1
|
Lin D, Wang S, Yang B, Li G. Ameliorative effect of Schisandrol B against Diosbulbin B-induced hepatotoxicity via inhibiting CYP3A4-mediated bioactivation. Toxicol Appl Pharmacol 2024; 492:117116. [PMID: 39357680 DOI: 10.1016/j.taap.2024.117116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Diosbulbin B (DBB), the major component isolated from herbal medicine Dioscorea bulbifera L. (DBL), can trigger severe hepatotoxicity. The previous studies demonstrated that DBB-induced hepatotoxicity is closely relevant to the bioactivation mediated by CYP3A4 and subsequent generation of adducts with cellular proteins. Schisandrol B (SchB), the primary lignan ingredient in herbal medicine Schisandra chinensis (SC), is able to inhibit CYP3A activity. The objective of this study is to investigate the protective effect of SchB against hepatotoxicity induced by DBB and to explore the underlying mechanism. Biochemical and histopathological analysis demonstrated that SchB exerted dose-dependent protective effect against DBB-induced hepatotoxicity. In vitro metabolism assay showed that the formation of pyrrole-glutathione (GSH) conjugates of DBB was inhibited by SchB in a concentration dependent manner, suggesting SchB inhibited the bioactivation of DBB in vitro. Pharmacokinetic studies demonstrated that SchB enhanced Cmax and AUCs of DBB in mouse blood and liver, resulting in accelerating the accumulation of DBB in the circulation. In addition, pretreatment with SchB alleviated DBB-induced hepatic GSH depletion, obviously facilitated the excretion of DBB in urine, and reduced the urinary excretion of DBB-GSH conjugates, indicating that SchB affected absorption, distribution, metabolism, and excretion (ADME) of DBB by inhibiting the bioactivation of DBB in vivo. In conclusion, our findings demonstrated the amelioration of SchB against DBB-induced hepatotoxicity was correlated with the inhibition of CYP3A4-mediated bioactivation of DBB. Thus, the findings indicated that SchB may serve as a potential candidate drug for the treatment of DBB intoxication.
Collapse
Affiliation(s)
- Dongju Lin
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, China.
| | - Shuo Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Bufan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Guangyao Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, China
| |
Collapse
|
2
|
Xie Y, Xu S, Chen Z, Song C, Yan W. Unveiling the therapeutic potential of airpotato yam rhizome against colorectal cancer: a network pharmacology approach. Front Oncol 2024; 14:1414766. [PMID: 39156706 PMCID: PMC11327141 DOI: 10.3389/fonc.2024.1414766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Objective The objective of this investigation was to elucidate the key active compounds and molecular mechanisms underlying the therapeutic potential of airpotato yam rhizome (AYR) in colorectal cancer (CRC) treatment. Methods By utilizing network pharmacology and molecular docking, key targets and signaling pathways of AYR against CRC were predicted and subsequently validated in cellular and mouse xenograft models. Results This study initially predicted that quercetin was the primary compound in AYR that might have potential efficacy against CRC and that EGFR and AKT1 could be the main targets of AYR, with the EGF/EGFR-induced PI3K/AKT signaling pathway potentially playing a crucial role in the anti-CRC effects of AYR. Molecular docking analysis further indicated a strong binding affinity between quercetin and EGFR, primarily through hydrogen bonds. Additionally, the AYR-derived drug-containing serum was found to inhibit the PI3K/AKT signaling pathway, as demonstrated by decreased levels of p-PI3K, p-AKT, and BCL2, which ultimately led to enhanced apoptosis of HCT116 and HT29 cells. The potential antitumor effects of AYR were investigated in nude mouse xenograft models of human HCT116 and HT29 cells, in which AYR was found to induce tumor cell apoptosis and inhibit tumor formation. Conclusion AYR may promote CRC cell apoptosis by suppressing the PI3K/AKT signaling pathway, which provides a basis for further research on the safe and effective use of AYR for the treatment of CRC.
Collapse
Affiliation(s)
- Yiwen Xie
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Sumei Xu
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Zhiyun Chen
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Caiping Song
- Department of Rehabilitation, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wenxi Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Wang Y, Yu D, Zhu S, Du X, Wang X. The genus Dioscorea L. (Dioscoreaceae), a review of traditional uses, phytochemistry, pharmacology, and toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118069. [PMID: 38552992 DOI: 10.1016/j.jep.2024.118069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Dioscorea, a member of the Dioscoreaceae family, comprises approximately 600 species and is widely distributed across temperate and tropical regions such as Asia, South Africa, and North America. The traditional medicinal uses of Dioscorea have been documented in Asian and African pharmacological systems. In Asia, this genus is traditionally used to treat respiratory illnesses, rheumatism, diabetes, diarrhea, dysentery, and other conditions. In Africa, this genus has been used to treat human immunodeficiency virus and ring worms. However, the traditional medicinal practices in North America rarely mention the use of this genus. AIM OF THE STUDY The aim of this review is to comprehensively review the genus Dioscorea, focusing on its traditional uses, phytochemical constituents, pharmacological activities, and potential toxicities. The research also aims to highlight the valuable bioactive compounds within Dioscorea and emphasize the need for further investigations into acute and chronic toxicity, activity mechanisms, molecular markers, and other relevant factors to contribute to the discovery of novel pharmaceuticals. MATERIALS AND METHODS A search for available information on Dioscorea was conducted using scientific databases, including PubMed, ISI-WOS, Scopus, and Google Scholar, as well as recent academic publications from reputable publishers and other literature sources. The search was not limited by language and spanned the literature published between 1950 and 2022. RESULTS This article provides a comprehensive review of the Dioscorea genus, focusing on its traditional uses, phytochemical constituents, pharmacological activities, and potential toxicities. Extensive research has been conducted on this genus, resulting in the isolation and examination of over 1000 compounds, including steroids, terpenoids, and flavonoids, to determine their biological activities. These activities include anti-tumor, anti-inflammatory, immunomodulatory, neuroprotective, hypoglycemic, and hypolipidemic effects. However, some studies have indicated the potential toxicity of high doses of Dioscorea, highlighting the need for further investigations to assess the safety of this genus. Additionally, this review explores potential avenues for future research and discusses the challenges associated with a comprehensive understanding of the Dioscorea genus. CONCLUSIONS Based on the existing literature, it can be concluded that Dioscorea is a valuable source of bioactive compounds that have the potential to treat various disorders. Future research should prioritize the investigation of acute and chronic toxicity, activity mechanisms, molecular markers, and other relevant factors. This review provides a comprehensive analysis of the Dioscorea genus, emphasizing its potential to enable a deeper exploration of the biological activity mechanisms of these plants and contribute to the discovery of novel pharmaceuticals.
Collapse
Affiliation(s)
- Yufei Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Dan Yu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Shaojie Zhu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xiaowei Du
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Xijun Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
4
|
Sun E, Meng X, Kang Z, Gu H, Li M, Tan X, Feng L, Jia X. Zengshengping improves lung cancer by regulating the intestinal barrier and intestinal microbiota. Front Pharmacol 2023; 14:1123819. [PMID: 36992837 PMCID: PMC10040556 DOI: 10.3389/fphar.2023.1123819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Lung cancer is a common malignant tumor in clinical practice, and its morbidity and mortality are in the forefront of malignant tumors. Radiotherapy, chemotherapy, and surgical treatment play an important role in the treatment of lung cancer, however, radiotherapy has many complications and even causes partial loss of function, the recurrence rate after surgical resection is high, and the toxic and side effects of chemotherapy drugs are strong. Traditional Chinese medicine has played a huge role in the prognosis and improvement of lung cancer, among them, Zengshengping (ZSP) has the effect of preventing and treating lung cancer. Based on the “gut-lung axis” and from the perspective of “treating the lung from the intestine”, the purpose of this study was to research the effect of Zengshengping on the intestinal physical, biological, and immune barriers, and explore its role in the prevention and treatment of lung cancer. The Lewis lung cancer and urethane-induced lung cancer models were established in C57BL/6 mice. The tumor, spleen, and thymus were weighed, and the inhibition rate, splenic and thymus indexes analyzed. Inflammatory factors and immunological indexes were detected by enzyme-linked immunosorbent assay. Collecting lung and colon tissues, hematoxylin and eosin staining was performed on lung, colon tissues to observe histopathological damage. Immunohistochemistry and Western blotting were carried out to detect tight junction protein expression in colon tissues and expression of Ki67 and p53 proteins in tumor tissues. Finally, the feces of mice were collected to investigate the changes in intestinal microbiota using 16SrDNA high-throughput sequencing technology. ZSP significantly reduced tumor weight and increased the splenic and thymus indexes. It decreased expression of Ki67 protein and increased expression of p53 protein. Compared with Model group, ZSP group reduced the serum levels of interleukin (IL)-1β, IL-6, tumor necrosis factor α (TNF-α), and ZSP group increased the concentration of secretory immunoglobulin A (sIgA) in the colon and the bronchoalveolar lavage fluid (BALF). ZSPH significantly increased the level of tight junction proteins such as ZO-1, Occludin and Claudin-1. Model group significantly reduced the relative abundance of Akkermansia (p < 0.05) and significantly promoted the amount of norank_f_Muribaculaceae, norank_f_Lachnospiraceae (p < 0.05) compared with that in the Normal group. However, ZSP groups increased in probiotic strains (Akkermansia) and decreased in pathogens (norank_f_Muribaculaceae, norank_f_Lachnospiraceae). Compared with the urethane-induced lung cancer mice, the results showed that ZSP significantly increased the diversity and richness of the intestinal microbiota in the Lewis lung cancer mice. ZSP played an important role in the prevention and treatment of lung cancer by enhancing immunity, protecting the intestinal mucosa and regulating the intestinal microbiota.
Collapse
Affiliation(s)
- E. Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Xiangqi Meng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Zhaoxia Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Huimin Gu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingyu Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaobin Tan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Liang Feng, ; Xiaobin Jia,
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Liang Feng, ; Xiaobin Jia,
| |
Collapse
|
5
|
Emerging Role of Plant-Based Dietary Components in Post-Translational Modifications Associated with Colorectal Cancer. Life (Basel) 2023; 13:life13020264. [PMID: 36836621 PMCID: PMC9962725 DOI: 10.3390/life13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Its main modifiable risk factors are diet, alcohol consumption, and smoking. Thus, the right approach through lifestyle changes may lead to its prevention. In fact, some natural dietary components have exhibited chemopreventive activity through modulation of cellular processes involved in CRC development. Although cancer is a multi-factorial process, the study of post-translational modifications (PTMs) of proteins associated with CRC has recently gained interest, as inappropriate modification is closely related to the activation of cell signalling pathways involved in carcinogenesis. Therefore, this review aimed to collect the main PTMs associated with CRC, analyse the relationship between different proteins that are susceptible to inappropriate PTMs, and review the available scientific literature on the role of plant-based dietary compounds in modulating CRC-associated PTMs. In summary, this review suggested that some plant-based dietary components such as phenols, flavonoids, lignans, terpenoids, and alkaloids may be able to correct the inappropriate PTMs associated with CRC and promote apoptosis in tumour cells.
Collapse
|
6
|
Song L, Wang J, Gong M, Zhang Y, Li Y, Wu X, Qin L, Duan Y. Detoxification technology and mechanism of processing with Angelicae sinensis radix in reducing the hepatotoxicity induced by rhizoma Dioscoreae bulbiferae in vivo. Front Pharmacol 2022; 13:984858. [PMID: 36249801 PMCID: PMC9554241 DOI: 10.3389/fphar.2022.984858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Rhizoma Dioscoreae Bulbiferae (RDB) was effective on relieving cough and expectorant but accompanied by severe toxicity, especially in hepatotoxicity. A previous study found that processing with Angelicae Sinensis Radix (ASR) reduced RDB-induced hepatotoxicity. However, up to now, the optimized processing process of ASR-processed RDB has not been explored or optimized, and the detoxification mechanism is still unknown. This study evaluated the detoxification technology and possible mechanism of processing with ASR on RDB-induced hepatotoxicity. The optimized processing process of ASR-processed RDB was optimized by the content of diosbulbin B (DB), the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and histopathological analysis. The processing detoxification mechanism was evaluated by detecting the antioxidant levels of nuclear factor E2 related factor 2 (Nrf2) and its downstream heme oxygenase 1 (HO-1), quinone oxidoreductase 1 (NQO1), glutamylcysteine ligase catalytic subunit (GCLM), and the levels of downstream antioxidant factors of Nrf2. Besides, the antitussive and expectorant efficacy of RDB was also investigated. This work found that processing with ASR attenuated RDB-induced hepatotoxicity, which can be verified by reducing the levels of ALT, AST, and ALP, and reversing the pathological changes of liver histomorphology. And the optimized processing process of ASR-processed RDB is “processing at a mass ratio of 100:20 (RDB:ASR) and a temperature of 140°C for 10 min.” Further results corroborated that the intervention of processed products of ASR-processed RDB remarkably upregulated the Nrf2/HO-1/NQO1/GCLM protein expression levels in liver, and conserved antitussive and expectorant efficacy of RDB. The above findings comprehensively indicated that the optimized processing process of ASR-processed RDB was “processing at a mass ratio of 100:20 (RDB:ASR) and a temperature of 140°C for 10 min,” and the processing detoxification mechanism involved enhancing the level of Nrf2-mediated antioxidant defense in liver as a key target organ.
Collapse
Affiliation(s)
- Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Junming Wang,
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yaqian Duan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
7
|
Tan R, Hu Z, Zhou M, Liu Y, Wang Y, Zou Y, Li K, Zhang S, Pan J, Peng Y, Li W, Zheng J. Diosbulbin B: An important component responsible for hepatotoxicity and protein covalent binding induced by Dioscorea bulbifera L. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154174. [PMID: 35660353 DOI: 10.1016/j.phymed.2022.154174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Dioscorea bulbifera L. (DBL) is an herbal medicine used for the treatment of thyroid diseases and tumors in China. However, the hepatotoxicity of DBL limits its wide safe use. Diosbulbin B (DSB) is the most abundant diterpene lactone occurring in DBL. Numbers of studies showed that this furanoterpenoid plays an important role in DBL-induced liver injury and that DSB is metabolized to a cis-enedial intermediate which reacts with protein to form protein covalent binding and induces hepatotoxicity. PURPOSE The present study aimed to define the association of DSB content in DBL with the severity of DBL hepatotoxicity to ensure the safe use of the herbal medicine in clinical practice and to determine the role of DSB in DBL-induced liver injury. METHODS Chemical chromatographic fingerprints of DBL were established by UPLC-MS/MS. Their hepatotoxicity potencies were evaluated in vitro and in vivo. Metabolic activation of DSB was evaluated by liver microsomal incubation. Protein modification was assessed by mass spectrometry and immunostaining. RESULTS The contents of DSB in DBL herbs collected from 11 locations in China varied dramatically with as much as 47-fold difference. The hepatotoxicity potencies of DBL herbs were found to be proportional to the contents of DSB. Intensified protein adduction derived from the reactive metabolite of DSB was observed in mice administered DBL with high contents of DSB. CONCLUSION The findings not only demonstrated that contents of DSB can be quite different depending on harvest location and special attention needs to pay for quality control of DBL but also suggest DSB is a key contributor for DBL-induced hepatotoxicity.
Collapse
Affiliation(s)
- Rong Tan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Life and Health Science, Kaili University, Kaili, Guizhou 556011, China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Mengyue Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Ying Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Kunna Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Shiyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Jie Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China.
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
8
|
Chemical Profile and In Vitro Evaluation of the Antibacterial Activity of Dioscorea communis Berry Juice. SCI 2022. [DOI: 10.3390/sci4020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Within the large family of Dioscoreaceae, Dioscorea communis (L.) Caddick & Wilkin (syn. Tamus communis L.) is considered among the four most widespread representatives in Europe, and it is commonly known under the name black bryony or bryonia. To date, reports have revealed several chemical components from the leaves and tubers of this plant. Nevertheless, an extensive phytochemical investigation has not been performed on its berry juice. In the present study, metabolite profiling procedures, using LC-MS, GC-MS, and NMR approaches, were applied to investigate the chemical profile of the D. communis berries. This work reveals the presence of several metabolites belonging to different phytochemical groups, such as fatty acid esters, alkylamides, phenolic derivatives, and organic acids, with lactic acid being predominant. In parallel, based on orally transmitted traditional uses, the initial extract and selected fractions were tested in vitro for their antibacterial effects and exhibited good activity against two bacterial strains related to skin infections: methicillin-resistant Staphylococcus aureus and Cutibacterium acnes. The MIC and MBC values of the extract were determined at 1.56% w/v against both bacteria. The results of this study provide important information on the chemical characterization of the D. communis berry juice, unveiling the presence of 71 metabolites, which might contribute to and further explain its specific antibacterial activity and its occasional toxicity.
Collapse
|
9
|
Bandopadhyay S, Anand U, Gadekar VS, Jha NK, Gupta PK, Behl T, Kumar M, Shekhawat MS, Dey A. Dioscin: A review on pharmacological properties and therapeutic values. Biofactors 2022; 48:22-55. [PMID: 34919768 DOI: 10.1002/biof.1815] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Dioscin has gained immense popularity as a natural, bioactive steroid saponin, which offers numerous medical benefits. The growing global incidence of disease-associated morbidity and mortality continues to compromise human health, facilitating an increasingly urgent need for nontoxic, noninvasive, and efficient treatment alternatives. Natural compounds can contribute vastly to this field. Over recent years, studies have demonstrated the remarkable protective actions of dioscin against a variety of human malignancies, metabolic disorders, organ injuries, and viral/fungal infections. The successful usage of this phytocompound has been widely seen in medical treatment procedures under traditional Chinese medicine, and it is becoming progressively prevalent worldwide. This review provides an insight into the wide spectrum of pharmacological activities of dioscin, as reported and compiled in recent literature. The various novel approaches and applications of dioscin also verify the advantages exhibited by plant extracts against commercially available drugs, highlighting the potential of phytochemical agents like dioscin to be further incorporated into clinical practice.
Collapse
Affiliation(s)
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vijaykumar Shivaji Gadekar
- Zoology Department, Sangola College (affiliated to Punyashlok Ahilyadevi Holkar Solapur University), Solapur, Maharashtra, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Heptapeptide Isolated from Isochrysis zhanjiangensis Exhibited Anti-Photoaging Potential via MAPK/AP-1/MMP Pathway and Anti-Apoptosis in UVB-Irradiated HaCaT Cells. Mar Drugs 2021; 19:md19110626. [PMID: 34822497 PMCID: PMC8625372 DOI: 10.3390/md19110626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 01/14/2023] Open
Abstract
Marine microalgae can be used as sustainable protein sources in many fields with positive effects on human and animal health. DAPTMGY is a heptapeptide isolated from Isochrysis zhanjiangensis which is a microalga. In this study, we evaluated its anti-photoaging properties and mechanism of action in human immortalized keratinocytes cells (HaCaT). The results showed that DAPTMGY scavenged reactive oxygen species (ROS) and increase the level of endogenous antioxidants. In addition, through the exploration of its mechanism, it was determined that DAPIMGY exerted anti-photoaging effects. Specifically, the heptapeptide inhibits UVB-induced apoptosis through down-regulation of p53, caspase-8, caspase-3 and Bax and up-regulation of Bcl-2. Thus, DAPTMGY, isolated from I. zhanjiangensis, exhibits protective effects against UVB-induced damage.
Collapse
|
11
|
Liu ZB, Zhang T, Ye X, Liu ZQ, Sun X, Zhang LL, Wu CJ. Natural substances derived from herbs or plants are promising sources of anticancer agents against colorectal cancer via triggering apoptosis. J Pharm Pharmacol 2021; 74:162-178. [PMID: 34559879 DOI: 10.1093/jpp/rgab130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Nowadays, one of the most common gastrointestinal cancers is colorectal cancer (CRC). Chemotherapy is still one of the main methods to treat cancer. However, the currently available synthetic chemotherapy drugs often cause serious adverse reactions. Apoptosis is generally considered as an ideal way for induction the death of tumour cells without the body's inflammatory response, and it is reported that lots of natural agents could trigger various cancer cells to apoptosis. The overarching aim of this project was to elucidate the specific mechanisms by which natural substances induce apoptosis in CRC cells and to be used as an alternative therapeutic option in the future. KEY FINDINGS The mechanisms for the pro-apoptotic effects of natural substances derived from herbs or plants include death receptor pathway, mitochondrial pathway, endoplasmic reticulum stress pathway, related signal transduction pathways (PI3K/Akt, MAPK, p53 signalling), and so on. SUMMARY This paper updated this information regarding the anti-tumour effects of natural agents via induction of apoptosis against CRC, which would be beneficial for future new drug research regarding natural products from herbs or plants.
Collapse
Affiliation(s)
- Zi-Bo Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Zi-Qi Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xue Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Li-Lin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | | |
Collapse
|
12
|
Al-Amin M, Eltayeb NM, Khairuddean M, Salhimi SM. Inhibitory Effect of Dioscorea bulbifera Tubers on the Migration of Triple-Negative Breast Cancer Cells. REVISTA BRASILEIRA DE FARMACOGNOSIA 2021. [DOI: 10.1007/s43450-021-00156-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Lin L, Yang S, Xiao Z, Hong P, Sun S, Zhou C, Qian ZJ. The Inhibition Effect of the Seaweed Polyphenol, 7-Phloro-Eckol from Ecklonia Cava on Alcohol-Induced Oxidative Stress in HepG2/CYP2E1 Cells. Mar Drugs 2021; 19:158. [PMID: 33802989 PMCID: PMC8002839 DOI: 10.3390/md19030158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is vulnerable to oxidative stress-induced damage, which leads to many diseases, including alcoholic liver disease (ALD). Liver disease endanger people's health, and the incidence of ALD is increasing; therefore, prevention is very important. 7-phloro-eckol (7PE) is a seaweed polyphenol, which was isolated from Ecklonia cava in a previous study. In this study, the antioxidative stress effect of 7PE on HepG2/CYP2E1 cells was evaluated by alcohol-induced cytotoxicity, DNA damage, and expression of related inflammation and apoptosis proteins. The results showed that 7PE caused alcohol-induced cytotoxicity to abate, reduced the amount of reactive oxygen species (ROS) and nitric oxide (NO), and effectively inhibited DNA damage in HepG2/CYP2E1 cells. Additionally, the expression levels of glutathione (GSH), superoxide dismutase (SOD), B cell lymphoma 2 (Bcl-2), and Akt increased, while γ-glutamyltransferase (GGT), Bcl-2 related x (Bax), cleaved caspase-3, cleaved caspase-9, nuclear factor-κB (NF-κB), and JNK decreased. Finally, molecular docking proved that 7PE could bind to BCL-2 and GSH protein. These results indicate that 7PE can alleviate the alcohol-induced oxidative stress injury of HepG2 cells and that 7PE may have a potential application prospect in the future development of antioxidants.
Collapse
Affiliation(s)
- Liyuan Lin
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Shengtao Yang
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Zhenbang Xiao
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Pengzhi Hong
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Shengli Sun
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
| | - Chunxia Zhou
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| |
Collapse
|
14
|
Zhao Y, He JY, Cui JZ, Meng ZQ, Zou YL, Guo XS, Chen X, Wang X, Yan LT, Han WX, Li C, Guo L, Bu H. Detection of genes mutations in cerebrospinal fluid circulating tumor DNA from neoplastic meningitis patients using next generation sequencing. BMC Cancer 2020; 20:690. [PMID: 32711494 PMCID: PMC7382072 DOI: 10.1186/s12885-020-07172-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Background This study profiled the somatic genes mutations and the copy number variations (CNVs) in cerebrospinal fluid (CSF)-circulating tumor DNA (ctDNA) from patients with neoplastic meningitis (NM). Methods A total of 62 CSF ctDNA samples were collected from 58 NM patients for the next generation sequencing. The data were bioinformatically analyzed by (Database for Annotation, Visualization and Integrated Discovery) DAVID software. Results The most common mutated gene was TP53 (54/62; 87.10%), followed by EGFR (44/62; 70.97%), PTEN (39/62; 62.90%), CDKN2A (32/62; 51.61%), APC (27/62: 43.55%), TET2 (27/62; 43.55%), GNAQ (18/62; 29.03%), NOTCH1 (17/62; 27.42%), VHL (17/62; 27.42%), FLT3 (16/62; 25.81%), PTCH1 (15/62; 24.19%), BRCA2 (13/62; 20.97%), KDR (10/62; 16.13%), KIT (9/62; 14.52%), MLH1 (9/62; 14.52%), ATM (8/62; 12.90%), CBL (8/62; 12.90%), and DNMT3A (7/62; 11.29%). The mutated genes were enriched in the PI3K-Akt signaling pathway by the KEGG pathway analysis. Furthermore, the CNVs of these genes were also identified in these 62 samples. The mutated genes in CSF samples receiving intrathecal chemotherapy and systemic therapy were enriched in the ERK1/2 signaling pathway. Conclusions This study identified genes mutations in all CSF ctDNA samples, indicating that these mutated genes may be acted as a kind of biomarker for diagnosis of NM, and these mutated genes may affect meningeal metastasis through PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Jun Ying He
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Jun Zhao Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Zi-Qi Meng
- Wenzhou Medical University, Wenzhou, China
| | - Yue Li Zou
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Xiao Su Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Xin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Xueliang Wang
- San Valley Biotechnology Incorporated, Beijing, China
| | - Li-Tian Yan
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Wei Xin Han
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Chunyan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China.
| |
Collapse
|
15
|
The Protective Effect of the Polysaccharide Precursor, D-Isofloridoside, from Laurencia undulata on Alcohol-Induced Hepatotoxicity in HepG2 Cells. Molecules 2020; 25:molecules25051024. [PMID: 32106572 PMCID: PMC7179215 DOI: 10.3390/molecules25051024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Alcoholic liver disease (ALD) threatens human health, so it is imperative that we find ways to prevent or treat it. In recent years, the study of polysaccharides has shown that they have different kinds of bioactivities. Among them are many biological effects that have been attributed to polysaccharide precursors. D-Isofloridoside (DIF) is one of the polysaccharide precursors from the marine red alga Laurencia undulata. This study evaluated the effect of DIF on alcohol-induced oxidative stress in human hepatoma cells (HepG2). As a result, DIF attenuated alcohol-induced cytotoxicity, reduced the amount of intracellular reactive oxygen species (ROS), and effectively reduced alcohol-induced DNA damage in HepG2 cells. In addition, a western blot showed that, after DIF treatment, the expression levels of glutathione (GSH), superoxide dismutase (SOD), and B-cell lymphoma-2 (bcl-2) increased, while the expression levels of γ-glutamyl transferase (GGT), BCL2-associated X (bax), cleaved caspase-3, and mitogen-activated protein kinase (p38 and c-Jun N-terminal kinase) signal transduction proteins reduced. This showed that DIF may protect cells by reducing the amount of intracellular ROS and inhibiting intracellular oxidative stress and apoptotic processes. Finally, molecular docking demonstrated that DIF can bind to SOD, GGT, B-cell lymphoma-2, and bax proteins. These results indicated that DIF can protect HepG2 cells from alcohol-induced oxidative stress damage, making it an effective potential ingredient in functional foods.
Collapse
|
16
|
Oyelaja-Akinsipo OB, Dare EO, Katare DP. Protective role of diosgenin against hyperglycaemia-mediated cerebral ischemic brain injury in zebrafish model of type II diabetes mellitus. Heliyon 2020; 6:e03296. [PMID: 32051868 PMCID: PMC7002854 DOI: 10.1016/j.heliyon.2020.e03296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/16/2019] [Accepted: 01/22/2020] [Indexed: 01/21/2023] Open
Abstract
Impairment in glucose regulation is an indicatory effect capable of mediating multiple dysfunction such as cerebrovascular disorder with ischemia and brain damage inclusive. This study aims at investigating the glucose-lowering and neuroprotective capability of Diosgenin (DG) towards hyperglycemia-induced cerebral injury in a developed type 2 diabetes mellitus (T2DM) Zebrafish (ZF) model. T2DM was developed in ZF with 20 mg/kg body weight (b.w) multiple-low dose (MLD) Streptozotocin (STZ) for 28 days. Different doses of 20 mg/kg b.w (DG1) and 40 mg/kg b.w (DG2) DG was intraperitoneally administered twice in 7 days for a period of 28 days after T2DM was completely developed. Weight and behavioral changes were monitored and the catalytic activity including the plasma glucose level of diseased and treated ZF was spectrometrically estimated. Histopathological studies were employed to image the brain pathological condition during disease and treatment. SPSS was used as the statistical tool for result analysis and comparison of data obtained. STZ significantly (###p < 0.001) induced hyperglycemia when compared to control as plasma glucose increases from 101.56 ± 4.52 mgdL−1 to 175.87 ± 6.00 mg/dL. Our results have indicated a marked reduction in glucose concentration from a mean average of 175.87 ± 6.00 mgdL−1 to 105.68 ± 4.48 mgdL−1 and 82.06 ± 7.27 mgdL−1 in DG 1 and DG 2 respectively. Catalytic activity significantly decreases (p < 0.05) from 206.42 ± 30.77 unit/mL to 123.85 ± 29.99 unit/mL at a minimum and maximum value of 103.21 and 275.23 in diseased ZF respectively. On DG treatment, catalytic activity significantly (p < 0.01) rise from 101.58 ± 11.29 and 130.73 ± 27.52 to 130.98 ± 17.13 and 255.96 ± 30.34 with DG1 and DG2 treatment respectively. Studies on the behavioral pattern of STZ-induced anxiolytic effect on ZF confirmed changes in the number of transitions and time spent in both Novel tank test (NTT) and Dark/light test (LDT). Histopathological analysis confirmed the cerebral cortex with inflammatory brain cells in the diseased condition and an attenuation of damage posed revealed in diseased state was largely reversed with DG. As compared to the normal control, a significant (#p < 0.05 and ###p < 0.001) changes in weight of fishes were recorded and DG1 and DG2 significantly promotes (***p < 0.001) body weight and improves the irregularities in weight of ZF during disease progression. Our study confirms that the potential of DG towards the management of hyperglycemia and hyperglycemia–mediated cerebral ischemic injury is through its blood glucose-lowering properties, anti-inflammatory activity, antioxidant effect, and anxiolytic capabilities.
Collapse
Affiliation(s)
- Oyesolape B Oyelaja-Akinsipo
- Department of Chemical Sciences, College of Science and Information Technology, Tai Solarin University of Education, Ijagun, Ogun State, PMB 2118, Nigeria.,Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Alabata, Abeokuta Ogun State, 110282, Nigeria.,Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Enock O Dare
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Alabata, Abeokuta Ogun State, 110282, Nigeria
| | - Deepshikha P Katare
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| |
Collapse
|
17
|
Veeramani Kandan P, Dhineshkumar E, Karthikeyan R, Anbuselvan C, Maqbool I, Kanimozhi G, Arul Prakasam B, Rajendra Prasad N. Isolation and characterization of opuntiol from Opuntia Ficus indica (L. Mill) and its antiproliferative effect in KB oral carcinoma cells. Nat Prod Res 2019; 35:3146-3150. [PMID: 31711321 DOI: 10.1080/14786419.2019.1690484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, we isolated and characterized a novel bioactive flavonol from the cactus pad of Opuntia Ficus indica Indica (L. Mill) (OFI) by chromatography techniques. The isolated compound was characterized by FT-IR, 1H and 13C NMR spectroscopy. Single-crystal XRD results illustrate that the obtained flavonol was opuntiol (6-hydroxymethyl-4-methoxy-2H-pyran-2-one) and it was found to be near planar except for the H atoms of the methylene and methyl groups. The crystal packing was stabilized by C-H….O and O-H….O intermolecular hydrogen bonds. The isolated opuntiol significantly inhibited KB cells proliferation and its IC50 value was found to be 30 µM. Further, we noticed that opuntiol significantly induced ROS generation and subsequently altered MMP in KB cells. Western blot analysis and morphological observations by fluorescence microscope indicate the apoptotic inducing potential of opuntiol in KB cells.
Collapse
Affiliation(s)
- Ponniresan Veeramani Kandan
- Faculty of Science, Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
| | - Ezhumalai Dhineshkumar
- Faculty of Science, Department of Chemistry, Annamalai University, Annamalainagar, India
| | - Ramasamy Karthikeyan
- Faculty of Science, Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
| | | | - Illiyas Maqbool
- Faculty of Science, Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
| | - Govindasamy Kanimozhi
- Faculty of Science, Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India.,Department of Biochemistry, Dharumapurm Gnanambigai Government Arts College for Women, Mayiladuthurai, India
| | | | - Nagarajan Rajendra Prasad
- Faculty of Science, Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
| |
Collapse
|
18
|
Zhang TT, Xu J, Wang YM, Xue CH. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res 2019; 75:100997. [DOI: 10.1016/j.plipres.2019.100997] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
19
|
Ikiriza H, Ogwang PE, Peter EL, Hedmon O, Tolo CU, Abubaker M, Abdalla AAM. Dioscorea bulbifera, a highly threatened African medicinal plant, a review. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/23312025.2019.1631561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hilda Ikiriza
- Pharm Biotechnology and Traditional Medicine Centre of Excellence (ACE II), Mbarara University of Science & Technology, P.O Box 1410, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Pharm Biotechnology and Traditional Medicine Centre of Excellence (ACE II), Mbarara University of Science & Technology, P.O Box 1410, Mbarara, Uganda
- Department of Pharmacy, Faculty of Science, Mbarara University of Science and Technology, P.o.Box 1410, Mbarara, Uganda
| | - Emanuel L. Peter
- Pharm Biotechnology and Traditional Medicine Centre of Excellence (ACE II), Mbarara University of Science & Technology, P.O Box 1410, Mbarara, Uganda
| | - Okella Hedmon
- Pharm Biotechnology and Traditional Medicine Centre of Excellence (ACE II), Mbarara University of Science & Technology, P.O Box 1410, Mbarara, Uganda
| | - Casim Umba Tolo
- Pharm Biotechnology and Traditional Medicine Centre of Excellence (ACE II), Mbarara University of Science & Technology, P.O Box 1410, Mbarara, Uganda
- Department of Biology, Faculty of Science, Mbarara University of Science and Technology, P.o.Box 1410, Mbarara, Uganda
| | - Muwonge Abubaker
- National Agricultural Research Organization (NARO), National Crops Resources Research Institute (NaCRRI), P.O. Box 7084, Kampala, Uganda
| | - Ali Abdalla Mai Abdalla
- Department of Biochemistry and Molecular Biology, Faculty of Science, Gezira University, P.o.Box 20, Wad Medani, Sudan
| |
Collapse
|
20
|
Li Y, Qin X, Li P, Zhang H, Lin T, Miao Z, Ma S. Isobavachalcone isolated from Psoralea corylifolia inhibits cell proliferation and induces apoptosis via inhibiting the AKT/GSK-3β/β-catenin pathway in colorectal cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1449-1460. [PMID: 31118579 PMCID: PMC6503305 DOI: 10.2147/dddt.s192681] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Background: Colorectal cancer (CRC) is a common form of cancer associated with a high mortality rate and poor prognosis. Given the limited efficacy of current therapies for CRC, interest in novel therapeutic agents isolated from natural sources has increased. We studied the anticancer properties of isobavachalcone (IBC), a flavonoid isolated from the herb Psoralea corylifolia, which is used in traditional Chinese medicine, in an in vitro model of CRC. Materials and methods: Cell viability and growth of CRC cells were determined by Cell Counting Kit-8 and colony formation assays following treatment with varying concentrations of IBC, respectively. Apoptosis was examined by 4′,6-diamidino-2-phenylindole staining and flow cytometry with Annexin V/propidium iodide double staining. Western blot analysis was used to analyze expression of apoptosis-associated protein pathway and the AKT/GSK-3β/β-catenin signaling pathway. Results: Initial experiments showed that IBC inhibited proliferation and colony formation of human CRC cell lines in dose- and time-dependent manners. The antiproliferative effect of IBC resulted from induction of apoptosis, as evidenced by morphological changes in the nucleus, flow cytometry analysis, upregulation of cleaved caspase-3 and cleaved PARP, changes in the ratio of the anti-apoptotic protein Bcl-2 and the pro-apoptotic protein Bax, translocation of Bax from the cytosol to the mitochondria, and decreased expression of two inhibitors of apoptosis family proteins, XIAP, and survivin. Western blot analysis of signaling pathway proteins demonstrated that IBC downregulated Wnt/β-catenin signaling, which has previously been associated with CRC, by inhibiting the AKT/GSK-3β signaling pathway. Conclusion: This study demonstrated that IBC inhibited cell proliferation and induced apoptosis through inhibition of the AKT/GSK-3β/β-catenin pathway in CRC. These results suggest the potential of IBC as a novel therapeutic agent for the treatment of CRC.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Xiaoxue Qin
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Penglei Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Hao Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Tao Lin
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Ziwei Miao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Siping Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
21
|
王 子, 陶 红, 马 云, 汤 托, 张 晴, 姜 琦, 齐 世, 栗 家, 戚 之. [Aloin induces apoptosis via regulating the activation of MAPKs signaling pathway in human gastric cancer cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1025-1031. [PMID: 30377097 PMCID: PMC6744199 DOI: 10.12122/j.issn.1673-4254.2018.09.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the effect of aloin on apoptosis of human gastric cancer cells and explore the molecular mechanism. METHODS Gastric cancer MKN-28 and HGC-27 cells were cultured routinely in 1640 medium supplemented with 10% fetal bovine serum and 10% non-essential amino acids (for HGC-27 cells) and treated with different concentrations of aloin for different durations. The cell viability, cell nuclear morphology, and apoptotic rate of the cells were detected using CCK-8 assay, DAPI staining and AnnexinV-FITC/PI, respectively; Western blotting was used to detect the expression levels of PARP, procaspase 3 and the phosphorylation of p38, ERK and JNK. The cells were treated with specific inhibitors of p38, ERK and JNK, and the inhibitory effects on these pathways were detected with Western blotting; DAPI staining was used to detect the effects of inhibitors on apoptosis of gastric cancer cells. RESULTS Aloin dose-dependently inhibited the viability and induced apoptosis of HGC-27 and MKN-28 cells. Alion treatment obvious enhanced the phosphorylation of p38 and JNK but decreased ERK phosphorylation in the cells. Blocking ERK activation with the ERK inhibitor obviously enhanced aloin-induced cell apoptosis, where inhibiting p38 and JNK activation partly reversed alion-induced apoptosis in the cells. CONCLUSIONS Aloin induces apoptosis of human gastric cancer cells in vitro by activating p38 and JNK signaling pathways and inhibiting ERK signaling pathway.
Collapse
Affiliation(s)
- 子谦 王
- 皖南医学院 安徽省活性生物大分子重点实验室,安徽 芜湖 241002Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wuhu 241002, China
| | - 红 陶
- 皖南医学院 安徽省活性生物大分子重点实验室,安徽 芜湖 241002Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wuhu 241002, China
| | - 云飞 马
- 皖南医学院 安徽省活性生物大分子重点实验室,安徽 芜湖 241002Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wuhu 241002, China
| | - 托 汤
- 皖南医学院 安徽省活性生物大分子重点实验室,安徽 芜湖 241002Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wuhu 241002, China
| | - 晴 张
- 皖南医学院 安徽省活性生物大分子重点实验室,安徽 芜湖 241002Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wuhu 241002, China
| | - 琦 姜
- 皖南医学院 安徽省活性生物大分子重点实验室,安徽 芜湖 241002Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wuhu 241002, China
| | - 世美 齐
- 皖南医学院 安徽省活性生物大分子重点实验室,安徽 芜湖 241002Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wuhu 241002, China
- 皖南医学院 生物化学与分子生物学教研室,安徽 芜湖 241002Department of Biochemistry and Molecular Biology, Wuhu 241002, China
| | - 家平 栗
- 皖南医学院 弋矶山医院心胸外科,安徽 芜湖 241002Cardiothoracic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu 241002, China
| | - 之琳 戚
- 皖南医学院 安徽省活性生物大分子重点实验室,安徽 芜湖 241002Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wuhu 241002, China
| |
Collapse
|