1
|
Mohammadi Zonouz A, Ghasemzadeh Rahbardar M, Hosseinzadeh H. The molecular mechanisms of ginkgo (Ginkgo biloba) activity in signaling pathways: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155352. [PMID: 38342017 DOI: 10.1016/j.phymed.2024.155352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND One of the most unique plants that have ever grown on the planet is Ginkgo biloba L., a member of the Ginkgoaceae family with no close living relatives. The existence of several differently structured components of G. biloba has increased the chemical variety of herbal therapy. Numerous studies that investigated the biochemical characteristics of G. biloba suggest this plant as a potential treatment for many illnesses. PURPOSE Review the molecular mechanisms involved in the signaling pathways of G. biloba activity in varied circumstances and its potential as a novel treatment for various illnesses. METHODS Studies focusing on the molecular processes and signaling pathways of compounds and extracts of G. biloba were found and summarized using the proper keywords and operators from Google Scholar, PubMed, Web of Science, and Scopus without time restrictions. RESULTS G. biloba exerts its effects through its anti-inflammatory, anti-apoptotic, anti-cancer, neuroprotective, cardioprotective, hepatoprotective, antiviral, antibacterial, pulmoprotective, renoprotective, anti-osteoporosis, anti-melanogenic, retinoprotective, otoprotective, adipogenic, and anti-adipogenic properties. The most important mechanisms involved in these actions are altering the elevation of ROS formation, inhibiting NADPH oxidases activation, altering the expression of antioxidant enzymes, downregulating MAPKs (p38 MAPK and ERK, and JNK) and AP-1, increasing cAMP, inactivating Stat5, activating the AMPK signaling pathway, affecting Stat3/JAK2, NF-κB, Nrf-2, mTOR, HGF/c-Met, Wnt/β-catenin and BMP signaling pathways, and changing the mitochondrial transmembrane potential, the Bax/Bcl-2 ratio, the release of Cyc from mitochondria to cytosol, the protein cleavage of caspases 3, 7, 8, 9, and 12, poly (ADP-ribose) polymerase, and MMPs levels. CONCLUSIONS G. biloba and its components have gained attention in recent years for their therapeutic benefits, such as their anti-inflammatory, antioxidant, anti-apoptotic, and apoptotic effects. By understanding their molecular mechanisms and signaling pathways, potential novel medicines might be developed in response to the rising public desire for new therapies.
Collapse
Affiliation(s)
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Ni Q, Zhu T, Wang W, Guo D, Li Y, Chen T, Zhang X. Green Synthesis of Narrow-Size Silver Nanoparticles Using Ginkgo biloba Leaves: Condition Optimization, Characterization, and Antibacterial and Cytotoxic Activities. Int J Mol Sci 2024; 25:1913. [PMID: 38339192 PMCID: PMC10856183 DOI: 10.3390/ijms25031913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Natural products derived from medicinal plants offer convenience and therapeutic potential and have inspired the development of antimicrobial agents. Thus, it is worth exploring the combination of nanotechnology and natural products. In this study, silver nanoparticles (AgNPs) were synthesized from the leaf extract of Ginkgo biloba (Gb), having abundant flavonoid compounds. The reaction conditions and the colloidal stability were assessed using ultraviolet-visible spectroscopy. X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to characterize the AgNPs. AgNPs exhibited a spherical morphology, uniform dispersion, and diameter ranging from ~8 to 9 nm. The FTIR data indicated that phytoconstituents, such as polyphenols, flavonoids, and terpenoids, could potentially serve as reducing and capping agents. The antibacterial activity of the synthesized AgNPs was assessed using broth dilution and agar well diffusion assays. The results demonstrate antibacterial effects against both Gram-positive and Gram-negative strains at low AgNP concentrations. The cytotoxicity of AgNPs was examined in vitro using the CCK-8 method, which showed that low concentrations of AgNPs are noncytotoxic to normal cells and promote cell growth. In conclusion, an environmentally friendly approach for synthesizing AgNPs from Gb leaves yielded antibacterial AgNPs with minimal toxicity, holding promise for future applications in the field of biomedicine.
Collapse
Affiliation(s)
- Qi Ni
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Ting Zhu
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Wenjie Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Dongdong Guo
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Yixiao Li
- School of Medicine, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Tianyu Chen
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Xiaojun Zhang
- School of Medicine, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| |
Collapse
|
3
|
El-Kadi RA, AbdelKader NF, Zaki HF, Kamel AS. Influence of β-catenin signaling on neurogenesis in neuropsychiatric disorders: Anxiety and depression. Drug Dev Res 2024; 85:e22157. [PMID: 38349261 DOI: 10.1002/ddr.22157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024]
Abstract
It has been proven that stress, mainly in the early years of life, can lead to anxiety and mood problems. Current treatments for psychiatric disorders are not enough, and some of them show intolerable side effects, emphasizing the urgent need for new treatment targets. Hence, a better understanding of the different brain networks, which are involved in the response to anxiety and depression, may evoke treatments with more specific targets. One of these targets is β-catenin that regulates brain circuits. β-Catenin has a dual response toward stress, which may influence coping or vulnerability to stress response. Indeed, β-catenin signaling involves several processes such as inflammation-directed brain repair, inflammation-induced brain damage, and neurogenesis. Interestingly, β-catenin reduction is accompanied by low neurogenesis, which leads to anxiety and depression. However, in another state, this reduction activates a compensatory mechanism that enhances neurogenesis to protect against depression but may precipitate anxiety. Thus, understanding the molecular mechanism of β-catenin could enhance our knowledge about anxiety and depression's pathophysiology, potentially improving clinical results by targeting it. Herein, the different states of β-catenin were discussed, shedding light on possible drugs that showed action on psychiatric disorders through β-catenin.
Collapse
Affiliation(s)
| | - Noha F AbdelKader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Yu J, Wang J, Yang J, Ouyang T, Gao H, Kan H, Yang Y. New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155088. [PMID: 37844377 DOI: 10.1016/j.phymed.2023.155088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Ginkgo biloba leaves (GBLs), as an herbal dietary supplement and a traditional Chinese medicine, have been used in treating diseases for hundred years. Recently, increasing evidence reveals that the extracts and active ingredients of GBLs have anti-cancer (chemo-preventive) properties. However, the molecular mechanism of GBLs in anti-cancer has not been comprehensively summarized. PURPOSE To systematically summarize the literatures for identifying the molecular mechanism of GBLs in cellular, animal models and clinical trials of cancers, as well as for critically evaluating the current evidence of efficacy and safety of GBLs for cancers. METHODS Employing the search terms "Ginkgo biloba" and "cancer" till July 25, 2023, a comprehensive search was carried out in four electronic databases including Scopus, PubMed, Google Scholar and Web of Science. The articles not contained in the databases are performed by manual searches and all the literatures on anti-cancer research and mechanism of action of GBLs was extracted and summarized. The quality of methodology was assessed independently through PRISMA 2020. RESULTS Among 84 records found in the database, 28 were systematic reviews related to GBLs, while the remaining 56 records were related to the anticancer effects of GBLs, which include studies on the anticancer activities and mechanisms of extracts or its components in GBLs at cellular, animal, and clinical levels. During these studies, the top six cancer types associated with GBLs are lung cancer, hepatocellular carcinoma, gastric cancer, breast cancer, colorectal cancer, and cervical cancer. Further analysis reveals that GBLs primarily exert their anticancer effects by stimulating cancer cell apoptosis, inhibiting cell proliferation, invasion and migration of cancers, exhibiting anti-inflammatory and antioxidant properties, and modulating signaling pathways. Besides, the pharmacology, toxicology, and clinical research on the anti-tumor activity of GBLs have also been discussed. CONCLUSIONS This is the first paper to thoroughly investigate the pharmacology effect, toxicology, and the mechanisms of action of GBLs for anti-cancer properties. All the findings will reinforce the need to explore the new usage of GBLs in cancers and offer comprehensive reference data and recommendations for future research on this herbal medicine.
Collapse
Affiliation(s)
- Jing Yu
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| | - Jianhua Yang
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China
| | - Ting Ouyang
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China
| | - Honglei Gao
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China; Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, Anhui 230012, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China; Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, Anhui 230012, China.
| |
Collapse
|
5
|
Neto Í, Rocha J, Gaspar MM, Reis CP. Experimental Murine Models for Colorectal Cancer Research. Cancers (Basel) 2023; 15:2570. [PMID: 37174036 PMCID: PMC10177088 DOI: 10.3390/cancers15092570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Collapse
Affiliation(s)
- Íris Neto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Catarina P. Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Ginkgo biloba extracts improve choroidal circulation leading to suppression of myopia in mice. Sci Rep 2023; 13:3772. [PMID: 36882511 PMCID: PMC9989591 DOI: 10.1038/s41598-023-30908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Myopia is becoming more common across the world, necessitating the development of preventive methods. We investigated the activity of early growth response 1 (EGR-1) protein and discovered that Ginkgo biloba extracts (GBEs) activated EGR-1 in vitro. In vivo, C57BL/6 J mice were fed either normal or 0.0667% GBEs (200 mg/kg) mixed chow (n = 6 each), and myopia was induced with - 30 diopter (D) lenses from 3 to 6 weeks of age. Refraction and axial length were measured by an infrared photorefractor and an SD-OCT system, respectively. In lens-induced myopia mice, oral GBEs significantly improved refractive errors (- 9.92 ± 1.53 D vs. - 1.67 ± 3.51 D, p < 0.001) and axial elongation (0.22 ± 0.02 mm vs. 0.19 ± 0.02 mm, p < 0.05). To confirm the mechanism of GBEs in preventing myopia progression, the 3-week-old mice were divided into normally fed with either myopic-induced or non-myopic-induced groups and GBEs fed with either myopic-induced or non-myopic-induced groups (n = 10 each). Choroidal blood perfusion was measured with optical coherence tomography angiography (OCTA). In both non-myopic induced groups, compared to normal chow, oral GBEs significantly improved choroidal blood perfusion (8.48 ± 15.75%Area vs. 21.74 ± 10.54%Area, p < 0.05) and expression of Egr-1 and endothelial nitric oxide synthase (eNOS) in the choroid. In both myopic-induced groups, compared to normal chow, oral GBEs also improved choroidal blood perfusion (- 9.82 ± 9.47%Area vs. 2.29 ± 11.84%Area, p < 0.05) and was positively correlated with the change in choroidal thickness. These findings suggest that GBEs may inhibit the progression of myopia by improving choroidal blood perfusion.
Collapse
|
7
|
Isoginkgetin-A Natural Compound to Control U87MG Glioblastoma Cell Growth and Migration Activating Apoptosis and Autophagy. Molecules 2022; 27:molecules27238335. [PMID: 36500428 PMCID: PMC9740329 DOI: 10.3390/molecules27238335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Isoginkgetin (Iso) is a natural bioflavonoid isolated from the leaves of Ginkgo biloba, this natural substance exhibits many healing properties, among which the antitumor effect stands out. Here we tested the effect of Iso on the growth of U87MG glioblastoma cells. Growth curves and MTT toxicity assays showed time and dose-dependent growth inhibition of U87MG after treatment with Iso (15/25 µM) for 1, 2, and 3 days. The cell growth block of U87MG was further investigated with the colony formation test, which showed that iso treatment for 24 h reduced colony formation. The present study also aimed to evaluate the effect of Iso on U87MG glioblastoma cell migration. The FACS analysis, on the other hand, showed that treatment with Iso 15 µM determines a blockage of the cell cycle in the S1 phase. Further investigation shows that Iso treatment of U87MG altered the protein pathways of homeostasis including autophagy and apoptosis. The present study demonstrated, for the first time, that Iso could represent an excellent adjuvant drug for the treatment of glioblastoma by simultaneously activating multiple mechanisms that control the growth and migration of neoplastic cells.
Collapse
|
8
|
Šamec D, Karalija E, Dahija S, Hassan STS. Biflavonoids: Important Contributions to the Health Benefits of Ginkgo ( Ginkgo biloba L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1381. [PMID: 35631806 PMCID: PMC9143338 DOI: 10.3390/plants11101381] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 05/03/2023]
Abstract
Ginkgo (Ginkgo biloba L.) is one of the most distinctive plants, characterized by excellent resistance to various environmental conditions. It is used as an ornamental plant and is recognized as a medicinal plant in both traditional and Western medicine. Its bioactive potential is associated with the presence of flavonoids and terpene trilactones, but many other compounds may also have synergistic effects. Flavonoid dimers-biflavonoids-are important constituents of ginkgophytopharmaceuticals. Currently, the presence of 13 biflavonoids has been reported in ginkgo, of which amentoflavone, bilobetin, sciadopitysin, ginkgetin and isoginkgetin are the most common. Their role in plants remains unknown, but their bioactivity and potential role in the management of human health are better investigated. In this review, we have provided an overview of the chemistry, diversity and biological factors that influence the presence of biflavonoids in ginkgo, as well as their bioactive and health-related properties. We have focused on their antioxidant, anticancer, antiviral, antibacterial, antifungal and anti-inflammatory activities as well as their potential role in the treatment of cardiovascular, metabolic and neurodegenerative diseases. We also highlighted their potential toxicity and pointed out further research directions.
Collapse
Affiliation(s)
- Dunja Šamec
- Department of Food Technology, University North, Trga Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Erna Karalija
- Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.)
| | - Sabina Dahija
- Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.)
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| |
Collapse
|
9
|
Shahrajabian MH, Sun W, Cheng Q. Ginkgo Biloba: A Famous Living Fossil Tree and an Ancient Herbal
Traditional Chinese Medicine. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666210910120735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Ginkgo (Ginkgo biloba) is a living fossil and a deciduous tree, having
extracts with antidiabetic, antioxidant, anticancer, antihypertensive, immunostimulating, hepatoprotective,
and antimicrobial activities, memory enhancement efficiency, and beneficial effects
against neurodegenerative disease.
Objective:
This study aimed at evaluating the medicinal values and natural benefits of Ginkgo.
Methods:
This review investigated publication in MEDLINE/PubMed database and Google
Scholar. The keywords used for an electronic search were Ginkgo biloba, living fossil, bioactive
components, and traditional Chinese medicine.
Results:
The main active constituents of Ginkgo biloba are flavone glycosides such as
kaempferol, quercetin, and isorhamnetin, terpene lactones, alkylphenols, proanthocyanidins,
rhamnose, glucose, D-glucaric acid, ginkgolic acid, organic acids such as hydroxykinurenic,
kynurenic, protocatechic, shikimic, and vanillic. Ginkgo kernels have been used as medicine or
eaten as nuts in traditional medicinal science. The most notable pharmaceutical applications of
Ginkgo are observed in cardiovascular disease, Alzheimer's disease, impaired cerebral performance,
vascular insufficiency, antidepressant-induced sexual dysfunction, premenstrual syndrome,
liver fibrosis, vascular disease, tinnitus, macular degeneration, memory, and vertigo.
Conclusion:
The development of modern drugs from Ginkgo by considering the importance of
traditional medicinal Asian science with further research works should be emphasized.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Life
Sciences, Hebei Agricultural University, Baoding, Hebei-071000, China
| |
Collapse
|
10
|
Abdel-Latif RT, Wadie W, Abdel-mottaleb Y, Abdallah DM, El-Maraghy NN, El-Abhar HS. Reposition of the anti-inflammatory drug diacerein in an in-vivo colorectal cancer model. Saudi Pharm J 2021; 30:72-90. [PMID: 35145347 PMCID: PMC8802128 DOI: 10.1016/j.jsps.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
|
11
|
Liu J, Geng Z, Zhang Y, Alharbi SA, Shi Y. Sesquiterpenoid bilobalide inhibits gastric carcinoma cell growth and induces apoptosis both in vitro and in vivo models. J Biochem Mol Toxicol 2021; 35:e22723. [PMID: 33511709 DOI: 10.1002/jbt.22723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/15/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
Gastric carcinoma is one of the most aggressive types of cancer that ranks fifth among all cancer incidences and third in cancer mortality. As it exhibits a prolonged asymptomatic condition and high recurrence rate, it is a great challenge to treat gastric cancer. Traditional medicine that utilizes herbal phytochemicals to treat various diseases is a potent alternative for current allopathic treatment. Hence, we evaluated the potency of a phytochemical bilobalide for treating gastric cancer in in vitro and in vivo models. Bilobalide, a sesquiterpenoid, is present in the Ginkgo biloba plant that belongs to the family of Ginkgoaceae. The cytotoxicity effect of bilobalide was evaluated in both gastric cancer (AGS) cells and normal gastric epithelial cells. Apoptosis-inducing property of bilobalide against the AGS cell line was analyzed with different fluorescent staining techniques and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and cell cycle analysis was carried out by flow cytometry. The in vivo studies were assessed with N-methyl-N-nitrosourea (MNU)-induced gastric cancer in rats. Serum-specific gastric markers were quantified and histopathological analysis of stomach tissue was performed. The expression of target-signaling molecules was analyzed by a reverse-transcription polymerase chain reaction. The in vitro results proved that bilobalide effectively suppressed the AGS cell growth and induced cell death by nuclear damage and apoptosis induction. The bilobalide treatment effectively arrested the cell cycle of AGS cells via inhibiting the PI3K-signaling pathway. Our in vivo results also confirmed that the bilobalide persuasively inhibited the MNU-induced gastric carcinoma via inhibiting the thioredoxin-fold family proteins and inflammatory markers' expression. Overall, our results authentically prove that bilobalide possesses therapeutic potency to cure gastric carcinoma.
Collapse
Affiliation(s)
- Jinglei Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Zhen Geng
- Department of Gastrointestinal Surgery, Binzhou People's Hospital, Binzhou, Shandong Province, China
| | - Yingying Zhang
- Department of Oncology, Binzhou People's Hospital, Binzhou, Shandong Province, China
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yulong Shi
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
12
|
Fang J, Wang Z, Wang P, Wang M. Extraction, structure and bioactivities of the polysaccharides from Ginkgo biloba: A review. Int J Biol Macromol 2020; 162:1897-1905. [DOI: 10.1016/j.ijbiomac.2020.08.141] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
|
13
|
Huang Z, Liu CA, Cai PZ, Xu FP, Zhu WJ, Wang WW, Jiang HP. Omega-3PUFA Attenuates MNU-Induced Colorectal Cancer in Rats by Blocking PI3K/AKT/Bcl-2 Signaling. Onco Targets Ther 2020; 13:1953-1965. [PMID: 32184629 PMCID: PMC7062403 DOI: 10.2147/ott.s241298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
Background Omega 3 polyunsaturated fatty acid (Omega-3PUFA) is one of the essential nutrients for human body involved in intracellular metabolic regulation and cell signaling. Previous studies have shown that Omega-3PUFA is involved in the pathogenesis of digestive system tumors, including colorectal cancer (CRC), however, the effects of Omega-3PUFA on CRC has not been fully elucidated. In the current study, we evaluated whether Omega-3PUFA can alleviate N-methyl-N-nitrosourea(MNU) induced CRC in a rat model and illustrated the potential mechanism. Methods The effects of Omga-3PUFA on MNU-induced colorectal cancer in rats were analyzed by in vivo experiments. The viability, apoptosis, colony formation and invasion of CRC cells treated with Omga-3PUFA were detected by CCK8, flow cytometry, clone formation assay and transwell invasion assay. The expression of apoptosis-related proteins in CRC cells treated with Omga-3PUFA was detected by Western blotting. Finally, after adding PI3K activator, the viability, apoptosis and protein expression of CRC cells treated with Omga-3PUFA were detected by CCK8, flow cytometry and Western blotting. Results Our results showed that Omega-3PUFA attenuated MNU-induced CRC in rats and inhibited AKT/Bcl-2 signaling in rats. In addition, Omega-3PUFA inhibited CRC cell proliferation and induces CRC cell apoptosis. Moreover, Omega-3PUFA inhibited CRC cell colony formation and invasion, and inhibited PI3K/AKT/Bcl-2 signaling in CRC cells. Furthermore, The effects of Omega-3PUFA on cell proliferation and apoptosis were inhibited by blocking PI3K/AKT signaling. Conclusion Omega-3PUFA can attenuate MNU-induced colorectal cancer in rats by blocking PI3K/AKT/Bcl-2 signaling, which suggests that Omega-3PUFA may be a potent agent for CRC treatment.
Collapse
Affiliation(s)
- Zhe Huang
- The First Affiliated Hospital, Jinan University, Guangzhou 510000, People's Republic of China.,Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, People's Republic of China
| | - Chun-An Liu
- Department of General Surgery, Ji'an Central Hosipital, Ji'an 343000, People's Republic of China
| | - Peng-Zhu Cai
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, People's Republic of China
| | - Fei-Peng Xu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, People's Republic of China
| | - Wen-Jing Zhu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, People's Republic of China
| | - Wei-Wei Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, People's Republic of China
| | - Hai-Ping Jiang
- The First Affiliated Hospital, Jinan University, Guangzhou 510000, People's Republic of China
| |
Collapse
|
14
|
Aiello P, Sharghi M, Mansourkhani SM, Ardekan AP, Jouybari L, Daraei N, Peiro K, Mohamadian S, Rezaei M, Heidari M, Peluso I, Ghorat F, Bishayee A, Kooti W. Medicinal Plants in the Prevention and Treatment of Colon Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2075614. [PMID: 32377288 PMCID: PMC7187726 DOI: 10.1155/2019/2075614] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
The standard treatment for cancer is generally based on using cytotoxic drugs, radiotherapy, chemotherapy, and surgery. However, the use of traditional treatments has received attention in recent years. The aim of the present work was to provide an overview of medicinal plants effective on colon cancer with special emphasis on bioactive components and underlying mechanisms of action. Various literature databases, including Web of Science, PubMed, and Scopus, were used and English language articles were considered. Based on literature search, 172 experimental studies and 71 clinical cases on 190 plants were included. The results indicate that grape, soybean, green tea, garlic, olive, and pomegranate are the most effective plants against colon cancer. In these studies, fruits, seeds, leaves, and plant roots were used for in vitro and in vivo models. Various anticolon cancer mechanisms of these medicinal plants include induction of superoxide dismutase, reduction of DNA oxidation, induction of apoptosis by inducing a cell cycle arrest in S phase, reducing the expression of PI3K, P-Akt protein, and MMP as well; reduction of antiapoptotic Bcl-2 and Bcl-xL proteins, and decrease of proliferating cell nuclear antigen (PCNA), cyclin A, cyclin D1, cyclin B1 and cyclin E. Plant compounds also increase both the expression of the cell cycle inhibitors p53, p21, and p27, and the BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9 proteins levels. In fact, purification of herbal compounds and demonstration of their efficacy in appropriate in vivo models, as well as clinical studies, may lead to alternative and effective ways of controlling and treating colon cancer.
Collapse
Affiliation(s)
- Paola Aiello
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
- Department of Physiology and Pharmacology “V. Erspamer”, La Sapienza University of Rome, Rome, Italy
| | - Maedeh Sharghi
- Nursing and Midwifery School, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Azam Pourabbasi Ardekan
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nahid Daraei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Peiro
- Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
| | - Sima Mohamadian
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Rezaei
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Heidari
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ilaria Peluso
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Fereshteh Ghorat
- Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Wesam Kooti
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
15
|
Li M, Li B, Xia ZM, Tian Y, Zhang D, Rui WJ, Dong JX, Xiao FJ. Anticancer Effects of Five Biflavonoids from Ginkgo Biloba L. Male Flowers In Vitro. Molecules 2019; 24:molecules24081496. [PMID: 30995808 PMCID: PMC6514578 DOI: 10.3390/molecules24081496] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Ginkgo biloba L., an ancient dioecious gymnosperm, is now cultivated worldwide for landscaping and medical purposes. A novel biflavonoid—amentoflavone 7′′-O-β-d-glucopyranoside (1)—and four known biflavonoids were isolated and identified from the male flowers of Ginkgo. The anti-proliferative activities of five biflavonoids were evaluated on different cancer lines. Bilobetin (3) and isoginkgetin (4) exhibited better anti-proliferative activities on different cancer lines. Their effects were found to be cell-specific and in a dose and time dependent manner for the most sensitive HeLa cells. The significant morphological changes validated their anticancer effects in a dose-dependent manner. They were capable of arresting the G2/M phase of the cell cycle, inducing the apoptosis of HeLa cells dose-dependently and activating the proapoptotic protein Bax and the executor caspase-3. Bilobetin (3) could also inhibit the antiapoptotic protein Bcl-2. These might be the mechanism underlying their anti-proliferation. In short, bilobetin (3) and isoginkgetin (4) might be the early lead compounds for new anticancer agents.
Collapse
Affiliation(s)
- Min Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Bin Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Zi-Ming Xia
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ying Tian
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Dan Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
- School of Nursing, Jilin University, Changchun 130012, China.
| | - Wen-Jing Rui
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Jun-Xing Dong
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Feng-Jun Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
16
|
Oyenihi AB, Smith C. Are polyphenol antioxidants at the root of medicinal plant anti-cancer success? JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:54-72. [PMID: 30287197 DOI: 10.1016/j.jep.2018.09.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Given the severe side effects associated with most of the conventional cancer medications, as well as the expanding body of evidence indicating secondary toxicity of these drugs, individuals with cancer are increasingly turning to natural alternatives. Similarly, the pharmaceutical industry is in search of natural products to treat cancer. An understanding of the specific active components in plant products with which anti-cancer efficacy is achieved is required for this research to move forward. AIM OF THE STUDY To integrate data from cancer-relatestudies on plant-derived products or extracts, to elucidate whether these products may have similar active ingredients and/or mechanisms of action, that can explain their efficacy. This review also includes a discussion of the methodological complexities and important considerations involved in accurate isolation and characterisation of active substances from plant material. CONCLUSIONS From the literature reviewed, most plant products with consistently reported anti-cancer efficacy contains high levels of polyphenols or other potent antioxidants and their mechanisms of action correlate to that reported for isolated antioxidants in the context of cancer. This suggests that natural products may indeed become the panacea against this chronic disease - either as therapeutic medicine strategy or to serve as templates for the design of novel synthetic drugs. The recommendation is made that antioxidant activity of plant actives and especially polyphenols, should be the focus of anti-cancer drug discovery initiatives. Lastly, researchers are advised to exploit current techniques of chemical compound characterisation when investigating polyphenol-rich plants to enable the easy consolidation of research findings from different laboratories.
Collapse
Affiliation(s)
- A B Oyenihi
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - C Smith
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa.
| |
Collapse
|