1
|
Liang C, Liu J, Jiang M, Zhu Y, Dong P. The advancement of targeted regulation of hepatic stellate cells using traditional Chinese medicine for the treatment of liver fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119298. [PMID: 39798676 DOI: 10.1016/j.jep.2024.119298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis, which is a precursor to cirrhosis in chronic liver diseases, is driven by various factors. The activation and proliferation of hepatic stellate cells (HSCs) are recognized as a crucial phase in the progression of liver fibrosis. Compared with western drug therapy, Traditional Chinese medicine (TCM) and herbal medicine not only have the advantages of multi-target and multi-pathways in the treatment of liver fibrosis, but also have high safety without toxic side effects. AIM OF THE REVIEW This paper aims to compile and analyze the active ingredients in TCM and their corresponding signaling pathways that target and modulate the phenotype of hepatic stellate cells, offering a potential treatment for hepatic fibrosis. METHODS The Literature information was obtained from the scientific databases PubMed, Web of Science and CNKI from January 2010 to June 2020 with the aim of elucidating the intrinsic mechanisms and roles of TCM and natural medicine in the treatment of LF. The search terms included "liver fibrosis" or "hepatic fibrosis", "traditional Chinese medicine" or "Chinese herbal medicine", "medicinal plant", "natural plant", and "herb". RESULTS We described the antifibrosis activity of TCM and natural medicine in LF based on different signaling pathways. Plant medicine and herbal formulas regulated the related gene and protein expression via pathways such as TGF-β/Smad, PI3K/AKT/mTOR, MAPK and Wnt/β-catenin, which inhibit the proliferation, apoptosis, autophagy and activation of HSCs. CONCLUSION By reviewing both domestic and international literature on TCM interventions in liver fibrosis, this study presents a thorough evaluation of recent research progress and the challenges faced in the clinical application of TCM for this condition. The goal is to lay a solid foundation for further in-depth studies and to strengthen the theoretical framework in this field. The inhibitory effect of TCM and natural medicine on fibrosis was reflected in multiple levels and multiple pathways, providing reasonable evidence for new drug development. To make TCM and natural medicine widely and flexibly used in clinical practice, the efficacy, safety and mechanism of action need more in-depth experimental research. It also seeks to provide a theoretical foundation for future research on targeted therapies for liver fibrosis and related diseases.
Collapse
Affiliation(s)
- Chen Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Jingjing Liu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Yan Zhu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Pengzhi Dong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
2
|
Yin Q, Cheng Z, Yang M, Wang S, Xie F. A semimechanistic pharmacokinetic/pharmacodynamic model for alanine aminotransferase-based hepatotoxicity of methotrexate in paediatric patients with acute lymphoid leukaemia. Br J Clin Pharmacol 2023; 89:3637-3647. [PMID: 37548052 DOI: 10.1111/bcp.15868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
AIMS Methotrexate (MTX) is recognized for its potential to induce hepatotoxicity, commonly manifested by elevated alanine aminotransferase (ALT) levels. However, the quantitative relationship between the pharmacokinetics (PK) of MTX and ALT-based hepatotoxicity remains unclear. This study aimed to develop a semimechanistic PK/pharmacodynamic (PD) model to characterize the MTX-induced hepatotoxicity based on ALT in paediatric patients with acute lymphoid leukaemia. METHODS A retrospective study was conducted on paediatric patients who received high-dose (3-5 g/m2 ) MTX treatment. MTX concentrations were assessed at 24-h intervals until the concentration dropped below 0.1 μmol/L. ALT concentrations were measured both before and after MTX administration. A population PK model was initially developed, which was later connected to a semimechanistic hepatotoxicity model. RESULTS The PK model was developed using 354 MTX concentrations obtained from 51 patients, while the PD model was constructed using 379 ALT concentrations collected from 48 patients. The optimal PK model for MTX consisted of a 2-compartment structure, where body surface area served as a covariate for clearance and central volume of distribution. An indirect response model coupled to a liver injury signal transduction model was developed to describe the dynamics of ALT after MTX administration. The drug effect was adequately described by a linear model, exhibiting considerable interoccasion variability for each treatment session. No significant covariates were identified to have an impact on the PD parameters. CONCLUSION A semimechanistic model was developed to describe ALT-based hepatotoxicity of MTX, and it has the potential to serve as a valuable tool for characterizing drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Qiufen Yin
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zeneng Cheng
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Minghua Yang
- Postdoctoral Research Station of Clinical Medicine and Department of Paediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shengfeng Wang
- Postdoctoral Research Station of Clinical Medicine and Department of Paediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feifan Xie
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
3
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
4
|
Yu X, Han N, Dong Z, Dang Y, Zhang Q, Hu W, Wang C, Du S, Lu Y. Combined Chemo-Immuno-Photothermal Therapy for Effective Cancer Treatment via an All-in-One and One-for-All Nanoplatform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42988-43009. [PMID: 36109853 DOI: 10.1021/acsami.2c12969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor metastasis and recurrence are recognized to be the main causes of failure in cancer treatment. To address these issues, an "all in one" and "one for all" nanoplatform was established for combined "chemo-immuno-photothermal" therapy with the expectation to improve the antitumor efficacy. Herein, Docetaxel (DTX, a chemo-agent) and cynomorium songaricum polysaccharide (CSP, an immunomodulator) were loaded into zein nanoparticles coated by a green tea polyphenols/iron coordination complex (GTP/FeIII, a photothermal agent). From the result, the obtained nanoplatform denoted as DTX-loaded Zein/CSP-GTP/FeIII NPs was spherical in morphology with an average particle size of 274 nm, and achieved pH-responsive drug release. Moreover, the nanoplatform exhibited excellent photothermal effect both in vitro and in vivo. It was also observed that the nanoparticles could be effectively up take by tumor cells and inhibited their migration. From the results of the in vivo experiment, this nanoplatform could completely eliminate the primary tumors, prevent tumor relapses on LLC (Lewis lung cancer) tumor models, and significantly inhibit metastasis on 4T1 (murine breast cancer) tumor models. The underlying mechanism was also explored. It was discovered that this nanoplatform could induce a strong ICD effect and promote the release of damage-associated molecular patterns (DAMPs) including CRT, ATP, and HMGB1 by the dying tumor cells. And the CSP could assist the DAMPs in inducing the maturation of dendritic cells (DCs) and facilitate the intratumoral infiltration of T lymphocytes to clear up the residual or disseminated tumor cells. In summary, this study demonstrated that the DTX-loaded Zein/CSP-GTP/FeIII is a promising nanoplatform to completely inhibit tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Xianglong Yu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Ning Han
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Ziyi Dong
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Yunni Dang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Qing Zhang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Wenjun Hu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Changhai Wang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Shouying Du
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Yang Lu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| |
Collapse
|
5
|
Zhang H, Zhang E, Hu H. Role of Ferroptosis in Non-Alcoholic Fatty Liver Disease and Its Implications for Therapeutic Strategies. Biomedicines 2021; 9:biomedicines9111660. [PMID: 34829889 PMCID: PMC8615581 DOI: 10.3390/biomedicines9111660] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the chronic liver disease with the highest incidence throughout the world, but its pathogenesis has not been fully elucidated. Ferroptosis is a novel form of programmed cell death caused by iron-dependent lipid peroxidation. Abnormal iron metabolism, lipid peroxidation, and accumulation of polyunsaturated fatty acid phospholipids (PUFA-PLs) can all trigger ferroptosis. Emerging evidence indicates that ferroptosis plays a critical role in the pathological progression of NAFLD. Because the liver is the main organ for iron storage and lipid metabolism, ferroptosis is an ideal target for liver diseases. Inhibiting ferroptosis may become a new therapeutic strategy for the treatment of NAFLD. In this article, we describe the role of ferroptosis in the progression of NAFLD and its related mechanisms. This review will highlight further directions for the treatment of NAFLD and the selection of corresponding drugs that target ferroptosis.
Collapse
Affiliation(s)
- Han Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100080, China;
| | - Enxiang Zhang
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
- Correspondence: (E.Z.); (H.H.)
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100080, China;
- Correspondence: (E.Z.); (H.H.)
| |
Collapse
|
6
|
Jia M, Zhang H, Qin Q, Hou Y, Zhang X, Chen D, Zhang H, Chen Y. Ferroptosis as a new therapeutic opportunity for nonviral liver disease. Eur J Pharmacol 2021; 908:174319. [PMID: 34252441 DOI: 10.1016/j.ejphar.2021.174319] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
Nonviral liver disease is a global public health problem due to its high mortality and morbidity. However, its underlying mechanism is unclear. Ferroptosis is a novel form of cell death that is involved in a variety of disease processes. Both abnormal iron metabolism (e.g., iron overload) and lipid peroxidation, which is induced by deletion of glutathione (GSH) or glutathione peroxidase 4 (GPX4), and the accumulation of polyunsaturated fatty acid-containing phospholipids (PUFA-PLs) trigger ferroptosis. Recently, ferroptosis has been involved in the pathological process of nonviral liver diseases [including alcohol-related liver disease (ALD); nonalcoholic fatty liver disease (NAFLD); hereditary hemochromatosis (HH); drug-, ischemia/reperfusion- or immune-induced liver injury; liver fibrosis; and liver cancer]. Hepatocyte ferroptosis is activated in ALD; NAFLD; HH; drug-, ischemia/reperfusion- or immune-induced liver injury; and liver fibrosis, whereas hepatic stellate cell and liver cancer cell ferroptosis are inhibited in liver fibrosis and liver cancer, respectively. Thus, ferroptosis is an ideal target for nonviral liver diseases. In the present review, we discuss the latest findings on ferroptosis and potential drugs targeting ferroptosis for nonviral liver diseases. This review will highlight further directions for the treatment and prevention of nonviral liver diseases.
Collapse
Affiliation(s)
- Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hong Zhang
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital (the Affiliated Hospital of Xi'an Medical University), Xi'an Medical University, Xi'an, Shaanxi, 710068, China.
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
7
|
Zhang J, Zhao R, Xing D, Cao J, Guo Y, Li L, Sun Y, Tian L, Liu M. Magnesium Isoglycyrrhizinate Induces an Inhibitory Effect on Progression and Epithelial-Mesenchymal Transition of Laryngeal Cancer via the NF-κB/Twist Signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5633-5644. [PMID: 33376307 PMCID: PMC7765753 DOI: 10.2147/dddt.s272323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Background Magnesium isoglycyrrhizinate (MI) was extracted from roots of the plant Glycyrrhiza glabra, which displays multiple pharmacological activities such as anti-inflammation, anti-apoptosis, and anti-tumor. Here, we aimed to investigate the effect of MI on the progression and epithelial–mesenchymal transition (EMT) of laryngeal cancer. Methods Forty laryngeal cancer clinical samples were used. The role of MI in the proliferation of laryngeal cancer cells was assessed by MTT assay, Edu assay and colony formation assay. The function of MI in the migration and invasion of laryngeal cancer cells was tested by transwell assays. The effect of MI on apoptosis of laryngeal cancer cells was determined by cell apoptosis assay. The impact of MI on tumor growth in vivo was analyzed by tumorigenicity analysis using Balb/c nude mice. qPCR and Western blot analysis were performed to measure the expression levels of gene and protein, respectively. Results We identified that EMT-related transcription factor Twist was significantly elevated in the laryngeal cancer tissues. The expression of Twist was also enhanced in the human laryngeal carcinoma HEP-2 cells compared with that in the primary laryngeal epithelial cells. The high expression of Twist was remarkably correlated with poor overall survival of patients with laryngeal cancer. Meanwhile, our data revealed that MI reduced cell proliferation, migration and invasion and enhanced apoptosis of laryngeal cancer cells in vitro. Moreover, MI decreased transcriptional activation and the expression levels of NF-κB and Twist, and alleviated EMT in vitro and in vivo. MI remarkably inhibited tumor growth and EMT of laryngeal cancer cells in vivo. Conclusion MI restrains the progression of laryngeal cancer and induces an inhibitory effect on EMT in laryngeal cancer by modulating the NF-κB/Twist signaling. Our finding provides new insights into the mechanism by which MI inhibits laryngeal carcinoma development, enriching the understanding of the anti-tumor function of MI.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Rui Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Dongliang Xing
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Jing Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Yan Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Liang Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| |
Collapse
|
8
|
Liu Y, Fan D. Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model. Food Funct 2019; 9:5513-5527. [PMID: 30207362 DOI: 10.1039/c8fo01122b] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Breast cancer is the most frequently diagnosed cancer and has become the main cause of cancer-related death among women worldwide. Traditional chemotherapy for breast cancer has serious side effects for patients, such as the first-line drug docetaxel. Ginsenoside Rg5, a rare ginsenoside and the main ingredient extracted from fine black ginseng, has been proved to have anti-breast cancer efficacy in vitro. Here, the in vivo anti-breast cancer efficacy, side effects and potential molecular mechanisms of Rg5 were investigated on a BALB/c nude mouse model of human breast cancer. The tumor growth inhibition rate of high dose Rg5 (20 mg kg-1) was 71.4 ± 9.4%, similar to that of the positive control docetaxel (72.0 ± 9.1%). Compared to docetaxel, Rg5 showed fewer side effects in the treatment of breast cancer. Treatment with Rg5 induced apoptosis and autophagy in breast cancer tissues. Rg5 was proved to induce caspase-dependent apoptosis via the activation of the extrinsic death receptor and intrinsic mitochondrial signaling pathways. The autophagy induction was related to the formation of an autophagosome and accumulation of LC3BII, P62 and critical Atg proteins. Further studies showed that Rg5 in a dose-dependent manner induced apoptosis and autophagy through the inhibition of the PI3K/Akt signaling pathway as indicated by the reduced phosphorylation level of PI3K and Akt. Taken together, Rg5 could be a novel and promising clinical antitumor drug targeting breast cancer.
Collapse
Affiliation(s)
- Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| | | |
Collapse
|
9
|
The inhibition of Hippo/Yap signaling pathway is required for magnesium isoglycyrrhizinate to ameliorate hepatic stellate cell inflammation and activation. Biomed Pharmacother 2018; 106:83-91. [PMID: 29957470 DOI: 10.1016/j.biopha.2018.06.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a reversible pathological process accompanied by abnormal inflammation, and its end-stage cirrhosis is responsible for high morbidity and mortality worldwide. This study was to investigate the effect of Magnesium isoglycyrrhizinate (MgIG) on liver fibrosis and inflammation, and to further clarify molecular mechanism. We found that MgIG treatment significantly alleviated carbon tetrachloride (CCl4)-induced liver fibrosis and HSC activation by regulating TGF-β signaling and MMP/TIMP systems. In addition, MgIG treatment significantly inhibited the inflammatory response of liver fibrosis in mice characterized by reduced pro-inflammatory factors expression and increased anti-inflammatory factors expression. Interestingly, experiments in vitro also showed that MgIG treatment significantly reduced the expression of hepatic stellate cell (HSC) activation markers. Besides, MgIG treatment not only inhibited the expression of pro-inflammatory factors, but also promoted the production of anti-inflammatory factors in activated HSCs. Importantly, treatment with MgIG inhibited Hippo/Yap signaling pathway, which was a potential mechanism for MgIG-induced anti-inflammatory effects. The overexpression of Hippo/Yap signaling effector YAP completely impaired MgIG-induced anti-inflammatory and anti-fibrotic effects. Taken together, these results provide novel implications to reveal the molecular mechanism of the anti-inflammatory properties induced by MgIG, by which points to the possibility of using MgIG to treat liver fibrosis.
Collapse
|
10
|
Sui M, Jiang X, Chen J, Yang H, Zhu Y. Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway. Biomed Pharmacother 2018; 106:125-133. [PMID: 29957462 DOI: 10.1016/j.biopha.2018.06.060] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is recently reported as a new mode of regulated cell death. It is triggered by disturbed redox homeostasis, overloaded iron and increased lipid peroxidation. Howerver, the role of ferroptosis in hepatic fibrosis remains obscure. In the current study, we attempted to investigate the effect of Magnesium isoglycyrrhizinate (MgIG) on ferroptosis in liver fibrosis, and to further clarify the possible mechanisms. Our data showed that MgIG treatment markedly attenuated liver injury and reduced fibrotic scar formation in the rat model of liver fibrosis. Moreover, experiments in vitro also confirmed that MgIG treatment significantly decreased expression of hepatic stellate cell (HSC) activation markers. Interestingly, HSCs treated by MgIG presented morphological features of ferroptosis. Furthermore, MgIG treatment remarkably induced HSC ferroptosis by promoting the accumulation of iron and lipid peroxides, whereas inhibition of ferroptosis by specific inhibitor ferrostatin-1 (Fer-1) completely abolished MgIG-induced anti-fibrosis effect. More importantly, our results determined that heme oxygenase-1 (HO-1) was in the upstream position of MgIG-induced HSC ferroptosis. Conversely, HO-1 knockdown by siRNA evidently blocked MgIG-induced HSC ferroptosis and in turn exacerbated liver fibrosis. Overall, our research revealed that HO-1 mediated HSC ferroptosis was necessary for MgIG to ameliorate CCl4-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Miao Sui
- Xuzhou Traditional Chinese Medicine Hospital, Xuzhou 221009, China
| | - Xiaofei Jiang
- Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Jun Chen
- Xuzhou Traditional Chinese Medicine Hospital, Xuzhou 221009, China.
| | - Haiyan Yang
- Xuzhou Traditional Chinese Medicine Hospital, Xuzhou 221009, China
| | - Yan Zhu
- Xuzhou Traditional Chinese Medicine Hospital, Xuzhou 221009, China
| |
Collapse
|