1
|
Kirchner VA, Badshah JS, Kyun Hong S, Martinez O, Pruett TL, Niedernhofer LJ. Effect of Cellular Senescence in Disease Progression and Transplantation: Immune Cells and Solid Organs. Transplantation 2024; 108:1509-1523. [PMID: 37953486 PMCID: PMC11089077 DOI: 10.1097/tp.0000000000004838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Aging of the world population significantly impacts healthcare globally and specifically, the field of transplantation. Together with end-organ dysfunction and prolonged immunosuppression, age increases the frequency of comorbid chronic diseases in transplant candidates and recipients, contributing to inferior outcomes. Although the frequency of death increases with age, limited use of organs from older deceased donors reflects the concerns about organ durability and inadequate function. Cellular senescence (CS) is a hallmark of aging, which occurs in response to a myriad of cellular stressors, leading to activation of signaling cascades that stably arrest cell cycle progression to prevent tumorigenesis. In aging and chronic conditions, senescent cells accumulate as the immune system's ability to clear them wanes, which is causally implicated in the progression of chronic diseases, immune dysfunction, organ damage, decreased regenerative capacity, and aging itself. The intimate interplay between senescent cells, their proinflammatory secretome, and immune cells results in a positive feedback loop, propagating chronic sterile inflammation and the spread of CS. Hence, senescent cells in organs from older donors trigger the recipient's alloimmune response, resulting in the increased risk of graft loss. Eliminating senescent cells or attenuating their inflammatory phenotype is a novel, potential therapeutic target to improve transplant outcomes and expand utilization of organs from older donors. This review focuses on the current knowledge about the impact of CS on circulating immune cells in the context of organ damage and disease progression, discusses the impact of CS on abdominal solid organs that are commonly transplanted, and reviews emerging therapies that target CS.
Collapse
Affiliation(s)
- Varvara A. Kirchner
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Joshua S. Badshah
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Suk Kyun Hong
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Olivia Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Timothy L. Pruett
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
2
|
Popescu RG, Dinischiotu A, Soare T, Vlase E, Marinescu GC. Nicotinamide Mononucleotide (NMN) Works in Type 2 Diabetes through Unexpected Effects in Adipose Tissue, Not by Mitochondrial Biogenesis. Int J Mol Sci 2024; 25:2594. [PMID: 38473844 DOI: 10.3390/ijms25052594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Nicotinamide mononucleotide (NMN) has emerged as a promising therapeutic intervention for age-related disorders, including type 2 diabetes. In this study, we confirmed the previously observed effects of NMN treatment on glucose uptake and investigated its underlying mechanisms in various tissues and cell lines. Through the most comprehensive proteomic analysis to date, we discovered a series of novel organ-specific effects responsible for glucose uptake as measured by the IPGTT: adipose tissue growing (suggested by increased protein synthesis and degradation and mTOR proliferation signaling upregulation). Notably, we observed the upregulation of thermogenic UCP1, promoting enhanced glucose conversion to heat in intermuscular adipose tissue while showing a surprising repressive effect on mitochondrial biogenesis in muscle and the brain. Additionally, liver and muscle cells displayed a unique response, characterized by spliceosome downregulation and concurrent upregulation of chaperones, proteasomes, and ribosomes, leading to mildly impaired and energy-inefficient protein synthesis machinery. Furthermore, our findings revealed remarkable metabolic rewiring in the brain. This involved increased production of ketone bodies, downregulation of mitochondrial OXPHOS and TCA cycle components, as well as the induction of well-known fasting-associated effects. Collectively, our data elucidate the multifaceted nature of NMN action, highlighting its organ-specific effects and their role in improving glucose uptake. These findings deepen our understanding of NMN's therapeutic potential and pave the way for novel strategies in managing metabolic disorders.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Independent Research Association, 012416 Bucharest, Romania
- Blue Screen SRL, 012416 Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Teodoru Soare
- Pathology Department, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania
| | - Ene Vlase
- Animals Facility Laboratory, Cantacuzino National Institute for Medico-Military Research and Development, 013821 Bucharest, Romania
| | - George Cătălin Marinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Independent Research Association, 012416 Bucharest, Romania
- Blue Screen SRL, 012416 Bucharest, Romania
| |
Collapse
|
3
|
Cho KH, Bahuguna A, Kang DJ, Kim JE. Prolonged Supplementation of Ozonated Sunflower Oil Bestows an Antiaging Effect, Improves Blood Lipid Profile and Spinal Deformities, and Protects Vital Organs of Zebrafish ( Danio rerio) against Age-Related Degeneration: Two-Years Consumption Study. Antioxidants (Basel) 2024; 13:123. [PMID: 38275648 PMCID: PMC10812828 DOI: 10.3390/antiox13010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Ozonated sunflower oil (OSO) is renowned for its diverse therapeutic benefits. Nonetheless, the consequences of extended dietary intake of OSO have yet to be thoroughly investigated. Herein, the effect of 2-year dietary supplementation of OSO was examined on the survivability, obesity, skeletal deformities, swimming behavior, and liver, kidney, ovary, and testis function of zebrafish. Results showed that the zebrafish feed supplemented with 20% (wt/wt) OSO for 2 years emerged with higher survivability and body weight management compared to sunflower oil (SO) and normal diet (ND)-supplemented zebrafish. Radio imaging (X-ray)-based analysis revealed 2.6° and 15.2° lower spinal curvature in the OSO-supplemented groups than in the SO and ND-supplemented groups; consistently, OSO-supplemented zebrafish showed better swimming behavior. The histology analysis of the liver revealed the least fatty liver change and interleukin (IL)-6 generation in the OSO-supplemented group. Additionally, a significantly lower level of reactive oxygen species (ROS), apoptotic, and senescent cells were observed in the liver of the OSO-supplemented zebrafish. Also, no adverse effect on the kidney, testis, and ovary morphology was detected during 2 years of OSO consumption. Moreover, lower senescence with diminished ROS and apoptosis was noticed in the kidney and ovary in response to OSO consumption. The OSO supplementation was found to be effective in countering age-associated dyslipidemia by alleviating total cholesterol (TC), triglycerides (TG), low-density lipoproteins (LDL-C) and elevating high-density lipoproteins (HDL-C)/TC levels. Conclusively, prolonged OSO consumption showed no adverse effect on the morphology and functionality of vital organs; in fact, OSO supplementation displayed a protective effect against age-associated detrimental effects on spinal deformities, vital organ functionality, cell senescence, and the survivability of zebrafish.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea; (A.B.); (D.-J.K.); (J.-E.K.)
| | | | | | | |
Collapse
|
4
|
Cellular Senescence in Hepatocellular Carcinoma: The Passenger or the Driver? Cells 2022; 12:cells12010132. [PMID: 36611926 PMCID: PMC9818733 DOI: 10.3390/cells12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
With the high morbidity and mortality, hepatocellular carcinoma (HCC) represents a major yet growing burden for our global community. The relapse-prone nature and drug resistance of HCC are regarded as the consequence of varying intracellular processes and extracellular interplay, which actively participate in tumor microenvironment remodeling. Amongst them, cellular senescence is regarded as a fail-safe program, leading to double-sword effects of both cell growth inhibition and tissue repair promotion. Particularly, cellular senescence serves a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to carcinogenesis. Given the current challenges in improving the clinical management and outcome of HCC, senescence may exert striking potential in affecting anti-cancer strategies. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies. In this review, we intend to provide an up-to-date understanding of liver cell senescence and its impacts on treatment modalities of HCC.
Collapse
|
5
|
He Y, Xie W, Li H, Jin H, Zhang Y, Li Y. Cellular Senescence in Sarcopenia: Possible Mechanisms and Therapeutic Potential. Front Cell Dev Biol 2022; 9:793088. [PMID: 35083219 PMCID: PMC8784872 DOI: 10.3389/fcell.2021.793088] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
Aging promotes most degenerative pathologies in mammals, which are characterized by progressive decline of function at molecular, cellular, tissue, and organismal levels and account for a host of health care expenditures in both developing and developed nations. Sarcopenia is a prominent age-related disorder in musculoskeletal system. Defined as gradual and generalized chronic skeletal muscle disorder, sarcopenia involves accelerated loss of muscle mass, strength and function, which is associated with increased adverse functional outcomes and evolutionally refers to muscle wasting accompanied by other geriatric syndromes. More efforts have been made to clarify mechanisms underlying sarcopenia and new findings suggest that it may be feasible to delay age-related sarcopenia by modulating fundamental mechanisms such as cellular senescence. Cellular senescence refers to the essentially irreversible growth arrest mainly regulated by p53/p21CIP1 and p16INK4a/pRB pathways as organism ages, possibly detrimentally contributing to sarcopenia via muscle stem cells (MuSCs) dysfunction and the senescence-associated secretory phenotype (SASP) while cellular senescence may have beneficial functions in counteracting cancer progression, tissue regeneration and wound healing. By now diverse studies in mice and humans have established that targeting cellular senescence is a powerful strategy to alleviating sarcopenia. However, the mechanisms through which senescent cells contribute to sarcopenia progression need to be further researched. We review the possible mechanisms involved in muscle stem cells (MuSCs) dysfunction and the SASP resulting from cellular senescence, their associations with sarcopenia, current emerging therapeutic opportunities based on targeting cellular senescence relevant to sarcopenia, and potential paths to developing clinical interventions genetically or pharmacologically.
Collapse
Affiliation(s)
- Yongyu He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Gasek NS, Kuchel GA, Kirkland JL, Xu M. Strategies for Targeting Senescent Cells in Human Disease. NATURE AGING 2021; 1:870-879. [PMID: 34841261 PMCID: PMC8612694 DOI: 10.1038/s43587-021-00121-8] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Cellular senescence represents a distinct cell fate characterized by replicative arrest in response to a host of extrinsic and intrinsic stresses. Senescence provides programming during development and wound healing, while limiting tumorigenesis. However, pathologic accumulation of senescent cells is implicated in a range of diseases and age-associated morbidities across organ systems. Senescent cells produce distinct paracrine and endocrine signals, causing local tissue dysfunction and exerting deleterious systemic effects. Senescent cell removal by apoptosis-inducing "senolytic" agents or therapies that inhibit the senescence-associated secretory phenotype, SASP inhibitors, have demonstrated benefit in both pre-clinical and clinical models of geriatric decline and chronic diseases, suggesting senescent cells represent a pharmacologic target for alleviating effects of fundamental aging processes. However, senescent cell populations are heterogeneous in form, function, tissue distribution, and even differ among species, possibly explaining issues of bench-to-bedside translation in current clinical trials. Here, we review features of senescent cells and strategies for targeting them, including immunologic approaches, as well as key intracellular signaling pathways. Additionally, we survey current senolytic therapies in human trials. Collectively, there is demand for research to develop targeted senotherapeutics that address the needs of the aging and chronically-ill.
Collapse
Affiliation(s)
- Nathan S. Gasek
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| | | | | | - Ming Xu
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| |
Collapse
|
7
|
Ye J, Xin L, Liu J, Tang T, Bao X, Yan Y. Dkk1 inhibits malignant transformation induced by Bmi1 via the β-catenin signaling axis in WB-F344 oval cells. FEBS Open Bio 2021; 11:1854-1866. [PMID: 33639034 PMCID: PMC8255841 DOI: 10.1002/2211-5463.13132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/05/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022] Open
Abstract
Dickkopf-1 (Dkk1) is an inhibitor of Wnt signaling involved in cancer cell proliferation, apoptosis, and migration and angiogenesis. It was previously reported that B cell-specific Moloney mouse leukemia virus integration site 1 (Bmi1) activates the Wnt pathway by inhibiting the expression of DKK1 in breast cancer cell lines and 293T cells. Bmi1 and DKK1 are highly expressed in liver samples taken by biopsy from patients with hepatitis B virus-related hepatocellular carcinoma (HCC), but the effect of both Bmi1 and DKK1 on the carcinogenesis of adult hepatic stem cells (oval cells) has not previously been reported. In this study, we used WB-F344 cells to explore the function and regulation of Dkk1 upon Bmi1 treatment. Overexpression of Dkk1 repressed differentiation, proliferation, and migration induced by Bmi1 but promoted the apoptosis of hepatic WB-F344 oval cells. In addition, Dkk1 reduced the enhancement of β-catenin levels induced by Bmi1. Finally, we used transcriptome sequencing to perform a comprehensive evaluation of the transcriptome-related changes in WB-F344 oval cells induced by Dkk1 and Bmi1. These results may provide evidence for future studies of the pathogenesis of HCC and the design of possible therapies.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Le Xin
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Jidong Liu
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Tao Tang
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Xing Bao
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Yukuang Yan
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| |
Collapse
|
8
|
Wang E, Liao Z, Wang L, Liao Y, Xu X, Liu P, Wang X, Hou J, Jiang H, Wu X, Chen X. A combination of pirfenidone and TGF-β inhibition mitigates cystic echinococcosis-associated hepatic injury. Parasitology 2021; 148:767-778. [PMID: 33583470 PMCID: PMC11010163 DOI: 10.1017/s0031182021000287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/10/2023]
Abstract
Cystic echinococcosis (CE) occurs in the intermediate host's liver, assuming a bladder-like structure surrounded by the host-derived collagen capsule mainly derived from activated hepatic stellate cells (HSCs). However, the effect of CE on liver natural killer (NK) cells and the potential of transforming growth factor-β (TGF-β) signalling inhibition on alleviating CE-related liver damage remain to be explored. Here, by using the CE-mouse model, we revealed that the inhibitory receptors on the surface of liver NK cells were up-regulated, whereas the activating receptors were down-regulated over time. TGF-β1 secretion was elevated in liver tissues and mainly derived from macrophages. A combination of TGF-β signalling inhibitors SB525334 and pirfenidone could reduce the expression of TGF-β1 signalling pathway-related proteins and collagen production. Based on the secretion of TGF-β1, only the pirfenidone group showed a depressing effect. Also, the combination of SB525334 and pirfenidone exhibited a higher potential in effectively alleviating the senescence of the hepatocytes and restoring liver function. Together, TGF-β1 may be a potential target for the treatment of CE-associated liver fibrosis.
Collapse
Affiliation(s)
- Erqiang Wang
- Department of Basic Medical Sciences, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
- Department of Hunan Children's Research Institute, Hunan Children's Hospital, Changsha, China
| | - Zhenyu Liao
- Department of Basic Medical Sciences, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Lianghai Wang
- Department of Basic Medical Sciences, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Yuan Liao
- Department of Basic Medical Sciences, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Xiaodan Xu
- Department of Basic Medical Sciences, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Ping Liu
- Department of Basic Medical Sciences, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Xian Wang
- Department of Basic Medical Sciences, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jun Hou
- Department of Basic Medical Sciences, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Huijiao Jiang
- Department of Basic Medical Sciences, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Xiangwei Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Xueling Chen
- Department of Basic Medical Sciences, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| |
Collapse
|
9
|
Guo D, Ma D, Liu P, Lan J, Liu Z, Liu Q. DNASE1L3 arrests tumor angiogenesis by impairing the senescence-associated secretory phenotype in response to stress. Aging (Albany NY) 2021; 13:9874-9899. [PMID: 33744849 PMCID: PMC8064203 DOI: 10.18632/aging.202740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/19/2021] [Indexed: 01/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most challenging and aggressive cancers with limited treatment options because of tumor heterogeneity. Tumor angiogenesis is a hallmark of HCC and is necessary for tumor growth and progression. DNA damage stress and its associated deoxyribonuclease1-like 3 (DNASE1L3) are involved in HCC progression. Here, we explored the influence mechanism of DNASE1L3 on tumor angiogenesis under DNA damage stress in vitro and in vivo. DNASE1L3 was found downregulated and negatively correlated with poor prognosis of resectable and unresectable HCC patients. The tissue microarray of HCC revealed the negative association between DNASE1L3 and cancer vasculature invasion. Mechanistically, DNASE1L3 was found to relieve cytoplasmic DNA accumulation under DNA damage stress in HCC cell lines, in turn cell senescence and senescence-associated secretory phenotype were arrested via the p53 and NF-κB signal pathway, and hence, tumor angiogenesis was impaired. Furthermore, we found that DNASE1L3 excised these functions by translocating to the nucleus and interacting with H2BE under DNA damage stress using co-immunoprecipitation and fluorescence resonance energy transfer assay. In conclusion, DNASE1L3 inhibits tumor angiogenesis via impairing the senescence-associated secretory phenotype in response to DNA damage stress.
Collapse
Affiliation(s)
- Deliang Guo
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Dong Ma
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Pengpeng Liu
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jianwei Lan
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zhisu Liu
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Quanyan Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
10
|
Kyritsi K, Francis H, Zhou T, Ceci L, Wu N, Yang Z, Meng F, Chen L, Baiocchi L, Kundu D, Kennedy L, Liangpunsakul S, Wu C, Glaser S, Alpini G. Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2 / Mouse Model of Primary Sclerosing Cholangitis. Gene Expr 2020; 20:89-103. [PMID: 32393417 PMCID: PMC7650011 DOI: 10.3727/105221620x15889714507961] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biliary senescence and hepatic fibrosis are hallmarks of cholangiopathies including primary sclerosing cholangitis (PSC). Senescent cholangiocytes display senescence-associated secretory phenotypes [SASPs, e.g., transforming growth factor-1 (TGF-1)] that further increase biliary senescence (by an autocrine loop) and trigger liver fibrosis by paracrine mechanisms. The aim of this study was to determine the effect of p16 inhibition and role of the TGF-1/microRNA (miR)-34a/sirtuin 1 (SIRT1) axis in biliary damage and liver fibrosis in the Mdr2/ mouse model of PSC. We treated (i) in vivo male wild-type (WT) and Mdr2/ mice with p16 Vivo-Morpholino or controls before measuring biliary mass [intrahepatic bile duct mass (IBDM)] and senescence, biliary SASP levels, and liver fibrosis, and (ii) in vitro intrahepatic murine cholangiocyte lines (IMCLs) with small interfering RNA against p16 before measuring the mRNA expression of proliferation, senescence, and fibrosis markers. p16 and miR-34a increased but SIRT1 decreased in Mdr2/ mice and PSC human liver samples compared to controls. p16 immunoreactivity and biliary senescence and SASP levels increased in Mdr2/ mice but decreased in Mdr2/ mice treated with p16 Vivo-Morpholino. The increase in IBDM and hepatic fibrosis (observed in Mdr2/ mice) returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. TGF-1 immunoreactivity and biliary SASPs levels were higher in Mdr2/ compared to those of WT mice but returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. The expression of fibrosis/senescence markers decreased in cholangiocytes from Mdr2/ mice treated with p16 Vivo-Morpholino (compared to Mdr2/ mice) and in IMCLs (after p16 silencing) compared to controls. Modulation of the TGF-1/miR-34a/SIRT1 axis may be important in the management of PSC phenotypes.
Collapse
Affiliation(s)
| | - Heather Francis
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Tianhao Zhou
- ‡Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Ludovica Ceci
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Nan Wu
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Zhihong Yang
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Fanyin Meng
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Lixian Chen
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Leonardo Baiocchi
- §Liver Unit, Department of Medicine, University of Rome “Tor Vergata,”Rome, Italy
| | - Debjyoti Kundu
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Lindsey Kennedy
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Chaodong Wu
- ¶Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Shannon Glaser
- ‡Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Gianfranco Alpini
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
11
|
Szücs A, Paku S, Sebestyén E, Nagy P, Dezső K. Postnatal, ontogenic liver growth accomplished by biliary/oval cell proliferation and differentiation. PLoS One 2020; 15:e0233736. [PMID: 32470002 PMCID: PMC7259787 DOI: 10.1371/journal.pone.0233736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The liver is well known for its enormous regenerative capacity. If the hepatocytes are compromised the reserve stem cells can regrow the lost tissue by means of oval cells differentiating into hepatocytes. We were curious whether this standby system was able to compensate for ontogenic liver growth arrested by 2-acetylaminofluorene (AAF) treatment or if it can be influenced by cholic acid, known to promote liver growth in several reactions. METHODS (i) Four weeks-old (60-70g) male F344 rats were kept on standard chow and treated with solvent only, (ii) others were kept on 0,2% cholic acid (CA) enriched diet, (iii) treated with AAF, or (iiii) given a combination of CA diet and AAF treatment (AAF/CA). The proliferative response of epithelial cells was characterized by pulse bromodeoxyuridine labelling. The relative gene expression levels of senescence-related factors and bile acid receptors were determined by quantitative real-time polymerase chain reaction analysis. RESULTS AAF administration efficiently inhibited the physiological proliferation of hepatocytes in young, male F344 rats after weaning. The activation of stem cells was indicated by the increased proliferation of periportal biliary/oval cells (B/OC). If the rats were fed additionally by cholic acid enriched diet, typical oval cell reaction emerged, subsequently the oval cells differentiated into hepatocytes restituting liver growth. This reaction was mediated by increased production of HGF, IL-6 and SCF by the damaged liver. Moreover, upregulation of FXR expression on B/OC made them competent for bile acids. Our results indicate that endogenous, autocrine mechanisms involved in liver ontogeny are also able to activate the backup regenerative machinery of stem cells.
Collapse
Affiliation(s)
- Armanda Szücs
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Endre Sebestyén
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Péter Nagy
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Dezső
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
12
|
Xiang XH, Yang L, Zhang X, Ma XH, Miao RC, Gu JX, Fu YN, Yao Q, Zhang JY, Liu C, Lin T, Qu K. Seven-senescence-associated gene signature predicts overall survival for Asian patients with hepatocellular carcinoma. World J Gastroenterol 2019; 25:1715-1728. [PMID: 31011256 PMCID: PMC6465944 DOI: 10.3748/wjg.v25.i14.1715] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/06/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cellular senescence is a recognized barrier for progression of chronic liver diseases to hepatocellular carcinoma (HCC). The expression of a cluster of genes is altered in response to environmental factors during senescence. However, it is questionable whether these genes could serve as biomarkers for HCC patients.
AIM To develop a signature of senescence-associated genes (SAGs) that predicts patients’ overall survival (OS) to improve prognosis prediction of HCC.
METHODS SAGs were identified using two senescent cell models. Univariate COX regression analysis was performed to screen the candidate genes significantly associated with OS of HCC in a discovery cohort (GSE14520) for the least absolute shrinkage and selection operator modelling. Prognostic value of this seven-gene signature was evaluated using two independent cohorts retrieved from the GEO (GSE14520) and the Cancer Genome Atlas datasets, respectively. Time-dependent receiver operating characteristic (ROC) curve analysis was conducted to compare the predictive accuracy of the seven-SAG signature and serum α-fetoprotein (AFP).
RESULTS A total of 42 SAGs were screened and seven of them, including KIF18B, CEP55, CIT, MCM7, CDC45, EZH2, and MCM5, were used to construct a prognostic formula. All seven genes were significantly downregulated in senescent cells and upregulated in HCC tissues. Survival analysis indicated that our seven-SAG signature was strongly associated with OS, especially in Asian populations, both in discovery and validation cohorts. Moreover, time-dependent ROC curve analysis suggested the seven-gene signature had a better predictive accuracy than serum AFP in predicting HCC patients’ 1-, 3-, and 5-year OS.
CONCLUSION We developed a seven-SAG signature, which could predict OS of Asian HCC patients. This risk model provides new clinical evidence for the accurate diagnosis and targeted treatment of HCC.
Collapse
Affiliation(s)
- Xiao-Hong Xiang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Li Yang
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xiao-Hua Ma
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Run-Chen Miao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jing-Xian Gu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yu-Nong Fu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Qing Yao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jing-Yao Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ting Lin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|