1
|
Wu S, Luo T, Lei X, Yang X. Emerging role of competing endogenous RNA in lung cancer drug resistance. J Chemother 2024; 36:546-565. [PMID: 38124356 DOI: 10.1080/1120009x.2023.2294582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Lung cancer remains one of the most common malignant cancers worldwide, and its survival rate is extremely low. Chemotherapy, the mainstay of lung cancer treatment, is not as effective as it could be due to the development of cellular resistance. The molecular mechanisms of drug resistance in lung cancer remain to be elucidated. Accumulating evidence suggests that ceRNAs are involved in various carcinogenesis and development. CeRNA is a transcript that regulates each other through competition with miRNA. However, the relationship between ceRNAs and chemoresistance in lung cancer remains unclear. In this narrative review, we provided a summary of treatment approaches that focus on ceRNA networks to overcome drug resistance.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Ting Luo
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
2
|
Meng X, Ma F, Yu D. The diverse effects of cisplatin on tumor microenvironment: Insights and challenges for the delivery of cisplatin by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 240:117362. [PMID: 37827371 DOI: 10.1016/j.envres.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cisplatin is a well-known platinum-based chemotherapy medication that is widely utilized for some malignancies. Despite the direct cytotoxic consequences of cisplatin on tumor cells, studies in the recent decade have revealed that cisplatin can also affect different cells and their secretions in the tumor microenvironment (TME). Cisplatin has complex impacts on the TME, which may contribute to its anti-tumor activity or drug resistance mechanisms. These regulatory effects of cisplatin play a paramount function in tumor growth, invasion, and metastasis. This paper aims to review the diverse impacts of cisplatin and nanoparticles loaded with cisplatin on cancer cells and also non-cancerous cells in TME. The impacts of cisplatin on immune cells, tumor stroma, cancer cells, and also hypoxia will be discussed in the current review. Furthermore, we emphasize the challenges and prospects of using cisplatin in combination with other adjuvants and therapeutic modalities that target TME. We also discuss the potential synergistic effects of cisplatin with immune checkpoint inhibitors (ICIs) and other agents with anticancer potentials such as polyphenols and photosensitizers. Furthermore, the potential of nanoparticles for targeting TME and better delivery of cisplatin into tumors will be discussed.
Collapse
Affiliation(s)
- Xinxin Meng
- Zhuji Sixth People's Hospital of Zhejiang Province, Zhuji, Zhejiang, 311801, China
| | - Fengyun Ma
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China.
| | - Dingli Yu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| |
Collapse
|
3
|
Yadav B, Chauhan M, Sonali, Dinkar R, Shekhar S, Singh RP. Fabrication, in-silico, in-vitro, and in-vivo characterization of transferrin-targeted micelles containing cisplatin and gadolinium for improved theranostic applications in lung cancer therapy. Eur J Pharm Biopharm 2023; 193:44-57. [PMID: 37866420 DOI: 10.1016/j.ejpb.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The targeted delivery of therapeutic and imaging agents is quite challenging in lung cancer therapy. Thus, lung cancer causes high mortality across the world. Herein, we developed TPGS-PF127 micelles containing cisplatin (CDDP) as a model anticancer drug and gadolinium (Gd) as a diagnostic agent by a slightly modified solvent casting method, further, the surface of the micelles was modified using TPGS-transferrin (TPGS-Tf) conjugate to improve targeted delivery of micelles to the lung cancer cells. Prior to this, the binding affinity of Tf over TfR (1E7U) and TfR (1E8W) was investigated with the help of in-silico studies. In-silico results showed good docking scores -7.8 and -7.2 kcal/mol of Tf -ligand towards 1E8W and 1E7U respectively promoting PI3K inhibition. Micelles have shown an average particle size range of 80-200 nm and have shown spherical morphology. The encapsulation efficiency of cisplatin (CDDP) in the CPT, CGPT, and CGPT-Tf micelles ranged from 75.63 % ± 1.58 % to 85.07 % ± 2.65 %. Furthermore, the encapsulation efficiency of gadolinium (Gd) in the CGPT and CGPT-Tf micelles was found to be 67.50 ± 0.32 % and 62.52 ± 0.52 %, respectively. CGPT-Tf micelles exhibited sustained release fashion for CDDP up to 48 h in physiological conditions. In the cytotoxicity study, CGPT-Tf micelles achieved higher cytotoxicity and caused a more antiproliferative effect in A549 cells compared to a commercial CDDP injection (Ciszest 50), after 24 h of treatment. Furthermore, the pharmacokinetic studies have proven the pharmacological effectiveness of developed CGPT-Tf micelles by achieving higher Cmax, Tmax, t1/2, and MRT of CDDP in systemic circulation compared to its counterparts and Ciszest 50. In lung theranostic observations, a higher internalization of Gd was noted in CGPT-TF compared to free Gd. The biochemical studies have proved the biocompatibility of developed micelles formulations by showing no sign of toxicity in the lungs. The developed micelles have great potential to be utilized in treating and diagnosing a wide variety of cancers.
Collapse
Affiliation(s)
- Bhavna Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| | - Mahima Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| | - Sonali
- Guru Teg Bahadur Hospital, GTB Enclave, Dilshad Garden, New Delhi, Delhi 110095, India
| | - Ritu Dinkar
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| | - Saurabh Shekhar
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| | - Rahul Pratap Singh
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India.
| |
Collapse
|
4
|
Chauhan M, Singh RP, Sonali, Yadav B, Shekhar S, Kumar L, Mehata AK, Jhawat V, Dutt R, Garg V, Kailashiya V, Muthu MS. Dual-targeted transferrin and AS1411 aptamer conjugated micelles for improved therapeutic efficacy and imaging of brain cancer. Colloids Surf B Biointerfaces 2023; 231:113544. [PMID: 37769388 DOI: 10.1016/j.colsurfb.2023.113544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Brain tumors represent an aggressive form of cancer, posing significant challenges in achieving complete remission. Development of advanced therapies is crucial for improving clinical outcomes in cancer patients. This study aimed to create a novel treatment approach using dual-targeted transferrin (TF) and AS1411 conjugated micelles, designed to enhance therapeutic effectiveness of docetaxel (DTX) and facilitate gadolinium (Gd) based imaging in brain cancer. Micelles were prepared using a slightly modified solvent-casting method, and the dual-targeting ligands were attached to the micelle's surface through a physical adsorption process. Average particle size of micelles ranged from 117.49 ± 3.90-170.38 ± 3.39 nm, with a low polydispersity index. Zeta potential ranged from - 1.5 ± 0.02 to - 18.7 ± 0.04 mV. Encapsulation efficiency of DTX in micelles varied from 92.64 ± 4.22-79.77 ± 4.13 %. Simultaneously, encapsulation of Gd in micelles was found to be 48.27 ± 3.18-58.52 ± 3.17, respectively. In-vitro drug release studies showed a biphasic sustained release profile, with DTX and Gd release continuing up to 72 h with their t50 % at 4.95, 11.29, and 24.14 h for GDTP, GDTP-TF and GDTP-TF-AS1411 micelles, respectively. Cytotoxicity effect of GDTP-TF-AS1411 micelles has shown significant improvement (P < 0.001) and reduced IC50 value up to 0.19 ± 0.14 μg/ml compared to Taxotere® (2.73 ± 0.73 μg/ml). Theranostic study revealed higher accumulation of GDTP-TF and GDTP-TF-AS1411 micelles free GD treated animal brains. The AUC of GDTP-TF-AS1411 micelles exhibited 23.79 ± 17.82 μg.h/ml higher than Taxotere® (14.14 ± 10.59 μg.h/ml). These findings direct enhanced effectiveness in brain cancer therapy leading to improved therapeutics in brain cancer patients. The combined targeted ligands and therapeutic agents strategy can direct advancement in brain cancer therapy and offer improved therapy for patients.
Collapse
Affiliation(s)
- Mahima Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Rahul Pratap Singh
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India.
| | - Sonali
- Guru Teg Bahadur Hospital, GTB Enclave, Dilshad Garden, New Delhi, Delhi 110095, India
| | - Bhavna Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Saurabh Shekhar
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Lokesh Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Vikas Jhawat
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Rohit Dutt
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Du M, Yin J. Dual-Drug Nanosystem: Etoposide Prodrug and Cisplatin Coloaded Nanostructured Lipid Carriers for Lung Cancer Therapy. Drug Des Devel Ther 2022; 16:4139-4149. [PMID: 36506793 PMCID: PMC9733446 DOI: 10.2147/dddt.s386100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Cisplatin (CDDP) and etoposide (Etp) are recommended first-line therapy for lung cancer. Nanostructured lipid carriers (NLCs) are engineered to deliver drugs for lung cancer treatment. In the present study, NLCs were applied to coload an Etp prodrug (EtpP) and CDDP. Methods The Etp prodrug was synthesized by linking the phenolic hydroxyl group of Etp with polyethylene glycol (PEG). EtpP and CDDP coencapsulated NLCs (EtpP-CDDP NLCs) were prepared using film ultrasound. Cytotoxicity of drugs and drug-containing NLCs was assessed by evaluating cell viability using MTT assays. In vivo antitumor efficiency of EtpP-CDDP NLCs was evaluated on lung cancer-bearing xenografts. Results EtpP-CDDP NLCs showed a uniformly spherical morphology with a size of 176.8±4.9 nm and -potential of -31.9±3.2 mV. Cellular uptake efficiency of EtpP-CDDP NLCs was 57.4%±3.9% on A549/DDP cells. EtpP-CDDP NLCs exhibited more sustained plasma retention, the highest drug distribution in tumors, and the highest tumor-inhibition rates in lung tumor-bearing mice. Conclusion EtpP-CDDP NLCs improved tumor-cell uptake, cytotoxicity, and tumor-inhibition efficiency, and could be used as a promising drug-delivery system for lung cancer combination therapy.
Collapse
Affiliation(s)
- Min Du
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214000, People’s Republic of China
| | - Jianbo Yin
- Department of Pharmacy, Wuxi Dashan Medical Beauty Clinic, Wuxi, Jiangsu Province, 214001, People’s Republic of China,Correspondence: Jianbo Yin, Email
| |
Collapse
|
6
|
Dong Z, Wang Y, Guo J, Tian C, Pan W, Wang H, Yan J. Prostate Cancer Therapy Using Docetaxel and Formononetin Combination: Hyaluronic Acid and Epidermal Growth Factor Receptor Targeted Peptide Dual Ligands Modified Binary Nanoparticles to Facilitate the in vivo Anti-Tumor Activity. Drug Des Devel Ther 2022; 16:2683-2693. [PMID: 35983428 PMCID: PMC9380734 DOI: 10.2147/dddt.s366622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To evaluate the prostate cancer therapy efficiency of the synergistic combination docetaxel (DTX) and formononetin (FMN) in one nano-sized drug delivery system. Hyaluronic acid (HA) and epidermal growth factor receptor-targeted peptide (GE11) dual ligands were applied to modify the nano-systems. Methods In this study, GE11-modified nanoparticles (GE-NPs) were applied for the loading of DTX, and HA-decorated NPs (HA-NPs) were used to encapsulate FMN. HA and GE11 dual ligand-modified binary nanoparticles (HAGE-DTX/FMN-NPs) were constructed by the self-assembling of GE-NPs and HA-NPs. The anti-PCa ability of the system was evaluated in vitro on PC-3 human prostate carcinoma cells (PC3 cells) and in vivo on PC3 tumor-bearing mice in comparison with single NPs and free drugs formulations. Results HA/GE-DTX/FMN-NPs were nano-sized particles with smaller particles coating on the inner core and achieved a size of 189.5 nm. HA/GE-DTX/FMN-NPs showed a cellular uptake efficiency of 59.6%, and a more efficient inhibition effect on PC3 cells compared with single ligand-modified NPs and free drugs. HA/GE-DTX/FMN-NPs showed significantly higher tumor inhibition efficiency than their single drug-loaded counterparts and free drugs. Conclusion HA/GE-DTX/FMN-NPs have a synergistic anti-tumor effect and also could the reduce unexpected side effects during the cancer therapy. It could be used as a promising anti-PCa system.
Collapse
Affiliation(s)
- Zhaoqiang Dong
- Department of Cardiology, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Yuzhen Wang
- Clinical Department, Jinan Vocation College of Nursing, Ji’nan, 250033, People’s Republic of China
| | - Jing Guo
- Department of Gynaecology, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Chuan Tian
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Wengu Pan
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Hongwei Wang
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Jieke Yan
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| |
Collapse
|
7
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
9
|
Mukherjee D, Bhatt S. Biocomposite-based nanostructured delivery systems for treatment and control of inflammatory lung diseases. Nanomedicine (Lond) 2022; 17:845-863. [PMID: 35477308 DOI: 10.2217/nnm-2021-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diseases related to the lungs are among the most prevalent medical problems threatening human life. The treatment options and therapeutics available for these diseases are hindered by inadequate drug concentrations at pathological sites, a dearth of cell-specific targeting and different biological barriers in the alveoli or conducting airways. Nanostructured delivery systems for lung drug delivery have been significant in addressing these issues. The strategies used include surface engineering by altering the material structure or incorporation of specific ligands to reach prespecified targets. The unique characteristics of nanoparticles, such as controlled size and distribution, surface functional groups and therapeutic release triggering capabilities, are tailored to specific requirements to overcome the major therapeutic barriers in pulmonary diseases. In the present review, the authors intend to deliver significant up-to-date research in nanostructured therapies in inflammatory lung diseases with an emphasis on biocomposite-based nanoparticles.
Collapse
Affiliation(s)
- Dhrubojyoti Mukherjee
- Department of Pharmaceutics, Faculty of Pharmacy, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh, 474005, India
| |
Collapse
|
10
|
Ramalingam P, Prabakaran DS, Sivalingam K, Nallal VUM, Razia M, Patel M, Kanekar T, Krishnamoorthy D. Recent Advances in Nanomaterials-Based Drug Delivery System for Cancer Treatment. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:83-116. [DOI: 10.1007/978-3-030-80371-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Doroudian M, Azhdari MH, Goodarzi N, O’Sullivan D, Donnelly SC. Smart Nanotherapeutics and Lung Cancer. Pharmaceutics 2021; 13:1972. [PMID: 34834387 PMCID: PMC8619749 DOI: 10.3390/pharmaceutics13111972] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is a significant health problem worldwide. Unfortunately, current therapeutic strategies lack a sufficient level of specificity and can harm adjacent healthy cells. Consequently, to address the clinical need, novel approaches to improve treatment efficiency with minimal side effects are required. Nanotechnology can substantially contribute to the generation of differentiated products and improve patient outcomes. Evidence from previous research suggests that nanotechnology-based drug delivery systems could provide a promising platform for the targeted delivery of traditional chemotherapeutic drugs and novel small molecule therapeutic agents to treat lung cancer cells more effectively. This has also been found to improve the therapeutic index and reduce the required drug dose. Nanodrug delivery systems also provide precise control over drug release, resulting in reduced toxic side effects, controlled biodistribution, and accelerated effects or responses. This review highlights the most advanced and novel nanotechnology-based strategies, including targeted nanodrug delivery systems, stimuli-responsive nanoparticles, and bio-nanocarriers, which have recently been employed in preclinical and clinical investigations to overcome the current challenges in lung cancer treatments.
Collapse
Affiliation(s)
- Mohammad Doroudian
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Mohammad H. Azhdari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - David O’Sullivan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
| | - Seamas C. Donnelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
12
|
Mao K, Zhang W, Yu L, Yu Y, Liu H, Zhang X. Transferrin-Decorated Protein-Lipid Hybrid Nanoparticle Efficiently Delivers Cisplatin and Docetaxel for Targeted Lung Cancer Treatment. Drug Des Devel Ther 2021; 15:3475-3486. [PMID: 34413632 PMCID: PMC8369919 DOI: 10.2147/dddt.s296253] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) therapy faces the barriers including drug resistance. A transferrin-functionalized protein-lipid hybrid nanoparticle (PLHN) was designed loading both cisplatin (CIS) and docetaxel (DTX) for the lung cancer treatment. METHODS CIS and DTX were loaded into the hybrid nanoparticle and then decorated with transferrin (Tf). The Tf-functionalized protein-lipid hybrid nanoparticle (Tf-CIS/DTX-PLHN) was investigated by determining the release behavior, cytotoxicity in vitro, and anticancer efficiency in vivo. RESULTS Tf-CIS/DTX-PLHN showed a nano-size of 189.5 ± 5.9 nm, and a surface tested to be -16.9 ± 2.1 mV. Tf-CIS/DTX-PLHN exhibited obviously better antitumor ability in vitro and in vivo compared with the non Tf contained CIS and DTX co-loaded lipid nanoparticles (CIS/DTX-LN), single drug loaded nanoparticles, and free drugs. CONCLUSION Since remarkable enhanced efficiency of Tf and synergistic effect of the drugs, it could inhibit the lung tumor growth and help with the lung cancer treatment.
Collapse
Affiliation(s)
- Kaiping Mao
- Department of Thoracic surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Weina Zhang
- Department of Plastic surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Lan Yu
- Department of Cancer Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, 266042, People’s Republic of China
| | - Yi Yu
- Department of Thoracic surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Haixia Liu
- Department of Thoracic surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Xiaotao Zhang
- Department of Cancer Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, 266042, People’s Republic of China
| |
Collapse
|
13
|
Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids Surf B Biointerfaces 2021; 205:111914. [PMID: 34130211 DOI: 10.1016/j.colsurfb.2021.111914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022]
Abstract
Currently, multidrug resistance (MDR) is one of the major reasons for failure in clinical cancer chemotherapy. Overexpression of the ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which significantly increases the efflux of anticancer drugs from tumor cells, enhances MDR. In the past few decades, four generations of P-gp inhibitors have appeared. However, they are limited in clinical application due to their severe toxic side effects. As a P-gp inhibitor and carrier for loading chemotherapy agents, TPGS has received increasing attention due to its advantages and unique properties of reversing MDR. TPGS is an amphipathic agent that increases the solubility of most chemotherapy drugs and decreases severe side effects. In addition, TPGS is an excellent carrier with P-gp-inhibiting ability. In this review, we summarize the latest articles on TPGS-based nanodelivery systems to prevent MDR.
Collapse
|
14
|
Grover M, Behl T, Sachdeva M, Bungao S, Aleya L, Setia D. Focus on Multi-targeted Role of Curcumin: a Boon in Therapeutic Paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18893-18907. [PMID: 33595796 DOI: 10.1007/s11356-021-12809-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Curcumin is a polyphenolic compound that exhibited good anticancer potential against different types of cancers through its multi-targeted effect like the termination of cell proliferation, inflammation, angiogenesis, and metastasis, thereby acting as antiproliferative and cytotoxic in nature. The present review surveys the various drug combination tried with curcumin or its synthetic analogues and also the mechanism by which curcumin potentiates the effect of almost every drug. In addition, this article also focuses on aromatherapy which is gaining much popularity in cancer patients. After thoroughly studying several articles on combination therapy of curcumin through authenticated book chapters, websites, research, and review articles available at PubMed, ScienceDirect, etc., it has been observed that multi-targeted curcumin possess enormous anticancer potential and, with whatever drug it is given in combination, has always resulted in enhanced effect with reduced dose as well as side effects. It is also capable enough in overcoming the problem of chemoresistance. Besides this, aromatherapy also proved its potency in reducing cancer-related side effects. Combining all the factors together, we can conclude that combination therapy of drugs with curcumin should be explored extensively. In addition, aromatherapy can be used as an adjuvant or supplementary therapy to reduce the cancer complications in patients.
Collapse
Affiliation(s)
- Madhuri Grover
- B.S. Anangpuria Institute of Pharmacy, Alampur, Haryana, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | | - Simona Bungao
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
15
|
A Novel Method to Construct Dual-targeted Magnetic Nanoprobes by Modular Assembling. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Chen Y, Deng Y, Zhu C, Xiang C. Anti prostate cancer therapy: Aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed Pharmacother 2020; 127:110181. [PMID: 32416561 DOI: 10.1016/j.biopha.2020.110181] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/12/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PC) is the most common type of newly diagnosed malignancy in men. Combined chemotherapy has been shown to be an effective strategy for the treatment of PC therapy. Lipid-polymer hybrid nanoparticles (LPNs) are core-shell nanoparticles composed of a polymer core and a lipid shell, which are reported to provide significant advantages for combined PC therapy. This study synthesized an aptamer conjugated ligand and designed an aptamer-functionalized, curcumin (CUR) and cabazitaxel (CTX) co-delivered LPNs (APT-CUR/CTX-LPNs). APT-CUR/CTX-LPNs had a mean size of 121.3 ± 4.2 nm and a positive surface charge (23.5 ± 2.6 mV). Both CUR and CTX were sustained released from LPNs. Aptamer-functionalized APT-CUR/CTX-LPNs exhibited good cell inhibition ability, high tumor accumulation, and remarkable tumor inhibition efficiency at the drug ratio of 2:5 (CUR:CTX). The novel LPNs offers great promise for the double drugs delivery to the prostate cancer cells and tumor xenograft in vivo, showing the potential of synergistic combination therapy for prostate cancer.
Collapse
Affiliation(s)
- Yougan Chen
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Yuanyuan Deng
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Chenyao Zhu
- Shenzhen Yuce Biotechnology Co. Ltd, Shenzhen 518000, PR China
| | - Congming Xiang
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China.
| |
Collapse
|
17
|
Wang Z, Zang A, Wei Y, An L, Hong D, Shi Y, Zhang J, Su S, Fang G. Hyaluronic Acid Capped, Irinotecan and Gene Co-Loaded Lipid-Polymer Hybrid Nanocarrier-Based Combination Therapy Platform for Colorectal Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1095-1105. [PMID: 32210538 PMCID: PMC7076892 DOI: 10.2147/dddt.s230306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Background The current approach for treating colorectal cancer favors the use of drug and gene combination therapy, and targeted nano-systems are gaining considerable attention for minimizing toxicity and improving the efficacy of anticancer treatment. The aim of this study was to develop ligand-modified, irinotecan and gene co-loaded lipid-polymer hybrid nanocarriers for targeted colorectal cancer combination therapy. Methods Hyaluronic acid modified, irinotecan and gene co-loaded LPNs (HA-I/D-LPNs) were prepared using a solvent-evaporation method. Their average size, zeta potential, drug and gene loading capacity were characterized. The in vitro and in vivo gene transfection and anti-tumor ability of this nano-system were evaluated on colorectal cancer cells and mice bearing colorectal cancer model. Results HA-I/D-LPNs had a size of 182.3 ± 5.1, over 80% drug encapsulation efficiency and over 90% of gene loading capacity. The peak plasma concentration (Cmax) and half-life (T1/2) achieved from HA-I/D-LPNs were 41.31 ± 1.58 μg/mL and 12.56 ± 0.67 h. HA-I/D-LPNs achieved the highest tumor growth inhibition efficacy and the most prominent transfection efficiency in vivo. Conclusion HA-I/D-LPNs exhibited the most remarkable tumor inhibition efficacy and best gene transfection efficiency in the tumor, which could prove the effects of the drug and gene combination therapy.
Collapse
Affiliation(s)
- Zhiyu Wang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Aimin Zang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Yaning Wei
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Lin An
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Dan Hong
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Yan Shi
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Jingnan Zhang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Shenyong Su
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Guotao Fang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| |
Collapse
|
18
|
Bian Y, Guo D. Targeted Therapy for Hepatocellular Carcinoma: Co-Delivery of Sorafenib and Curcumin Using Lactosylated pH-Responsive Nanoparticles. Drug Des Devel Ther 2020; 14:647-659. [PMID: 32109990 PMCID: PMC7035906 DOI: 10.2147/dddt.s238955] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/11/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a leading cancer worldwide. In the present investigation, sorafenib (SFN) and curcumin (CCM) were co-delivered using pH-sensitive lactosylated nanoparticles (LAC-NPs) for targeted HCC treatment. METHODS pH-responsive lactosylated materials were synthesized. SFN and CCM co-delivered, pH-responsive lactosylated nanoparticles (LAC-SFN/CCM-NPs) were self-assembled by using the nanoprecipitation technique. The nanoparticles were characterized in terms of particle size, charge and drug release profile. The anti-cancer effects of the nanoparticles were evaluated in human hepatic carcinoma cells (HepG2) cells and HCC tumor xenograft models. RESULTS LAC-SFN/CCM-NPs are spherical particles with light coats on the surface. The size and zeta potential of LAC-SFN/CCM-NPs were 115.5 ± 3.6 nm and -34.6 ± 2.4, respectively. The drug release of LAC-SFN/CCM-NPs in pH 5.5 was more efficient than in pH 7.4. LAC-SFN/CCM-NPs group exhibited the smallest tumor volume (239 ± 14 mm3), and the inhibition rate of LAC-SFN/CCM-NPs was 77.4%. CONCLUSION In summary, LAC-SFN/CCM-NPs was proved to be a promising system for targeted HCC therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line
- Cell Proliferation/drug effects
- Curcumin/administration & dosage
- Curcumin/pharmacology
- Drug Delivery Systems
- Drug Screening Assays, Antitumor
- Drug Tolerance
- Hep G2 Cells
- Humans
- Injections, Intravenous
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Targeted Therapy
- Particle Size
- Sorafenib/administration & dosage
- Sorafenib/pharmacology
- Surface Properties
Collapse
Affiliation(s)
- Yun Bian
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, The Fourth People’s Hospital of Wuxi City, WuXi214000, Jiangsu Province, People’s Republic of China
| | - Dong Guo
- Affiliated Hospital of Jiangnan University, The Fourth People’s Hospital of Wuxi City, Wuxi214000, Jiangsu Province, People’s Republic of China
| |
Collapse
|
19
|
Non-small cell lung cancer-targeted, redox-sensitive lipid-polymer hybrid nanoparticles for the delivery of a second-generation irreversible epidermal growth factor inhibitor-Afatinib: In vitro and in vivo evaluation. Biomed Pharmacother 2019; 120:109493. [PMID: 31586902 DOI: 10.1016/j.biopha.2019.109493] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023] Open
Abstract
Afatinib (Afa), a second-generation irreversible epidermal growth factor inhibitor for the development of non-small cell lung cancer, has low bioavailability and adverse reactions. Nanoscaled drug delivery systems offer promising alternatives to address these defects and improve therapeutic outcomes. In the present study, a Tf contained, redox-sensitive ligand was synthesized and used for the preparation of afatinib loaded, Tf modified redox-sensitive lipid-polymer hybrid nanoparticles (Tf-SS-Afa-LPNs). Subsequently, studies of biological experiments in vitro and in vivo were performed to investigate the therapeutic effect of the system in lung cancer. The results showed that Tf-SS-Afa-LPNs has particle size of 103.5 ± 4.1 nm and zeta potential of -21.2 ± 2.4 mV. Significantly higher drug release was observed in the presence of glutathione (GSH). The area under the plasma concentration - time curve (AUC), peak concentration (Cmax) and terminal half life (T1/2) of Tf-SS-Afa-LPNs were 866.56 mg/L.h, 25.62 ± 3.21 L/kg/h, and 43.25 ± 2.31 h. Tf-SS-Afa-LPNs exhibited the most remarkable in vivo anti-tumor efficiency efficacy, which inhibited the tumor volume from 919 mm3 to 212 mm3. Tf-SS-Afa-LPNs is a promising platform for the lung cancer treatment.
Collapse
|
20
|
Bamburowicz-Klimkowska M, Poplawska M, Grudzinski IP. Nanocomposites as biomolecules delivery agents in nanomedicine. J Nanobiotechnology 2019; 17:48. [PMID: 30943985 PMCID: PMC6448271 DOI: 10.1186/s12951-019-0479-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles (NPs) are atomic clusters of crystalline or amorphous structure that possess unique physical and chemical properties associated with a size range of between 1 and 100 nm. Their nano-sized dimensions, which are in the same range as those of vital biomolecules, such as antibodies, membrane receptors, nucleic acids, and proteins, allow them to interact with different structures within living organisms. Because of these features, numerous nanoparticles are used in medicine as delivery agents for biomolecules. However, off-target drug delivery can cause serious side effects to normal tissues and organs. Considering this issue, it is essential to develop bioengineering strategies to significantly reduce systemic toxicity and improve therapeutic effect. In contrast to passive delivery, nanosystems enable to obtain enhanced therapeutic efficacy, decrease the possibility of drug resistance, and reduce side effects of "conventional" therapy in cancers. The present review provides an overview of the most recent (mostly last 3 years) achievements related to different biomolecules used to enable targeting capabilities of highly diverse nanoparticles. These include monoclonal antibodies, receptor-specific peptides or proteins, deoxyribonucleic acids, ribonucleic acids, [DNA/RNA] aptamers, and small molecules such as folates, and even vitamins or carbohydrates.
Collapse
Affiliation(s)
| | - Magdalena Poplawska
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str, 02-097, Warsaw, Poland.
| |
Collapse
|
21
|
Yugui F, Wang H, Sun D, Zhang X. Nasopharyngeal cancer combination chemoradiation therapy based on folic acid modified, gefitinib and yttrium 90 co-loaded, core-shell structured lipid-polymer hybrid nanoparticles. Biomed Pharmacother 2019; 114:108820. [PMID: 30951947 DOI: 10.1016/j.biopha.2019.108820] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
Current treatment of advanced-stage nasopharyngeal carcinoma (NPC) is not satisfactory. Here, we developed a folic acid (FA) modified, gefitinib (GEF) and yttrium 90 (Y90) co-loaded, core-shell structured lipid-polymer hybrid nanoparticles (FA-GEF-Y90-LPNP). The size and zeta potential, drug release behavior, and uptake by tumor cells were investigated. The antitumor efficiency and toxicity of LPNP were evaluated in cancer cells and in tumor bearing mice. FA-GEF-Y90-LPNP with a mean size of 150 nm and zeta potential of -40 mV was able to enhance the accumulation in the NPC cells and exhibited the highest cytotoxicity. The AUC and T1/2 of FA-GEF-Y90-LPNP group was 217.62 ± 10.32 mg/L.h and 12.09 ± 0.43 h, respectively. FA-GEF-Y90-LPNP exhibited the best in vivo tumor inhibition ability, leading to a 221.2 ± 13.5 mm3 of tumor volume at day 21. FA-GEF-Y90-LPNP treatment resulted in almost no difference in the body weight. This may be the evidence that the systemic toxicity of FA-GEF-Y90-LPNP is low and may be used as safety system for the treatment of NPC.
Collapse
Affiliation(s)
- Fu Yugui
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong, China
| | - Hailan Wang
- Department of Internal Medicine, Linyi People's Hospital, Linyi, Shandong, China
| | - Dezhong Sun
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong, China
| | - Xiaoyan Zhang
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong, China.
| |
Collapse
|
22
|
Hong Y, Che S, Hui B, Yang Y, Wang X, Zhang X, Qiang Y, Ma H. Lung cancer therapy using doxorubicin and curcumin combination: Targeted prodrug based, pH sensitive nanomedicine. Biomed Pharmacother 2019; 112:108614. [PMID: 30798129 DOI: 10.1016/j.biopha.2019.108614] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. To overcome the toxic side effects and multidrug resistance (MDR) during doxorubicin (DOX) chemotherapy, a urokinase plasminogen activator receptor (uPAR) targeting U11 peptide decorated, pH-sensitive, dual drugs co-encapsulated nanoparticles (NPs) system is employed in this study. A U11 peptide conjugated, pH-sensitive DOX prodrug (U11-DOX) was synthesized and used as materials to produce NPs. A curcumin (CUR) and U11-DOX co-encapsulated NPs system (U11-DOX/CUR NPs) was constructed to treat lung cancer. After the characterization of biophysical properties of this NPs system, synergistic chemotherapeutic efficacy was evaluated in both cultured cancer cells and tumor-bearing animal model. U11-DOX/CUR NPs had a uniformly spherical shape with a core-shell structure. The mean particle size and zeta potential of the U11-DOX/CUR NPs was 121.3 nm and -33.5 mV, with a DOX and CUR EE of 81.7 and 90.5%, respectively. The DOX release from U11-DOX/CUR NPs was 83.5, 55.2, and 32.8% correspondence to the pH of 5.0, 6.0 and 7.4. Cellular uptake efficiency of U11-DOX/CUR NPs was significantly higher than non U11 peptide decorated DOX/CUR NPs. U11-DOX/CUR NPs displayed a pronounced synergy effects in vitro and an obvious tumor tissue accumulation efficiency in vivo. In vivo antitumor experiment showed that U11-DOX/CUR NPs could inhibit the tumor growth to a level of 85%.In vitro and in vivo studies demonstrated that U11-DOX/CUR NPs is a sustained released, pH responsive, synergistic antitumor system. This study suggests that the U11-DOX/CUR NPs have promising potential for combination treatment of lung cancer.
Collapse
Affiliation(s)
- Yuan Hong
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Shaomin Che
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Beina Hui
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yunyi Yang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xiaoli Wang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xiaozhi Zhang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yongqian Qiang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Hailin Ma
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|