, RO, Brazil
| | - Roberto Nicolete
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz - Rondônia, Porto Velho, RO, Brazil; Fundação Oswaldo Cruz (Fiocruz Ceará), Eusébio, CE, Brazil.
| |
Collapse
|
5
|
Synthesis, biological activity, and mechanism of action of new 2-pyrimidinyl hydrazone and N-acylhydrazone derivatives, a potent and new classes of antileishmanial agents. Eur J Med Chem 2019; 184:111742. [DOI: 10.1016/j.ejmech.2019.111742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
6
|
Capelli-Peixoto J, Mule SN, Tano FT, Palmisano G, Stolf BS. Proteomics and Leishmaniasis: Potential Clinical Applications. Proteomics Clin Appl 2019; 13:e1800136. [PMID: 31347770 DOI: 10.1002/prca.201800136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Leishmaniases are diseases caused by protozoan parasites of the genus Leishmania. They are endemic in 98 countries, affect around 12 million people worldwide and may present several distinct clinical forms. Unfortunately, there are only a few drugs available for treatment of leishmaniasis, which are toxic and not always effective. Different parasite species and different clinical forms require optimization of the treatment or more specific therapies, which are not available. The emergence of resistance is also a matter of concern. Besides, diagnosis can sometimes be complicated due to atypical manifestations and associations with other pathologies. In this review, proteomic data are presented and discussed in terms of their application in important issues in leishmaniasis such as parasite resistance to chemotherapy, diagnosis of active disease in patients and dogs, markers for different clinical forms, identification of virulence factors, and their potential use in vaccination. It is shown that proteomics has contributed to the discovery of potential biomarkers for prognosis, diagnosis, therapeutics, monitoring of disease progression, treatment follow-up and identification of vaccine candidates for specific diseases. However, the authors believe its capabilities have not yet been fully explored for routine clinical analysis for several reasons, which will be presented in this review.
Collapse
Affiliation(s)
- Janaína Capelli-Peixoto
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Fabia Tomie Tano
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Zheng WB, Zou Y, Elsheikha HM, Liu GH, Hu MH, Wang SL, Zhu XQ. Serum metabolomic alterations in Beagle dogs experimentally infected with Toxocara canis. Parasit Vectors 2019; 12:447. [PMID: 31506092 PMCID: PMC6737696 DOI: 10.1186/s13071-019-3703-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background Toxocara canis, a globally distributed roundworm, can cause debilitating disease in dogs and humans; however, little is known about the metabolomic response of the hosts to T. canis infection. There is an increasing need to understand the metabolic mechanisms underlying the pathogenesis of T. canis infection in dogs. Here, we examined the metabolomic changes in Beagle dogsʼ serum following T. canis infection using LC-MS/MS. Results The metabolic profiles of Beagle dogsʼ serum were determined at 12 h, 24 h, 10 d and 36 d after oral infection with 300 infectious T. canis eggs by LC-MS/MS. We tested whether the T. canis-associated differentially abundant metabolites could distinguish the serum of infected dogs from controls, as measured by the area under the receiver operating characteristic (ROC) curve (AUC). The differentially expressed metabolites were further evaluated by principal components analysis and pathway enrichment analysis. A total of 5756 and 5299 ions were detected in ESI+ and ESI− mode, respectively. ROC curve analysis revealed nine and five metabolite markers, at 12 hpi and 24 hpi to 36 dpi, respectively, with potential diagnostic value for toxocariasis. The levels of taurocholate, estradiol, prostaglandins and leukotriene were significantly changed. Primary bile acid biosynthesis pathway, steroid hormone biosynthesis pathway and biosynthesis of unsaturated fatty acids pathway were significantly altered by T. canis infection. Conclusions These findings show that T. canis infection can induce several changes in the dog serum metabolome and that the metabolic signature associated with T. canis infection in dogs has potential for toxocariasis diagnosis.
Collapse
Affiliation(s)
- Wen-Bin Zheng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Engineering Technology Research Center of Veterinary Drugs, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Engineering Technology Research Center of Veterinary Drugs, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Min-Hua Hu
- National Seed Center of Experimental Dogs, Guangzhou General Pharmaceutical Research Institute Co. Ltd, Guangzhou, 510240, Guangdong, People's Republic of China
| | - Shui-Lian Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Engineering Technology Research Center of Veterinary Drugs, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.
| | - Xing-Quan Zhu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Engineering Technology Research Center of Veterinary Drugs, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China. .,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
8
|
da Trindade Granato J, dos Santos JA, Calixto SL, Prado da Silva N, da Silva Martins J, da Silva AD, Coimbra ES. Novel steroid derivatives: synthesis, antileishmanial activity, mechanism of action, and in silico physicochemical and pharmacokinetics studies. Biomed Pharmacother 2018; 106:1082-1090. [DOI: 10.1016/j.biopha.2018.07.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022] Open
|