1
|
Adibifar A, Salimi M, Rostamkhani N, Karami Z, Agh-Atabay AH, Rostamizadeh K. Folic acid-conjugated bovine serum albumin-coated selenium-ZIF-8 core/shell nanoparticles for dual target-specific drug delivery in breast cancer. Drug Deliv Transl Res 2025; 15:1786-1799. [PMID: 39317912 DOI: 10.1007/s13346-024-01714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Methotrexate (MTX), a frequently used chemotherapeutic agent, has limited water solubility, leading to rapid clearance even in local injections. In the present study, we developed folic acid-conjugated BSA-stabilized selenium-ZIF-8 core/shell nanoparticles for targeted delivery of MTX to combat breast cancer. FT-IR, XRD, SEM, TEM, and elemental mapping analysis confirmed the successful formation of FA-BSA@MTX@Se@ZIF-8. The developed nano-DDS had a mean diameter, polydispersity index, and zeta potential of 254.8 nm, 0.17, and - 16.5 mV, respectively. The release behavior of MTX from the nanocarriers was pH-dependent, where the cumulative release percentage at pH 5.4 was higher than at pH 7.4. BSA significantly improved the blood compatibility of nanoparticles so that after modifying their surface with BSA, the percentage of hemolysis decreased from 12.67 to 5.12%. The loading of methotrexate in BSA@Se@ZIF-8 nanoparticles reduced its IC50 on 4T1 cells from 40.29 µg/mL to 16.54 µg/mL, and by conjugating folic acid on the surface, this value even decreased to 12.27 µg/mL. In vivo evaluation of the inhibitory effect in tumor-bearing mice showed that FA-BSA@MTX@Se@ZIF-8 caused a 2.8-fold reduction in tumor volume compared to the free MTX, which is due to the anticancer effect of selenium nanoparticles, the pH sensitivity of ZIF-8, and the presence of folic acid on the surface as a targeting agent. More importantly, histological studies and animal body weight monitoring confirmed that developed nano-DDS does not have significant organ toxicity. Taking together, the incorporation of chemotherapeutics in folic acid-conjugated BSA-stabilized selenium-ZIF-8 nanoparticles may hold a significant impact in the field of future tumor management.
Collapse
Affiliation(s)
- Arghavan Adibifar
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Salimi
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Neda Rostamkhani
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Karami
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | | | - Kobra Rostamizadeh
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, 98104, USA.
| |
Collapse
|
2
|
Gowda CM, Sharma S, Wairkar S. Advanced Drug Delivery Systems Utilizing β-Lactoglobulin: An Efficient Protein-Based Drug Carrier. Biopolymers 2025; 116:e70005. [PMID: 39912193 DOI: 10.1002/bip.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Proteins have shown significant potential as carrier systems due to specific binding interactions with several drug molecules. Among several other animal proteins, whey protein (WP) is a by-product of the dairy industry, mainly composed of globular proteins. β-Lactoglobulin (BLG) is a major component of WP, which offers a unique functional property for drug delivery, such as thermal stability, binding interactions, favorable charge characteristics, and a spherical shape. Several drug delivery systems (DDSs) have been developed using BLG as a carrier, including nanoparticles, nanocapsules, nanocomposites, nanoemulsions, solid dispersions, microparticles, and hydrogels. These delivery systems improve drug solubility, loading capacity, bioavailability, stability, and release rate and can provide targeted delivery. They have been employed in diverse applications, from treating cancer to enhancing oral drug delivery, reducing the toxicity of specific drugs, and offering controlled drug release. The future of BLG DDSs holds the promise of combination therapies, personalized medicine, and improved targeting precision. This review aims to discuss the role and utilization of BLG in several DDSs as a versatile carrier, revolutionizing the pharmaceutical industry. However, further research is expected to focus on optimizing degradation rates, enhancing biological compatibility, and addressing potential immune responses of BLG-based drug carriers.
Collapse
Affiliation(s)
- Charan M Gowda
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| |
Collapse
|
3
|
Heydarian R, Divsalar A, Kouchesfehani HM, Rasouli M. Folic acid-targeted β-lactoglobulin nanocarriers for enhanced delivery of 5-fluorouracil and sodium butyrate in colorectal cancer treatment. Int J Pharm 2025; 671:125262. [PMID: 39870256 DOI: 10.1016/j.ijpharm.2025.125262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Colorectal cancer (CRC) remains a significant public health concern, emphasizing the need for innovative therapeutic strategies to improve patient outcomes. This study aimed to develop a highly efficient nanocarrier for targeted drug delivery, enhancing drug efficacy while minimizing concentrations and limiting adverse effects. We synthesized protein-based β-lactoglobulin (βlg) nanoparticles (NPs), loaded with 5-fluorouracil (5-FU) and sodium butyrate (NaB), and further functionalized with folic acid (FA) for specific targeting of folate receptor-positive CRC cells. The βlg-5-FU-NaB-FA nanoplatforms exhibited a well-defined size of 208 nm with a narrow size distribution (PDI ≈ 0.5). Zeta potential measurements showed a value of -11.4 mV, indicating stability and suitability for drug delivery. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) confirmed the nanocarrier's spherical morphology and efficient distribution. Drug release profiles demonstrated that the NPs released more drugs at neutral to alkaline pH levels, attributed to pectin's ionization properties. The efficacy of the prepared βlg-5-FU-NaB-FA nanoplatforms was investigated on HCT116 and Caco2 CRC cells, along with the normal cell line CRL-1831. The βlg-5-FU-NaB-FA nanoplatforms exhibited remarkable cytotoxicity against both HCT116 and Caco2 CRC cells compared to free drugs, highlighting the efficacy of targeted delivery in folate receptor-positive cells. These NPs induce cell apoptosis and cell cycle arrest more effectively than free drugs, demonstrating their potential for targeted cancer therapy. Furthermore, a decrease in the expression of crucial genes involved in the Wnt signaling pathway was observed, which offers a valuable understanding of their underlying mechanism. Collectively, our results suggest that the FA-targeted βlg nanocarriers represent a promising platform for the efficient and targeted delivery of 5-FU and NaB in folate receptor-positive CRC. This novel nanocarrier holds the potential to enhance therapeutic outcomes while minimizing side effects, providing a new avenue for the treatment of CRC.
Collapse
Affiliation(s)
- Ronak Heydarian
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | | | - Milad Rasouli
- Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|
5
|
Baran M, Onder GO, Goktepe O, Yay A. Role of apoptosis and autophagy in folic acid-induced cytotoxicity of human breast cancer cells in vitro. Fundam Clin Pharmacol 2024; 38:126-138. [PMID: 37587691 DOI: 10.1111/fcp.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Obstacles to the successful treatment of breast cancer patients with chemotherapeutic agents can be overcome with effective new strategies. It is still unclear how folic acid affects the onset and spread of breast cancer. The purpose of this study was to determine how folic acid affected the apoptotic and autophagic pathways of the breast cancer cell lines MCF-7 and MDA-MB-231. In the present study, folic acid was applied to MCF-7 and MDA-MB-231 breast cancer cell lines at different concentrations and for different durations. MTT analysis was used to investigate cytotoxic activity. All groups underwent the Tunel staining procedure to identify apoptosis and the immunofluorescence staining approach to identify the autophagic pathway. 24-hour folic acid values were accepted as the most appropriate cytotoxic dose. In MCF-7, cell cycle arrest was observed in the S phase and MDA-MB-231 G1/G0 phases. When apoptotic TUNEL staining was evaluated in both cell lines, folic acid significantly increased apoptosis. While a significant difference was observed between the groups in terms of Beclin 1 immunoreactivity in the MDA-MB-231 cell line, there was no significant difference in the MCF-7 cell line. In addition, statistical significance was not observed LC3 immunoreactivity in both cell lines. In the study, it was observed that folic acid induced autophagy at the initial stage in the MDA-MB-231 cell line but had no inductive effect in the MCF-7 cell line. In conclusion, our findings showed that folic acid has a potential cytotoxic and therapeutic effect on MCF-7 and MDA-MB-231 breast cancer cell lines.
Collapse
Affiliation(s)
- Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, 38039, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ozge Goktepe
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, 38039, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, 38039, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Tereshkina YA, Bedretdinov FN, Kostryukova LV. A dual-vector phospholipid nanosystem of doxorubicin: accumulation and cytotoxic effect in breast cancer cells in vitro. BIOMEDITSINSKAIA KHIMIIA 2023; 69:409-419. [PMID: 38153056 DOI: 10.18097/pbmc20236906409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Various chemotherapeutic agents are used to treat breast cancer (BC); one of them is the anthracycline antibiotic doxorubicin (Dox), which, in addition to its cytostatic effect, has serious side effects. In order to reduce its negative impact on healthy organs and tissues and to increase its accumulation in tumors, Dox was incorporated into phospholipid nanoparticles. The additional use of vector molecules for targeted delivery to specific targets can increase the effectiveness of Dox due to higher accumulation of the active substance in the tumor tissue. The integrin αvβ3, which plays an important role in cancer angiogenesis, and the folic acid receptor, which is responsible for cell differentiation and proliferation, have been considered in this study as targets for such vector molecules. Thus, a phospholipid composition of Dox containing two vector ligands, cRGD peptide and folic acid (NPh-Dox-cRGD-Fol(3,4)), was prepared. Study of the physical properties of the developed composition NPh-Dox-cRGD-Fol(3,4) showed that the average particle size was 39.62±4.61 nm, the ζ-potential value was 4.17±0.83 mV. Almost all Dox molecules were incorporated into phospholipid nanoparticles (99.85±0.21%). The simultaneous use of two vectors in the composition led to an increase in the Dox accumulation in MDA-MB-231 BC cells by almost 20% as compared to compositions containing each vector separately (folic acid or the cRGD peptide). Moreover, the degree of Dox internalization was 22% and 24% higher than in the case of separate use of folic acid and cRGD peptide, respectively. The cytotoxic effect on MDA-MB-231 cells was higher during incubations with the compositions containing folic acid as a single vector (NPh-Dox-Fol(3,4)) and together with the RGD peptide (NPh-Dox-cRGD-Fol(3,4)). Experiments on the Wi-38 diploid fibroblast cell line have shown a significantly lower degree of cytotoxic effect of the phospholipid composition, regardless of the presence of the vector molecules in it, as compared to free Dox. The results obtained indicate the potential of using two vectors in one phospholipid composition for targeted delivery of Dox.
Collapse
|
7
|
Kumar H, Gupta NV, Jain R, Madhunapantula SV, Babu CS, Kesharwani SS, Dey S, Jain V. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res 2023; 54:271-292. [PMID: 36791960 DOI: 10.1016/j.jare.2023.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous, aggressive phenotype of breast cancer with associated chemoresistance. The development of chemo- or radioresistance could be attributed to diverse tumor microenvironments, overexpression of membrane proteins (transporters), epigenetic changes, and alteration of the cell signaling pathways/genes associated with the development of cancer stem cells (CSCs). AIM OF REVIEW Due to the diverse and heterogeneous nature of TNBC, therapeutic response to the existing modalities offers limited scope and thus results in reccurance after therapy. To establish landmark therapeutic efficacy, a number of novel therapeutic modalities have been proposed. In addition, reversal of the resistance that developed during treatment may be altered by employing appropriate therapeutic modalities. This review aims to discuss the plethora of investigations carried out, which will help readers understand and make an appropriate choice of therapy directed toward complete elimination of TNBC. KEY SCIENTIFIC CONCEPTS OF REVIEW This manuscript addresses the major contributory factors from the tumor microenvironment that are responsible for the development of chemoresistance and poor prognosis. The associated cellular events and molecular mechanism-based therapeutic interventions have been explained in detail. Inhibition of ABC transporters, cell signaling pathways associated with CSCs, and epigenetic modification offers promising results in this regard. TNBC progression, invasion, metastasis and recurrence can also be inhibited by blocking multiple cell signaling pathways, targeting specific receptors/epigenetic targets, disrupting bioenergetics and generating reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - SubbaRao V Madhunapantula
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - C Saravana Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | | | - Surajit Dey
- Roseman University of Health Sciences, College of Pharmacy, Henderson, NV, USA
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India.
| |
Collapse
|
8
|
Divar M, Edraki N, Damghani T, Moosavi F, Mohabbati M, Alipour A, Pirhadi S, Saso L, Khabnadideh S, Firuzi O. Novel spiroindoline quinazolinedione derivatives as anticancer agents and potential FLT3 kinase inhibitors. Bioorg Med Chem 2023; 90:117367. [PMID: 37348260 DOI: 10.1016/j.bmc.2023.117367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
Despite considerable recent progress in therapeutic strategies, cancer still remains one of the leading causes of death. Molecularly targeted therapies, in particular those focused on blocking receptor tyrosine kinases have produced promising outcomes in recent years. In this study, a new series of spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione derivatives (5a-5l) were synthesized and evaluated as potential kinase inhibitors with anticancereffects. The anti-proliferative activity was measured by MTT assay, while the cell cycle was studied using flow cytometry. Moreover, kinase inhibition profiles of the most promising compounds were assessed against a panel of 25 oncogenic kinases. Compounds 5f,5g,5i, and 5jshowed anti-proliferative effect against EBC-1, A549, and HT-29 solid tumor models in addition to leukemia cell line K562. In particular, compound 5f, bearing 4-methylphenyl pendant on the isatin ring displayed considerable potency with IC50 values of 2.4 to 13.4 μM against cancer cells. The most potent derivatives also altered the distribution of cells in different phases of cell cycle and increased the sub-G1 phase cells in K562 cells. Moreover, kinase inhibition assays identified FLT3 kinase was as the primary targetof these derivatives. Compound 5f at 25 μM concentration showed inhibitory activities of 55% and 62% against wild-type FLT3 and its mutant, D835Y, respectively. Finally, the docking and simulation studies revealed the important interactions of compound 5f with wild type and mutant FLT3. The results of this study showed that some novel spiroindoline quinazolinedione compounds could be potential candidates for further development as novel targeted anticancer agents.
Collapse
Affiliation(s)
- Masoumeh Divar
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mohabbati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Alipour
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, Rome, Italy
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
10
|
Voci S, Gagliardi A, Ambrosio N, Salvatici MC, Fresta M, Cosco D. Gliadin Nanoparticles Containing Doxorubicin Hydrochloride: Characterization and Cytotoxicity. Pharmaceutics 2023; 15:pharmaceutics15010180. [PMID: 36678809 PMCID: PMC9860592 DOI: 10.3390/pharmaceutics15010180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Doxorubicin hydrochloride (DOX) is a well-known antitumor drug used as first line treatment for many types of malignancies. Despite its clinical relevance, the administration of the compound is negatively affected by dose-dependent off-target toxicity phenomena. Nanotechnology has helped to overcome these important limitations by improving the therapeutic index of the bioactive and promoting the translation of novel nanomedicines into clinical practice. Herein, nanoparticles made up of wheat gliadin and stabilized by polyoxyethylene (2) oleyl ether were investigated for the first time as carriers of DOX. The encapsulation of the compound did not significantly affect the physico-chemical features of the gliadin nanoparticles (GNPs), which evidenced a mean diameter of ~180 nm, a polydispersity index < 0.2 and a negative surface charge. The nanosystems demonstrated great stability regarding temperature (25−50 °C) and were able to retain high amounts of drug, allowing its prolonged and sustained release for up to a week. In vitro viability assay performed against breast cancer cells demonstrated that the nanoencapsulation of DOX modulated the cytotoxicity of the bioactive as a function of the incubation time with respect to the free form of the drug. The results demonstrate the potential use of GNPs as carriers of hydrophilic antitumor compounds.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Nicola Ambrosio
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Maria Cristina Salvatici
- Institute of Chemistry of Organometallic Compounds (ICCOM)-Electron Microscopy Centre (Ce.M.E.), National Research Council (CNR), Via Madonna del Piano n. 10, Sesto Fiorentino, 50019 Florence, Italy
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-369-4119
| |
Collapse
|
11
|
Development of doxorubicin hydrochloride-loaded whey protein nanoparticles and its surface modification with N-acetyl cysteine for triple-negative breast cancer. Drug Deliv Transl Res 2022; 12:3047-3062. [PMID: 35499714 DOI: 10.1007/s13346-022-01169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
Limited targeted therapies are available for triple-negative breast cancer (TNBC). Thus, the current research focused on developing a targeted protein nanoparticle for TNBC. First, the doxorubicin hydrochloride (Dox)-loaded genipin-crosslinked whey protein nanoparticles (WD) were prepared and optimised by the QbD method using BBD. The hydrodynamic diameter of WD was found to be 364.38 ± 49.23 nm, zeta potential -27.59 ± 1.038 mV, entrapment 63.03 ± 3.625% and Dox loading was found to be 1.419 ± 0.422%. The drug recovery after 18 months of storage was 69%. Then, it was incubated with NAC to obtain modified WD (CyWD). WD followed first-order release kinetics, whereas CyWD followed the Higuchi model. Hemagglutination and hemolysis were not found qualitatively in WD and CyWD. Upon injecting the nanoformulations to 4T1-induced mice, the highest efficacy was found to be in CyWD followed by WD and Dox injection. Upon histopathological observance, it was found that the CyWD group gave the most significant damage to the 4T1 tumour tissue. Thus, NAC-modified protein nanoparticles carrying chemotherapeutic agents can be an excellent targeted therapeutic system against TNBC.
Collapse
|
12
|
De Francesco EM, Cirillo F, Vella V, Belfiore A, Maggiolini M, Lappano R. Triple-negative breast cancer drug resistance, durable efficacy, and cure: How advanced biological insights and emerging drug modalities could transform progress. Expert Opin Ther Targets 2022; 26:513-535. [PMID: 35761781 DOI: 10.1080/14728222.2022.2094762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) and often associated with poor survival outcomes. The backbone of current treatments for TNBC relies on chemotherapy; however, resistance to cytotoxic agents is a commonly encountered hurdle to overcome. AREAS COVERED : Current understanding on the mechanisms involved in TNBC chemoresistance is evaluated and novel potential actionable targets and recently explored modalities for carrying and delivering chemotherapeutics are highlighted. EXPERT OPINION : A comprehensive identification of both genomic and functional TNBC signatures is required for a more definite categorization of the patients in order to prevent insensitivity to chemotherapy and therefore realize the full potential of precision-medicine approaches. In this scenario, cell-line-derived xenografts (CDX), patient-derived xenografts (PDX), patient-derived orthotopic xenografts (PDOX) and patient-derived organoids (PDO) are indispensable experimental models for evaluating the efficacy of drug candidates and predicting the therapeutic response. The combination of increasingly sensitive "omics" technologies, computational algorithms and innovative drug modalities may accelerate the successful translation of novel candidate TNBC targets from basic research to clinical settings, thus contributing to reach optimal clinical output, with lower side effects and reduced resistance.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
13
|
Loch JI, Barciszewski J, Śliwiak J, Bonarek P, Wróbel P, Pokrywka K, Shabalin IG, Minor W, Jaskolski M, Lewiński K. New ligand-binding sites identified in the crystal structures of β-lactoglobulin complexes with desipramine. IUCRJ 2022; 9:386-398. [PMID: 35546795 PMCID: PMC9067113 DOI: 10.1107/s2052252522004183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The homodimeric β-lactoglobulin belongs to the lipocalin family of proteins that transport a wide range of hydrophobic molecules and can be modified by mutagenesis to develop specificity for novel groups of ligands. In this work, new lactoglobulin variants, FAF (I56F/L39A/M107F) and FAW (I56F/L39A/M107W), were produced and their interactions with the tricyclic drug desipramine (DSM) were studied using X-ray crystallography, calorimetry (ITC) and circular dichroism (CD). The ITC and CD data showed micromolar affinity of the mutants for DSM and interactions according to the classical one-site binding model. However, the crystal structures unambiguously showed that the FAF and FAW dimers are capable of binding DSM not only inside the β-barrel as expected, but also at the dimer interface and at the entrance to the binding pocket. The presented high-resolution crystal structures therefore provide important evidence of the existence of alternative ligand-binding sites in the β-lactoglobulin molecule. Analysis of the crystal structures highlighted the importance of shape complementarity for ligand recognition and selectivity. The binding sites identified in the crystal structures of the FAF-DSM and FAW-DSM complexes together with data from the existing literature are used to establish a systematic classification of the ligand-binding sites in the β-lactoglobulin molecule.
Collapse
Affiliation(s)
- Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Jakub Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna Śliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Paulina Wróbel
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Kinga Pokrywka
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Krzysztof Lewiński
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| |
Collapse
|
14
|
Folic acid conjugated chitosan encapsulated palladium nanoclusters for NIR triggered photothermal breast cancer treatment. Carbohydr Polym 2022; 280:119021. [PMID: 35027124 DOI: 10.1016/j.carbpol.2021.119021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
This study developed folic acid (FA) conjugated chitosan (CS) encapsulated rutin (R) synthesized palladium nanoclusters (Pd NCs) for NIR triggered and folate receptor (FR) targeted triple-negative breast cancer (MDA-MB 231 cells) treatment. R-Pd NCs exhibited flower-shaped particles with an average size of <100 nm. FA-CS encapsulation concealed the flower shape of R-Pd NCs with a positive charge. The XRD spectrum confirmed the cubic crystalline structure of Pd. The FA conjugation on CS improved the cellular uptake of R-Pd NCs in MDA-MB 231 cells was confirmed by TEM. FA-CS-R-Pd NCs (+NIR) treatment was considerably inhibited the MDA-MB 231 cells proliferation evidenced by cell viability, fluorescent staining, and flow cytometry analysis. Further, in vitro hemolysis assay and in Ovo model confirmed the non-toxic nature of FA-CS-R-Pd-NCs with or without NIR radiation. Hence, this study concluded that FA-CS-R-Pd NCs can be applied for the treatment of drug-resistant breast cancer.
Collapse
|
15
|
Kayani Z, Islami N, Behzadpour N, Zahraie N, Imanlou S, Tamaddon P, Salehi F, Daneshvar F, Perota G, Sorati E, Mohammadi S, Sattarahmady N. Combating cancer by utilizing noble metallic nanostructures in combination with laser photothermal and X-ray radiotherapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Gadag S, Narayan R, Nayak AS, Catalina Ardila D, Sant S, Nayak Y, Garg S, Nayak UY. Development and preclinical evaluation of microneedle-assisted resveratrol loaded nanostructured lipid carriers for localized delivery to breast cancer therapy. Int J Pharm 2021; 606:120877. [PMID: 34252522 PMCID: PMC8429179 DOI: 10.1016/j.ijpharm.2021.120877] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023]
Abstract
Resveratrol (RVT) is one of the potent anticancer phytochemicals which has shown promising potential for breast cancer therapy. However, its short half-life and low bioavailability is a major hurdle in its effective use. In this study, we have developed nanostructured lipid carriers (NLCs) of RVT to enable localized delivery of the drug to the breast tissues using microneedle arrays to improve effectiveness. The NLCs were optimized using the Design of Experiments approach and characterized for their particle size, polydispersity index, zeta potential and entrapment efficiency. The RVT-NLCs delivered using microneedle array 1200 showed a higher permeation of RVT across the skin with lower skin retention compared to pure RVT. Further, RVT-NLCs showed higher anticancer activity on MDA-MB-231 breast cancer cell lines and enhanced internalization compared to pure RVT. Moreover, the RVT-NLCs were found to inhibit the migration of MDA-MB-231 breast cancer cell lines. Preclinical studies in rats showed that RVT-NLCs delivered via microneedles demonstrated a remarkable increase in the Cmax, Tmax and AUC0-inf, and a higher localization in breast tissue compared to pure RVT administered orally. These results suggests that the RVT-NLCs administered by microneedle array system is an effective strategy for the local delivery of RVT for breast cancer therapy.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Reema Narayan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Archana S Nayak
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, Karnataka, 575025, India
| | - Diana Catalina Ardila
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA 15261, USA; Department of Bioengineering, Swanson School of Engineering, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15261, USA
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
17
|
Zou T, Lu W, Mezhuev Y, Lan M, Li L, Liu F, Cai T, Wu X, Cai Y. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharm Biopharm 2021; 166:30-43. [PMID: 34098073 DOI: 10.1016/j.ejpb.2021.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
Breast cancer, as a malignant disease that seriously threatens women's health, urgently needs to be researched to develop effective and safe therapeutic drugs. Nanoparticle drug delivery systems (NDDS), provide a powerful means for drug targeting to the breast cancer, enhancing the bioavailability and reducing the adverse effects of anticancer drug. However, the breast cancer microenvironment together with heterogeneity of cancer, impedes the tumor targeting effect of NDDS. Breast cancer microenvironment, exerts endogenous stimuli, such as hypoxia, acidosis, and aberrant protease expression, shape a natural shelter for tumor growth, invasion and migration. On the basis of the ubiquitous of endogenous stimuli in the breast cancer microenvironment, researchers exploited them to design the stimuli-responsive NDDS, which response to endogenous stimulus, targeted release drug in breast cancer microenvironment. In this review, we highlighted the effect of the breast cancer microenvironment, summarized innovative NDDS responsive to the internal stimuli in the tumor microenvironment, including the material, the targeting groups, the loading drugs, targeting position and the function of stimuli-responsive nanoparticle drug delivery system. The limitations and potential applications of the stimuli-responsive nanoparticle drug delivery systems for breast cancer treatment were discussed to further the application.
Collapse
Affiliation(s)
- Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Wenping Lu
- Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yaroslav Mezhuev
- Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, PR China.
| | - Xiaoyu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou 510632, PR China; Cancer Research Institute, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
18
|
Rahman S, Kumar V, Kumar A, Abdullah TS, Rather IA, Jan AT. Molecular Perspective of Nanoparticle Mediated Therapeutic Targeting in Breast Cancer: An Odyssey of Endoplasmic Reticulum Unfolded Protein Response (UPR ER) and Beyond. Biomedicines 2021; 9:biomedicines9060635. [PMID: 34199484 PMCID: PMC8229605 DOI: 10.3390/biomedicines9060635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is the second most frequent cause of death among women. Representing a complex and heterogeneous type of cancer, its occurrence is attributed by both genetic (gene mutations, e.g., BRCA1, BRCA2) and non-genetic (race, ethnicity, etc.) risk factors. The effectiveness of available treatment regimens (small molecules, cytotoxic agents, and inhibitors) decreased due to their poor penetration across biological barriers, limited targeting, and rapid body clearance along with their effect on normal resident cells of bone marrow, gastrointestinal tract, and hair follicles. This significantly reduced their clinical outcomes, which led to an unprecedented increase in the number of cases worldwide. Nanomedicine, a nano-formulation of therapeutics, emerged as a versatile delivering module for employment in achieving the effective and target specific delivery of pharmaceutical payloads. Adoption of nanotechnological approaches in delivering therapeutic molecules to target cells ensures not only reduced immune response and toxicity, but increases the stability of therapeutic entities in the systemic circulation that averts their degradation and as such increased extravasations and accumulation via enhanced permeation and the retention (EPR) effect in target tissues. Additionally, nanoparticle (NP)-induced ER stress, which enhances apoptosis and autophagy, has been utilized as a combative strategy in the treatment of cancerous cells. As nanoparticles-based avenues have been capitalized to achieve better efficacy of the new genera of therapeutics with enhanced specificity and safety, the present study is aimed at providing the fundamentals of BC, nanotechnological modules (organic, inorganic, and hybrid) employed in delivering different therapeutic molecules, and mechanistic insights of nano-ER stress induced apoptosis and autophagy with a perspective of exploring this avenue for use in the nano-toxicological studies. Furthermore, the current scenario of USA FDA approved nano-formulations and the future perspective of nanotechnological based interventions to overcome the existing challenges are also discussed.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, India;
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Tasduq S. Abdullah
- Council of Scientific and Industrial Research–Indian Institute of Integrative Medicine (CSIR–IIIM), Jammu 180001, India;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
- Correspondence: (I.A.R.); (A.T.J.)
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
- Correspondence: (I.A.R.); (A.T.J.)
| |
Collapse
|
19
|
Anthocyanin-β-lactoglobulin nanoparticles in acidic media: synthesis, characterization and interaction study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Mansur AAP, Mansur HS, Leonel AG, Carvalho IC, Lage MCG, Carvalho SM, Krambrock K, Lobato ZIP. Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells. J Mater Chem B 2021; 8:7166-7188. [PMID: 32614035 DOI: 10.1039/d0tb01175d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the undeniable advances in recent decades, cancer remains one of the deadliest diseases of the current millennium, where the triple-negative breast cancer (TNBC) is very aggressive, extremely metastatic, and resistant to conventional chemotherapy. The nanotheranostic approach focusing on targeting membrane receptors often expressed at abnormal levels by cancer cells can be a strategic weapon for fighting malignant tumors. Herein, we introduced a novel "all-in-one nanosoldier" made of colloidal hybrid nanostructures, which were designed for simultaneously targeting, imaging, and killing TNBC cells. These nanohybrids comprised four distinct components: (a) superparamagnetic iron oxide nanoparticles, as bi-functional nanomaterials for inducing ferroptosis via inorganic nanozyme-mediated catalysis and magnetotherapy by hyperthermia treatment; (b) carboxymethyl cellulose biopolymer, as a water-soluble capping macromolecule; (c) folic acid, as the membranotopic vector for targeting folate receptors; (d) and doxorubicin (DOX) drug for chemotherapy. The results demonstrated that this novel strategy was highly effective for targeting and killing TNBC cells in vitro, expressing high levels of folate membrane-receptors. The results evidenced that three integrated mechanisms triggered the deaths of the cancer cells in vitro: (a) ferroptosis, by magnetite nanoparticles inducing a Fenton-like reaction; (b) magneto-hyperthermia effect by generating heat under an alternate magnetic field; and (c) chemotherapy, through the DOX intracellular release causing DNA dysfunction. This "all-in-one nanosoldier" strategy offers a vast realm of prospective alternatives for attacking cancer cells, combining multimodal therapy and the delivery of therapeutic agents to diseased sites and preserving healthy cells, which is one of the most critical clinical challenges faced in fighting drug-resistant breast cancers.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901, Belo Horizonte/M.G., Brazil.
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901, Belo Horizonte/M.G., Brazil.
| | - Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901, Belo Horizonte/M.G., Brazil.
| | - Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901, Belo Horizonte/M.G., Brazil.
| | - Manuela C G Lage
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901, Belo Horizonte/M.G., Brazil.
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901, Belo Horizonte/M.G., Brazil.
| | - Klaus Krambrock
- Department of Physics, Federal University of Minas Gerais - UFMG, Brazil
| | - Zelia I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|
21
|
Waghmare MN, Qureshi TS, Krishna CM, Pansare K, Gadewal N, Hole A, Dongre PM. β-Lactoglobulin-gold nanoparticles interface and its interaction with some anticancer drugs - an approach for targeted drug delivery. J Biomol Struct Dyn 2021; 40:6193-6210. [PMID: 33509048 DOI: 10.1080/07391102.2021.1879270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The protein-nanoparticle interface plays a crucial role in drug binding and stability, in turn enhancing efficacy in targeted drug delivery. In the present study, whey protein β-lactoglobulin (BLG) is conjugated with gold nanoparticles (AuNP) and its interaction with curcumin (CUR) and gemcitabine (GEM) has been explored. Further, AuNP-BLG conjugate interactions with anticancer drugs were characterized using dynamic light scattering (DLS), zeta potential, UV-visible, Raman spectroscopy, fluorescence, circular dichroism along with molecular dynamics simulation. The cytotoxicity studies were performed using breast cancer cell lines (MCF-7). ∼8 µM of BLG resides on AuNP (∼29 nm) surface revealed by DLS. Raman scattering of AuNP-BLG conjugate showed orientation of the central calyx of BLG towards solvent. BLG fluorescence confirmed the interaction between AuNP-BLG conjugate with drugs and indicated strong binding and affinity (for CUR KD = 3.71 x 108 M -1, n = 1.83, and for GEM KD = 3.78 x 103 M -1, n = 0.94), enhanced in the presence of AuNP. CD and Raman analysis exhibited selective hydrophilic and hydrophobic conformations induced by drug binding. Computational studies on BLG-drug complexes revealed that the residues Pro38, Leu39 and Met107 are largely associated with CUR binding, while GEM interaction is via hydrophilic contacts which significantly matches with spectroscopic investigation. IC50 values were calculated for all components of this loading system on MCF-7. The possible mechanisms of interaction between AuNP-BLG with anticancer drugs has been explored at the molecular level. We believe that these conjugates could be considered in the targeted drug delivery studies for cancer research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manik N Waghmare
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| | - Tazeen S Qureshi
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| | - C Murali Krishna
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Kshama Pansare
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Nikhil Gadewal
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Arti Hole
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Prabhakar M Dongre
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
22
|
Malavia N, Kuche K, Ghadi R, Jain S. A bird's eye view of the advanced approaches and strategies for overshadowing triple negative breast cancer. J Control Release 2020; 330:72-100. [PMID: 33321156 DOI: 10.1016/j.jconrel.2020.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive form of breast cancer. It is characterized by the absence of estrogen, progesterone and human epidermal growth factor receptors. The main issue with TNBC is that it exhibits poor prognosis, high risk of relapse, short progression-free survival and low overall survival in patients. This is because the conventional therapy used for managing TNBC has issues pertaining to poor bioavailability, lower cellular uptake, increased off-target effects and development of resistance. To overcome such pitfalls, several other approaches are explored. In this context, the present manuscript showcases three of the most widely used approaches which are (i) nanotechnology-based approach; (ii) gene therapy approach and (iii) Phytochemical-based approach. The ultimate focus is to present and explain the insightful reports based on these approaches. Further, the review also expounds on the identified molecular targets and novel targeting ligands which are explored for managing TNBC effectively. Thus, in a nutshell, the review tries to highlight these existing treatment approaches which might inspire for future development of novel therapies with a potential of overshadowing TNBC.
Collapse
Affiliation(s)
- Nilesh Malavia
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India.
| |
Collapse
|
23
|
Gholampour M, Seradj H, Pirhadi S, Khoshneviszadeh M. Novel 2-amino-1,4-naphthoquinone hybrids: Design, synthesis, cytotoxicity evaluation and in silico studies. Bioorg Med Chem 2020; 28:115718. [PMID: 33065435 DOI: 10.1016/j.bmc.2020.115718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/04/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
In the present work, a novel series of 2-amino-1,4-naphthoquinones bearing oxyphenyl moiety (5a-5m) were designed and synthesized via a two-step route and evaluated for their in vitro cytotoxic activity against three different cancer cell lines (MCF-7, HL-60 and U937) and normal human cell line (HEK-293) by MTT assay. Compounds 5b (4-nitro-benzyl-) and 5k (4-bromo-benzyl-) were identified to possess the highest cytotoxic activity against MCF-7 cancerous cells (IC50 values of 27.76 and 27.86 μM, respectively). At the same time, none of the compounds exert significant toxicity against HEK-293 normal human kidney cells. Cell cycle analysis showed that the selected derivatives increased the population of MCF-7 cells in the S phase at 25 and 50 μM concentrations. Annexin V-FITC/PI staining assay also confirmed that compounds 5b and 5k induced apoptosis in the cell death pathway. Molecular docking and molecular dynamics studies were also performed to evaluate the probable interactions between the hybrids and human ATP binding domain of topo IIα protein. Our findings may provide new insight for further development of novel naphthoquinone-containing compounds.
Collapse
Affiliation(s)
- Maryam Gholampour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Department of Pharmacognosy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
24
|
Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: Characterization, stability, and bioavailability in vitro. Food Res Int 2020; 137:109635. [PMID: 33233214 DOI: 10.1016/j.foodres.2020.109635] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/08/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
This work aims to investigate the effect of desolvation on the stability and bioavailability of nanoparticles of β-lactoglobulin (β-Lg) and anthocyanins (AC) extracted from red raspberry pomace. Interactions between the substrates were also studied using multispectral approaches. β-Lg-nanoparticles were fabricated via heat treatment at 85 °C for 30 min before initiating the desolvation method at pH 7. This method generated monodisperse particles, nano-scale size of β-Lg, and AC-β-Lg ranged from 129.13 to 351.85 nm with square morphology obtained by SEM. The AC extract was encapsulated successfully during desolvation process into β-Lg-nanoparticles with encapsulation efficiency (EE %) of ~77%. Results also showed that AC (from 1 to 13 × 10-4 M) quenched the fluorescence intensity of de-solvated β-Lg estimated to be 98%, and a binding among them occurred with a Ka-value of 7.59 × 108 M-1 at 25 °C. Addition of AC also gradually increased the antioxidant activity of β-Lg-nanoparticles with values of 82.51% at the highest AC-concentration (13 × 10-4 M) loaded on β-Lg-nanoparticles. AC-loaded β-Lg nanoparticles was more stable in mouth (pH 6.8), simulated gastric (SG, pH 2), and simulated intestinal (SI, pH 6.9) by showing high retention rate (%) than that of AC unencapsulated. Overall, de-solvated-β-Lg increased the heat-stability and bioavailability of AC, which could be further utilized in various food and pharmaceutical matrices. These findings recommend that β-Lg nanoparticles could be appropriated as delivery systems for anthocyanins.
Collapse
|
25
|
Karuppaiah A, Rajan R, Hariharan S, Balasubramaniam DK, Gregory M, Sankar V. Synthesis and Characterization of Folic Acid Conjugated Gemcitabine Tethered Silver Nanoparticles (FA-GEM-AgNPs) for Targeted Delivery. Curr Pharm Des 2020; 26:3141-3146. [DOI: 10.2174/1381612826666200316143239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/20/2020] [Indexed: 11/22/2022]
Abstract
Background:
Silver nanoparticles (AgNPs) have attracted considerable interest in the medical industry
due to their physicochemical properties, small size, and surface plasmon behavior. Their smaller particle size and
instability in blood circulation leads to toxicity due to its aggregation as Ag+ ions and accumulation at the deepseated
organ. In the present study, we aimed at reducing the toxicity of AgNPs by conjugation with an anticancer
drug GEM and to improve their internalization through folate receptors-mediated endocytosis by capping the
nanoparticles with folic acid (FA).
Methods:
One-pot facile synthesis of FA capped silver nanoparticles (FA-AgNPs) has been achieved by using FA
as a reducing agent. FA-AgNPs were mixed with Gemcitabine (GEM) to obtain tethered FA-GEM-AgNPs.
Nanoparticles were characterized by Dynamic Light Scattering (DLS), UV-Visible spectroscopy, Transmission
Electron Microscopy (TEM), Energy Dispersive X-ray Analysis (EDAX), Selected Area Electron Diffraction
(SAED), and Atomic Absorption Spectroscopy (AAS). The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay was carried out to determine the cytotoxic effect of the prepared nanoformulations. The
apoptotic cell death induced by FA-GEM-AgNPs in breast cancer cells were monitored with Acridine orange
(AO)/Ethidium Bromide (EtBr) staining.
Conclusion:
Compared to GEM and AgNPs, FA-GEM-AgNPs showed enhanced cytotoxic effect and internalization
in MDA-MB-453 breast cancer cell line. FA-GEM-AgNPs could be an ideal candidate for targeting cancer
cells via folate receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Arjunan Karuppaiah
- Department of pharmaceutics, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India, Affiliated to TN Dr. M.G.R Medical University, Guindy, Chennai 600032, Tamil Nadu, India
| | - Ravikumar Rajan
- Department of pharmacology, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India
| | - Sivaram Hariharan
- Department of pharmaceutical chemistry, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India
| | - Dinesh K. Balasubramaniam
- Department of pharmaceutics, St James College of Pharmaceutical sciences, Chalakudi 680 307, Kerala, India
| | - Marslin Gregory
- Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, Tamil Nadu, India
| | - Veintramuthu Sankar
- Department of pharmaceutics, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India, Affiliated to TN Dr. M.G.R Medical University, Guindy, Chennai 600032, Tamil Nadu, India
| |
Collapse
|
26
|
Mansur AAP, Amaral-Júnior JC, Carvalho SM, Carvalho IC, Mansur HS. Cu-In-S/ZnS@carboxymethylcellulose supramolecular structures: Fluorescent nanoarchitectures for targeted-theranostics of cancer cells. Carbohydr Polym 2020; 247:116703. [PMID: 32829831 DOI: 10.1016/j.carbpol.2020.116703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Although the field of oncology nanomedicine has shown indisputable progress in recent years, cancer remains one of the most lethal diseases, where the early diagnosis plays a pivotal role in the patient's prognosis and therapy. Herein, we report for the first time, the synthesis of biocompatible nanostructures composed of Cu-In-S and Cu-In-S/ZnS nanoparticles functionalized with carboxymethylcellulose biopolymer produced by a green aqueous process. These inorganic-organic colloidal nanohybrids developed supramolecular architectures stabilized by chemical functional groups of the polysaccharide shell with the fluorescent semiconductor nanocrystal core, which were extensively characterized by several morphological and spectroscopical techniques. Moreover, these nanoconjugates were covalently bonded with folic acid via amide bonds and electrostatically conjugated with the anticancer drug, producing functionalized supramolecular nanostructures. They demonstrated nanotheranostics properties for bioimaging and drug delivery vectorization effective for killing breast cancer cells in vitro. These hybrids offer a new nanoplatform using fluorescent polysaccharide-drug conjugates for cancer theranostics applications.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil.
| | - Josué C Amaral-Júnior
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil.
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil; Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil.
| | - Isadora C Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil.
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil.
| |
Collapse
|
27
|
Miranda MA, Silva LB, Carvalho IPS, Amaral R, de Paula MH, Swiech K, Bastos JK, Paschoal JAR, Emery FS, Dos Reis RB, Bentley MVLB, Marcato PD. Targeted uptake of folic acid-functionalized polymeric nanoparticles loading glycoalkaloidic extract in vitro and in vivo assays. Colloids Surf B Biointerfaces 2020; 192:111106. [PMID: 32474325 DOI: 10.1016/j.colsurfb.2020.111106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Solanum lycocarpum fruits contain two major glycoalkaloids (GAs), solamargine (SM) and solasonine (SS). These compounds are reported as cytotoxic. However, they have poor water solubility and low bioavailability. To overcome these disadvantages and getting an efficient formulation the current study aimed to develop, characterize, and test the effectiveness of a nanotechnology-based strategy using poly(D,L-lactide) (PLA) nanoparticles functionalized with folate as delivery system of glycoalkaloidic extract (AE) for bladder cancer therapy. The strategic of adding folic acid into nanoformulations can increase the selectivity of the compounds to the cancer cells reducing the side effects. Our results revealed the successful preparation of AE-loaded folate-targeted nanoparticles (NP-F-AE) with particle size around 177 nm, negative zeta potential, polydispersity index <0.20, and higher efficiency of encapsulation for both GAs present in the extract (>85 %). To investigate the cellular uptake, the fluorescent dye coumarin-6 was encapsulated into the nanoparticle (NP-F-C6). The cell studies showed high uptake of nanoparticles by breast (MDA-MB-231) and bladder (RT4) cancer cells, but not for normal keratinocytes cells (HaCaT) indicating the target uptake to cancer cells. The cytotoxicity of nanoparticles was evaluated on RT4 2D culture model showing 2.16-fold lower IC50 than the free AE. Furthermore, the IC50 increased on the RT4 spheroids compared to 2D model. The nanoparticles penetrated homogeneously into the urotheliumof porcine bladder. These results showed that folate-conjugated polymeric nanoparticles are potential carriers for targeted glycoalkaloidic extract delivery to bladder cancer cells.
Collapse
Affiliation(s)
- M A Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L B Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - I P S Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R Amaral
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - M H de Paula
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - K Swiech
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J A R Paschoal
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F S Emery
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R B Dos Reis
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - M V L B Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - P D Marcato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
28
|
Martínez-López AL, Pangua C, Reboredo C, Campión R, Morales-Gracia J, Irache JM. Protein-based nanoparticles for drug delivery purposes. Int J Pharm 2020; 581:119289. [PMID: 32243968 DOI: 10.1016/j.ijpharm.2020.119289] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
29
|
Bonarek P, Loch JI, Tworzydło M, Cooper DR, Milto K, Wróbel P, Kurpiewska K, Lewiński K. Structure-based design approach to rational site-directed mutagenesis of β-lactoglobulin. J Struct Biol 2020; 210:107493. [PMID: 32169624 DOI: 10.1016/j.jsb.2020.107493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/30/2022]
Abstract
Recombinant proteins play an important role in medicine and have diverse applications in industrial biotechnology. Lactoglobulin has shown great potential for use in targeted drug delivery and body fluid detoxification because of its ability to bind a variety of molecules. In order to modify the biophysical properties of β-lactoglobulin, a series of single-site mutations were designed using a structure-based approach. A 3-dimensional structure alignment of homologous molecules led to the design of nine β-lactoglobulin variants with mutations introduced in the binding pocket region. Seven stable and correctly folded variants (L39Y, I56F, L58F, V92F, V92Y, F105L, M107L) were thoroughly characterized by fluorescence, circular dichroism, isothermal titration calorimetry, size-exclusion chromatography, and X-ray structural investigations. The effects of the amino acid substitutions were observed as slight rearrangements of the binding pocket geometry, but they also significantly influenced the global properties of the protein. Most of the mutations increased the thermal/chemical stability without altering the dimerization constant or pH-dependent conformational behavior. The crystal structures reveal that the I56F and F105L mutations reduced the depth of the binding pocket, which is advantageous since it can reduce the affinity to endogenous fatty acids. The F105L mutant created a unique binding mode for a fatty acid, supporting the idea that lactoglobulin can be altered to bind unique molecules. Selected variants possessing a unique combination of their individual properties can be used for further, more advanced mutagenesis, and the presented results support further research using β-lactoglobulin as a therapeutic delivery agent or a blood detoxifying molecule.
Collapse
Affiliation(s)
- Piotr Bonarek
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Kraków, Poland
| | - Joanna I Loch
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Magdalena Tworzydło
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Kraków, Poland
| | - David R Cooper
- University of Virginia, Department of Molecular Physiology and Biological Physics, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Katažyna Milto
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Kraków, Poland
| | - Paulina Wróbel
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Katarzyna Kurpiewska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Krzysztof Lewiński
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
30
|
Akbarian A, Ebtekar M, Pakravan N, Hassan ZM. Folate receptor alpha targeted delivery of artemether to breast cancer cells with folate-decorated human serum albumin nanoparticles. Int J Biol Macromol 2020; 152:90-101. [PMID: 32057865 DOI: 10.1016/j.ijbiomac.2020.02.106] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/24/2022]
Abstract
The pharmaceutical application of artemether (ARM) as an anticancer natural agent is hampered due to its poor solubility and bioavailability. In the present study, ARM was encapsulated in human serum albumin nanoparticles (HSA NPs) via desolvation method led to improvement of the water solubility by 50 folds. In further, folate-decorated ARM-HSA NPs (F-ARM-HSA NPs) were developed to enhance targeted delivery to folate receptor alpha (FRα)-overexpressing breast cancer cells. The hydrodynamic diameter and the zeta potential value of F-ARM-HSA NPs were 198 ± 11.22 nm and -23 ± 0.88 mV, respectively. Fluorescent microscopy demonstrated an enhanced cellular uptake of F-ARM-HSA NPs by high FRα-expressing MDA-MB-231 breast cancer cells compared to low FRα-expressing SK-BR-3 breast cancer cells. Cytotoxicity assay revealed a small significant difference between cytotoxicity effect of targeted and non-targeted NPs in SK-BR-3 cells. However, in MDA-MB-231 cells due to FRα-mediated endocytosis, the F-conjugated NPs had less inhibitory concentration (IC50) value (19.82 μg/mL) and higher cytotoxicity after 72 h compared to non-targeted ARM-HSA NPs. Flow cytometry analysis indicated a more potent drug-induced apoptosis rather than necrosis. The results suggest that our novel F-ARM-HSA NPs are likely to be recommended as a promising candidate for combination therapy of FRα-overexpressing breast cancer cells.
Collapse
Affiliation(s)
- Asiye Akbarian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, PO Box: 14155-114, Iran
| | - Masoumeh Ebtekar
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, PO Box: 14155-114, Iran.
| | - Nafiseh Pakravan
- Department of Immunology, Medical School, Alborz University of Medical Sciences, Karaj, PO Box 31497-79453, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, PO Box: 14155-114, Iran
| |
Collapse
|
31
|
Delavari B, Bigdeli B, Mamashli F, Gholami M, Bazri B, Khoobi M, Ghasemi A, Baharifar H, Dehghani S, Gholibegloo E, Amani A, Riahi-Alam N, Ahmadian S, Goliaei B, Asli NS, Rezayan AH, Saboury AA, Varamini P. Theranostic α-Lactalbumin-Polymer-Based Nanocomposite as a Drug Delivery Carrier for Cancer Therapy. ACS Biomater Sci Eng 2019; 5:5189-5208. [DOI: 10.1021/acsbiomaterials.9b01236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Behdad Delavari
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
- School of Pharmacy, Faculty of Medicine and health, University of Sydney, Sydney NSW 2016, Australia
| | - Bahareh Bigdeli
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
- School of Pharmacy, Faculty of Medicine and health, University of Sydney, Sydney NSW 2016, Australia
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Behrouz Bazri
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, 1591634311 Tehran, Iran
| | - Mehdi Khoobi
- Biomaterials group, The Institute of Pharmaceutical Sciences Research Center (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Hadi Baharifar
- Department of medical nanotechnology, Applied biophotonics research center, Science and Research branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Sadegh Dehghani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Keshavarz blvd, 16 Azar St., Tehran 14145, Iran
| | - Elham Gholibegloo
- Department of Chemistry, Faculty of Science, University of Zanjan, 45371-38791 Zanjan, Iran
| | | | - Nader Riahi-Alam
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Keshavarz blvd, 16 Azar St., Tehran 14145, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | | | - Ali Hossein Rezayan
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Pegah Varamini
- School of Pharmacy, Faculty of Medicine and health, University of Sydney, Sydney NSW 2016, Australia
| |
Collapse
|
32
|
Naringenin-loaded nano-structured lipid carrier fortifies oxaliplatin-dependent apoptosis in HT-29 cell line. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C. Current Trends in Cancer Nanotheranostics: Metallic, Polymeric, and Lipid-Based Systems. Pharmaceutics 2019; 11:E22. [PMID: 30625999 PMCID: PMC6359642 DOI: 10.3390/pharmaceutics11010022] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Theranostics has emerged in recent years to provide an efficient and safer alternative in cancer management. This review presents an updated description of nanotheranostic formulations under development for skin cancer (including melanoma), head and neck, thyroid, breast, gynecologic, prostate, and colon cancers, brain-related cancer, and hepatocellular carcinoma. With this focus, we appraised the clinical advantages and drawbacks of metallic, polymeric, and lipid-based nanosystems, such as low invasiveness, low toxicity to the surrounding healthy tissues, high precision, deeper tissue penetration, and dosage adjustment in a real-time setting. Particularly recognizing the increased complexity and multimodality in this area, multifunctional hybrid nanoparticles, comprising different nanomaterials and functionalized with targeting moieties and/or anticancer drugs, present the best characteristics for theranostics. Several examples, focusing on their design, composition, imaging and treatment modalities, and in vitro and in vivo characterization, are detailed herein. Briefly, all studies followed a common trend in the design of these theranostics modalities, such as the use of materials and/or drugs that share both inherent imaging (e.g., contrast agents) and therapeutic properties (e.g., heating or production reactive oxygen species). This rationale allows one to apparently overcome the heterogeneity, complexity, and harsh conditions of tumor microenvironments, leading to the development of successful targeted therapies.
Collapse
Affiliation(s)
- Catarina Oliveira Silva
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Jacinta Oliveira Pinho
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Joana Margarida Lopes
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - António J Almeida
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Catarina Reis
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
- IBEB, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|