1
|
Abdel-Zaher AO, Bakr MH, Gad YH, Abdelhafez AT. Novel mechanistic insights of the potential role of gasotransmitters and autophagy in the protective effect of metformin against hepatic ischemia/reperfusion injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03837-1. [PMID: 39912902 DOI: 10.1007/s00210-025-03837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
Metformin exerts antidiabetic and pleiotropic effects. This study investigated the function and mechanisms of gasotransmitters and autophagy in the metformin-induced protection against ischemia/reperfusion injury (I/RI). According to measurements of serum hepatic function indicators and histopathological evaluation, metformin protected against hepatic I/RI-induced impairment of liver function and structure. In addition, metformin inhibited hepatic I/RI-induced hepatic oxidative stress, nitrosative stress, inflammation, and apoptosis. Also, it suppressed hepatic I/RI-induced decrease in hepatic heme oxygenase-1 (HO-1) and hydrogen sulfide (H2S) levels and increase in nitric oxide (NO) production. Furthermore, metformin inhibited hepatic I/RI-induced decrease in protein expressions of endothelial NO synthase (eNOS), HO-1, cystathionine γ-lyase (CSE), and Beclin-1 and increase in the protein expression of inducible NO synthase (iNOS) in the liver tissue. Co-administration of the NO biosynthesis inhibitor, L-NAME, carbon monoxide(CO)-releasing molecule-A1 (CORM-A1), the H2S donor, NaHS, or the autophagy stimulator, rapamycin (RAPA), enhanced all effects of metformin. The NO donor, L-arginine, the CO biosynthesis inhibitor, zinc protoporphyrin, the H2S biosynthesis inhibitor, DL-propargylglycine, or the autophagy inhibitor, chloroquine (CQ), antagonized the effects of metformin. These findings reveal, for the first time, that increasing CO, H2S, and autophagy levels with subsequent decreasing NO level play a critical role in metformin's protective action against hepatic I/RI. The ability of L-NAME, CORM-A1, NaHS, and RAPA to boost metformin's protective effect in hepatic I/RI may positively be attributed to their ability to lower hepatic oxidative stress, nitrosative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Ahmed O Abdel-Zaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Science, Badr University, Assiut, Egypt
| | - Yomna H Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Alaa T Abdelhafez
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Tao D, Li F, Zhang X, Guo H, Yang R, Yang Y, Zhang L, Shen Z, Teng J, Chen P, He B. 20(R)-ginsenoside Rg3 protects against focal cerebral ischemia‒reperfusion injury by suppressing autophagy via PI3K/Akt/mTOR signaling pathway. Neuropharmacology 2025; 263:110226. [PMID: 39557153 DOI: 10.1016/j.neuropharm.2024.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE This study aimed to investigate the effect of 20(R)-ginsenoside Rg3 on autophagy induced by cerebral ischemia‒reperfusion injury (CIRI) in rats and explore its regulation of the PI3K/Akt signaling pathway. METHODS Middle cerebral artery occlusion/reperfusion (MCAO/R) in male rats was injected intraperitoneally with 20(R)-ginsenoside Rg3 (5, 10, 20 mg/kg) 12 h before modeling, 2 h after ischemia and 12 h after reperfusion. Neurobehavioral and neuronal morphological changes were detected 24 h after brain I/R. In vitro, the OGD/R-induced injury model is replicated in PC12 cells and different concentrations of 20(R)-ginsenoside Rg3 are administered to observe its effects on cell viability and autophagy and PI3K/Akt/mTOR-related protein expression. RESULTS Our findings suggest that treatment with 20 mg/kg 20(R)-ginsenoside Rg3 significantly attenuated the neuronal injury, as evidenced by a decreased number of damaged neurons, reduced dissolution of Nissl corpuscles, a fewer autophagosomes, and downregulated expression of Beclin1 and LC3-II/I compared with the MCAO/R group. Furthermore, 20(R)-ginsenoside Rg3 treatment significantly upregulated the expression of p62, p-PI3K, p-AKT, and p-mTOR. In vitro, 20(R)-ginsenoside Rg3 significantly improved the survival rate of cells following OGD/R and markedly attenuated the LY294002 and OGD/R-induced upregulation of Beclin1 and LC3 gene expression. Moreover, 20(R)-ginsenoside Rg3 could rescued the LY294002 and OGD/R-induced downregulation of p62, p-PI3K, p-AKT, and p-mTOR expression. CONCLUSIONS 20(R)-ginsenoside Rg3 attenuates neuronal injury and motor dysfunction following ischemia-reperfusion by inhibiting the activation of autophagy, and its mechanism is related to the upregulation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Daiju Tao
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, PR China
| | - Fajing Li
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, PR China; The First People's Hospital of Liangshan Yi Autonomous Prefecture, XiChang, Sichuan Province, 615000, PR China
| | - Xiaochao Zhang
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, PR China
| | - Hui Guo
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, PR China; Department of Pharmacology, Haiyuan College, Kunming Medical University, 650106, PR China
| | - Renhua Yang
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, PR China
| | - Yuan Yang
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, PR China
| | - Li Zhang
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, PR China
| | - Zhiqiang Shen
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, PR China
| | - Jia Teng
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, PR China; Department of Pharmacology, Haiyuan College, Kunming Medical University, 650106, PR China.
| | - Peng Chen
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, PR China.
| | - Bo He
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, PR China.
| |
Collapse
|
3
|
Gu D, Pan R, Meng X, Liu T, Zhong H, Chen N, Xu Y. What lies behind melasma: a review of the related skin microenvironment. Int J Dermatol 2025; 64:256-265. [PMID: 39212112 DOI: 10.1111/ijd.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Melasma is an acquired chronic pigmentary disorder affecting millions of individuals worldwide. However, the pathogenesis of melasma remains unclear. This article provides a comprehensive review of the pathophysiological changes occurring in the skin microenvironment of melasma lesions, which can be summarized as follows: (1) skin barrier dysfunction and abnormal synthesis, transport, and intracellular distribution of melanin in the epidermis; (2) basement membrane damage; (3) solar elastosis, vascular changes, senescent fibroblasts, mast cell infiltration, and sebocyte participation in the dermis; and (4) systemic factors such as sex hormones and oxidative stress. Furthermore, potential therapeutic strategies are introduced to provide novel perspectives for fundamental and clinical research related to melasma.
Collapse
Affiliation(s)
- Duoduo Gu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Ruoxin Pan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaoqi Meng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Tingwei Liu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hui Zhong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Nuoran Chen
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Xu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Zheng Q, Jin X, Nguyen TTM, Yi EJ, Park SJ, Yi GS, Yang SJ, Yi TH. Autophagy-Enhancing Properties of Hedyotis diffusa Extracts in HaCaT Keratinocytes: Potential as an Anti-Photoaging Cosmetic Ingredient. Molecules 2025; 30:261. [PMID: 39860131 PMCID: PMC11767327 DOI: 10.3390/molecules30020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics. Hedyotis diffusa (HD), as a medicinal plant, is renowned for its anti-inflammatory and anticancer properties; however, its effects on skin photoaging remain unclear. This study investigates HD's potential to counteract skin photoaging by restoring mitochondrial autophagy in keratinocytes. We used HPLC to detect the main chemical components in HD and, using a UVB-induced photoaging model in HaCaT keratinocytes, examined the effects of HD on reactive oxygen species (ROS) levels, Ca2+ concentration, mitochondrial membrane potential (MMP), apoptosis, and the cell cycle. Cellular respiration was further evaluated with the Seahorse XFp Analyzer, and RT-PCR and Western blotting were used to analyze the impact of HD on mitochondrial autophagy-related gene expression and signaling pathways. Our findings indicate that HD promotes autophagy by modulating the PI3K/AKT/mTOR and PINK/PARK2 pathways, which stabilizes mitochondrial quality, maintains MMP and Ca2+ balance, and reduces cytochrome c release. These effects relieve cell cycle arrest and prevent apoptosis associated with an increased BAX/BCL-2 ratio. Thus, HD holds promise as an effective anti-photoaging ingredient with potential applications in the development of cosmetic products.
Collapse
Affiliation(s)
- Qiwen Zheng
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Xiangji Jin
- Department of Dermatology, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Trang Thi Minh Nguyen
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Eun-Ji Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Se-Jig Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Gyeong-Seon Yi
- Department of Biopharmaceutical Biotechnology, Graduate School, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Su-Jin Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| |
Collapse
|
5
|
Xue S, Lin Y, Chen H, Yang Z, Zha J, Jiang X, Han Z, Wang K. Mechanisms of autophagy and their implications in dermatological disorders. Front Immunol 2024; 15:1486627. [PMID: 39559368 PMCID: PMC11570406 DOI: 10.3389/fimmu.2024.1486627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
Autophagy is a highly conserved cellular self-digestive process that underlies the maintenance of cellular homeostasis. Autophagy is classified into three types: macrophage, chaperone-mediated autophagy (CMA) and microphagy, which maintain cellular homeostasis through different mechanisms. Altered autophagy regulation affects the progression of various skin diseases, including psoriasis (PA), systemic lupus erythematosus (SLE), vitiligo, atopic dermatitis (AD), alopecia areata (AA) and systemic sclerosis (SSc). In this review, we review the existing literature focusing on three mechanisms of autophagy, namely macrophage, chaperone-mediated autophagy and microphagy, as well as the roles of autophagy in the above six dermatological disorders in order to aid in further studies in the future.
Collapse
Affiliation(s)
- Shenghao Xue
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haoran Chen
- Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhengyu Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Junting Zha
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Zhongyu Han
- Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
6
|
Zhuang ZJ, Li FJ, Lv D, Duan HQ, Chen LY, Chen P, Shen ZQ, He B. Regulation of Autophagy Signaling Pathways by Ginseng Saponins: A Review. Chem Biodivers 2024; 21:e202400934. [PMID: 38898600 DOI: 10.1002/cbdv.202400934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Ginseng saponins (ginsenosides), bioactive compounds derived from ginseng, are widely used natural products with potent therapeutic properties in the management of various ailments, particularly tumors, cardiovascular and cerebrovascular diseases, and immune system disorders. Autophagy, a highly regulated and multistep process involving the breakdown of impaired organelles and macromolecules by autophagolysosomes and autophagy-related genes (ATGs), has gained increasing attention as a potential target for ginsenoside-mediated disease treatment. This review aims to provide a comprehensive overview of recent research advances in the understanding of autophagy-related signaling pathways and the role of ginsenoside-mediated autophagy regulation. By delving into the intricate autophagy signaling pathways underpinning the pharmacological properties of ginsenosides, we highlight their therapeutic potential in addressing various conditions. Our findings serve as a comprehensive reference for further investigation into the medicinal properties of ginseng or ginseng-related products.
Collapse
Affiliation(s)
- Zhu-Jun Zhuang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Fa-Jing Li
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
- The First People's Hospital of Liangshan Prefecture, Sichuan, 615000, People's Republic of China
| | - Di Lv
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Heng-Qian Duan
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Lin-Yi Chen
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Peng Chen
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Zhi-Qiang Shen
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Bo He
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| |
Collapse
|
7
|
Fan R, Zhang Y, Liu R, Wei C, Wang X, Wu X, Yu X, Li Z, Mao R, Hu J, Zhu N, Liu X, Li Y, Xu M. Exogenous Nucleotides Improve the Skin Aging of SAMP8 Mice by Modulating Autophagy through MAPKs and AMPK Pathways. Nutrients 2024; 16:1907. [PMID: 38931262 PMCID: PMC11206724 DOI: 10.3390/nu16121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
The skin, serving as the body's primary defense against external elements, plays a crucial role in protecting the body from infections and injuries, as well as maintaining overall homeostasis. Skin aging, a common manifestation of the aging process, involves the gradual deterioration of its normal structure and repair mechanisms. Addressing the issue of skin aging is increasingly imperative. Multiple pieces of evidence indicate the potential anti-aging effects of exogenous nucleotides (NTs) through their ability to inhibit oxidative stress and inflammation. This study aims to investigate whether exogenous NTs can slow down skin aging and elucidate the underlying mechanisms. To achieve this objective, senescence-accelerated mouse prone-8 (SAMP8) mice were utilized and randomly allocated into Aging, NTs-low, NTs-middle, and NTs-high groups, while senescence-accelerated mouse resistant 1 (SAMR1) mice were employed as the control group. After 9 months of NT intervention, dorsal skin samples were collected to analyze the pathology and assess the presence and expression of substances related to the aging process. The findings indicated that a high-dose NT treatment led to a significant increase in the thickness of the epithelium and dermal layers, as well as Hyp content (p < 0.05). Additionally, it was observed that low-dose NT intervention resulted in improved aging, as evidenced by a significant decrease in p16 expression (p < 0.05). Importantly, the administration of high doses of NTs could improve, in some ways, mitochondrial function, which is known to reduce oxidative stress and promote ATP and NAD+ production significantly. These observed effects may be linked to NT-induced autophagy, as evidenced by the decreased expression of p62 and increased expression of LC3BI/II in the intervention groups. Furthermore, NTs were found to upregulate pAMPK and PGC-1α expression while inhibiting the phosphorylation of p38MAPK, JNK, and ERK, suggesting that autophagy may be regulated through the AMPK and MAPK pathways. Therefore, the potential induction of autophagy by NTs may offer benefits in addressing skin aging through the activation of the AMPK pathway and the inhibition of the MAPK pathway.
Collapse
Affiliation(s)
- Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Ying Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Chan Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiujuan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xin Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiaochen Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Zhen Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Ruixue Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Jiani Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xinran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Shi M, Xu M, Huang X, Li C, Chen P, Li Q, Guo J, Zhu M, He S, Zeng K. The effect of autophagy on hemoporfin-mediated photodynamic therapy in human umbilical vein endothelial cells. Photodiagnosis Photodyn Ther 2024; 47:104196. [PMID: 38710260 DOI: 10.1016/j.pdpdt.2024.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
SIGNIFICANCE Hemoporfin-mediated photodynamic therapy (HMME-PDT) has been recognized as a safe and effective treatment for port wine stain (PWS). However, some patients show limited improvement even after multiple treatments. Herein, we aim to explore the effect of autophagy on HMME-PDT in human umbilical vein endothelial cells (HUVECs), so as to provide theoretical basis and treatment strategies to enhance clinical effectiveness. METHODS Establish the in vitro HMME-PDT system by HUVECs. Apoptosis and necrosis were identified by Annexin Ⅴ-FITC/PI flow cytometry, and autophagy flux was detected by monitoring RFP-GFP-LC3 under the fluorescence microscope. Hydroxychloroquine and rapamycin were employed in the mechanism study. Specifically, the certain genes and proteins were qualified by qPCR and Western Blot, respectively. The cytotoxicity was measured by CCK-8, VEGF-A secretion was determined by ELISA, and the tube formation of HUVECs was observed by angiogenesis assay. RESULTS In vitro experiments revealed that autophagy and apoptosis coexisted in HUVECs treated by HMME-PDT. Apoptosis was dominant in early stage, while autophagy gradually increased in the middle and late stage. AMPK, AKT and mTOR participated in the regulation of autophagy induced by HMME-PDT, in which AMPK was positive regulation, while AKT and mTOR were negative regulation. Hydroxychloroquine could not inhibit HMME-PDT-induced autophagy, but capable of blocking the fusion of autophagosomes with lysosome. Rapamycin might cooperate with HMME-PDT to enhance autophagy in HUVECs, leading to increased cytotoxicity, reduced VEGF-A secretion, and weakened angiogenesis ability. CONCLUSIONS Both autophagy and apoptosis contribute to HMME-PDT-induced HUVECs death. Pretreatment of HUVECs with rapamycin to induce autophagy might enhance the photodynamic killing effect of HMME-PDT on HUVECs. The combination of Rapamycin and HMME-PDT is expected to further improve the clinical efficacy.
Collapse
Affiliation(s)
- Minglan Shi
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Meinian Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Changxing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Qian Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Jia Guo
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Menghua Zhu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Sijin He
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China.
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
9
|
Lin Y, Wu X, Yang Y, Wu Y, Xiang L, Zhang C. The multifaceted role of autophagy in skin autoimmune disorders: a guardian or culprit? Front Immunol 2024; 15:1343987. [PMID: 38690268 PMCID: PMC11058840 DOI: 10.3389/fimmu.2024.1343987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Autophagy is a cellular process that functions to maintain intracellular homeostasis via the degradation and recycling of defective organelles or damaged proteins. This dynamic mechanism participates in various biological processes, such as the regulation of cellular differentiation, proliferation, survival, and the modulation of inflammation and immune responses. Recent evidence has demonstrated the involvement of polymorphisms in autophagy-related genes in various skin autoimmune diseases. In addition, autophagy, along with autophagy-related proteins, also contributes to homeostasis maintenance and immune regulation in the skin, which is associated with skin autoimmune disorders. This review aims to provide an overview of the multifaceted role of autophagy in skin autoimmune diseases and shed light on the potential of autophagy-targeting therapeutic strategies in dermatology.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Kuczyńska M, Moskot M, Gabig-Cimińska M. Insights into Autophagic Machinery and Lysosomal Function in Cells Involved in the Psoriatic Immune-Mediated Inflammatory Cascade. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0005. [PMID: 38409665 DOI: 10.2478/aite-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 02/28/2024]
Abstract
Impaired autophagy, due to the dysfunction of lysosomal organelles, contributes to maladaptive responses by pathways central to the immune system. Deciphering the immune-inflammatory ecosystem is essential, but remains a major challenge in terms of understanding the mechanisms responsible for autoimmune diseases. Accumulating evidence implicates a role that is played by a dysfunctional autophagy-lysosomal pathway (ALP) and an immune niche in psoriasis (Ps), one of the most common chronic skin diseases, characterized by the co-existence of autoimmune and autoinflammatory responses. The dysregulated autophagy associated with the defective lysosomal system is only one aspect of Ps pathogenesis. It probably cannot fully explain the pathomechanism involved in Ps, but it is likely important and should be seriously considered in Ps research. This review provides a recent update on discoveries in the field. Also, it sheds light on how the dysregulation of intracellular pathways, coming from modulated autophagy and endolysosomal trafficking, characteristic of key players of the disease, i.e., skin-resident cells, as well as circulating immune cells, may be responsible for immune impairment and the development of Ps.
Collapse
Affiliation(s)
- Martyna Kuczyńska
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
11
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
12
|
Abstract
The understanding of the molecular and cellular basis of aging has grown exponentially over recent years, and it is now accepted within the scientific community that aging is a malleable process; just as it can be accelerated, it can also be slowed and even reversed. This has far-reaching implications for our attitude and approach toward aging, presenting the opportunity to enter a new era of cellular regenerative medicine to not only manage the external signs of aging but also to develop therapies that support the body to repair and restore itself back to a state of internal well-being. A wealth of evidence now demonstrates that a decline in cellular nicotinamide adenine dinucleotide (NAD+) is a feature of aging and may play a role in the process. NAD+ plays a pivotal role in cellular metabolism and is a co-substrate for enzymes that play key roles in pathways that modify aging. Thus, interventions that increase NAD+ may slow aspects of the aging trajectory, and there is great interest in methods for cellular NAD+ restoration. Given these recent advancements in understanding the cellular aging process, it is important that there is an integration between the basic scientists who are investigating the underlying mechanisms of cellular aging and the surgeons and aesthetic practitioners who are providing antiaging therapies. This will allow the effective translation of this vastly complex area of biology into clinical practice so that people can continue to not only stay looking younger for longer but also experience improved health and wellness.
Collapse
|
13
|
Zhang J, Wang C, An Q, Quan Q, Li M, Zhao D. Gene Expression Profile Analyses of the Skin Response of Balb/c-Nu Mice Model Injected by Staphylococcus aureus. Clin Cosmet Investig Dermatol 2022; 15:217-235. [PMID: 35210800 PMCID: PMC8857954 DOI: 10.2147/ccid.s348961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/20/2022] [Indexed: 01/20/2023]
Abstract
Background Pathogenesis and persistence of many skin diseases are related to Staphylococcus aureus (S. aureus) colonization. S. aureus infection can cause varying degrees of changes in cell gene expression, resulting in complex changes in cell phenotype and finally changes in cell life activities. Materials and Methods The transcriptomes of healthy and Staphylococcus aureus (S. aureus)-infected murine skin tissues were analyzed. We identified 638 differentially expressed genes (DEGs) in the infected tissues compared to the control samples, of which 324 were upregulated and 314 were downregulated, following the criteria of P < 0.01 and |log2FC| > 3. The DEGs were functionally annotated by Gene Ontology (GO), KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and the protein–protein interaction (PPI) network analyses. Results The upregulated DEGs were mainly enriched in GO terms, such as response to stimulus, immune system process and signal transduction, as well as in the complement and coagulation cascade pathway. Thus, S. aureus infection likely activates these pathways to limit the influx of neutrophils and prevent skin damage. Four clusters were identified in the PPI network, and the major hubs were mainly related to cell cycle and proliferation, and mostly downregulated. The expression levels of Nox4, Mmrn1, Mcm5, Msx1 and Fgf5 mRNAs were validated by qRT-PCR and found to be consistent with the RNA-Seq data, confirming a strong correlation between the two approaches. Conclusion The identified genes and pathways are potential drug targets for treating skin inflammation caused by S. aureus and should be investigated further.
Collapse
Affiliation(s)
- Jiachan Zhang
- Beijing Key Lab of Plant Resource Research and Development, College of chemistry and materials engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Changtao Wang
- Beijing Key Lab of Plant Resource Research and Development, College of chemistry and materials engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd., Kunming, 650000, People's Republic of China
| | - Qianghua Quan
- Yunnan Baiyao Group Co., Ltd., Kunming, 650000, People's Republic of China
| | - Meng Li
- Yunnan Baiyao Group Co., Ltd., Kunming, 650000, People's Republic of China
| | - Dan Zhao
- Beijing Key Lab of Plant Resource Research and Development, College of chemistry and materials engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| |
Collapse
|
14
|
Biscaro RC, Mussi L, Sufi B, Padovani G, Camargo Junior FB, Magalhães WV, Di Stasi LC. Modulation of autophagy by an innovative phytocosmetic preparation (
Myrothamnus flabelifolia
and
Coffea arabica
) in human fibroblasts and its effects in a clinical randomized placebo‐controlled trial. J Cosmet Dermatol 2022; 21:4901-4912. [DOI: 10.1111/jocd.14888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/18/2022] [Accepted: 02/22/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Rafael C. Biscaro
- Research and Development Department Chemyunion Química Ltda Sorocaba Brazil
| | - Lilian Mussi
- Research and Development Department Chemyunion Química Ltda Sorocaba Brazil
| | - Bianca Sufi
- Research and Development Department Chemyunion Química Ltda Sorocaba Brazil
| | - Giovana Padovani
- Research and Development Department Chemyunion Química Ltda Sorocaba Brazil
| | | | | | - Luiz C. Di Stasi
- Laboratory of Phytomedicines, Pharmacology, and Biotechnology (PhytoPharmaTech) Department of Biophysics and Pharmacology Institute of Biosciences São Paulo State University (Unesp) Botucatu Brazil
| |
Collapse
|
15
|
Wang Y, He M, Li X, Chai J, Jiang Q, Peng C, He G, Huang W. Design, Synthesis, and Biological Evaluation of Pyrano[2,3-c]-pyrazole-Based RalA Inhibitors Against Hepatocellular Carcinoma. Front Chem 2021; 9:700956. [PMID: 34869198 PMCID: PMC8634879 DOI: 10.3389/fchem.2021.700956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023] Open
Abstract
The activation of Ras small GTPases, including RalA and RalB, plays an important role in carcinogenesis, tumor progress, and metastasis. In the current study, we report the discovery of a series of 6-sulfonylamide-pyrano [2,3-c]-pyrazole derivatives as novel RalA inhibitors. ELISA-based biochemical assay results indicated that compounds 4k–4r suppressed RalA/B binding capacities to their substrates. Cellular proliferation assays indicated that these RalA inhibitors potently inhibited the proliferation of HCC cell lines, including HepG2, SMMC-7721, Hep3B, and Huh-7 cells. Among the evaluated compounds, 4p displayed good inhibitory capacities on RalA (IC50 = 0.22 μM) and HepG2 cells (IC50 = 2.28 μM). Overall, our results suggested that a novel small-molecule RalA inhibitor with a 6-sulfonylamide-pyrano [2, 3-c]-pyrazole scaffold suppressed autophagy and cell proliferation in hepatocellular carcinoma, and that it has potential for HCC-targeted therapy.
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyao He
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlong Chai
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qinglin Jiang
- School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Xiong M, Hu W, Tan Y, Yu H, Zhang Q, Zhao C, Yi Y, Wang Y, Wu Y, Wu M. Transcription Factor E2F1 Knockout Promotes Mice White Adipose Tissue Browning Through Autophagy Inhibition. Front Physiol 2021; 12:748040. [PMID: 34819874 PMCID: PMC8606532 DOI: 10.3389/fphys.2021.748040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
Obesity is associated with energy metabolic disturbance and is caused by long-term excessive energy storage in white adipose tissue (WAT). The WAT browning potentially reduces excessive energy accumulation, contributing an attractive target to combat obesity. As a pivotal regulator of cell growth, the transcription factor E2F1 activity dysregulation leads to metabolic complications. The regulatory effect and underlying mechanism of E2F1 knockout on WAT browning, have not been fully elucidated. To address this issue, in this study, the in vivo adipose morphology, mitochondria quantities, uncoupling protein 1 (UCP-1), autophagy-related genes in WAT of wild-type (WT) and E2F1–/– mice were detected. Furthermore, we evaluated the UCP-1, and autophagy-related gene expression in WT and E2F1–/– adipocyte in vitro. The results demonstrated that E2F1 knockout could increase mitochondria and UCP-1 expression in WAT through autophagy suppression in mice, thus promoting WAT browning. Besides, adipocytes lacking E2F1 showed upregulated UCP-1 and downregulated autophagy-related genes expression in vitro. These results verified that E2F1 knockout exerted effects on inducing mice WAT browning through autophagy inhibition in vivo and in vitro. These findings regarding the molecular mechanism of E2F1-modulated autophagy in controlling WAT plasticity, provide a novel insight into the functional network with the potential therapeutic application against obesity.
Collapse
Affiliation(s)
- Mingchen Xiong
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honghao Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Yu H, Cen J, Lin X, Cheng H, Seifert O. Imiquimod induced vitiligo-like lesions-A consequence of modified melanocyte function. IMMUNITY INFLAMMATION AND DISEASE 2021; 10:70-77. [PMID: 34614305 PMCID: PMC8669695 DOI: 10.1002/iid3.543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Imiquimod plays an important role in the management of condyloma and premalignant lesions. Successively, an increase of hypopigmented lesions following imiquimod application has been reported. However, the mechanisms of imiquimod on melanocytes remain unclear. This study was designed to assess the effect of Imiquimod on the functions of melanocytes in vitro. METHODS Primary cultured melanocytes were isolated from normal control skin tissue. After incubation with imiquimod for 48 h in vitro, cell viability was analyzed by cell counting kit-8 assay. Apoptosis was detected using the Annexin V-fluorescein-5-isothiocyanate flow cytometry assay. Melanin content and tyrosinase activity in melanocytes were measured by colorimetric method and the modified dopachrome method. The production of inflammatory cytokine interleukin 8 (IL-8), IL-6, and soluble ICAM-1 (soluble Intercellular Adhesion Molecule-1[sICAM-1]) in melanocytes were measured by enzyme-linked immunosorbent assay (ELISA). Toll-like receptor 7 (TLR7), toll-like receptor 9 (TLR9) protein, and autophagy-related proteins microtubule-associated protein 1A/1B-light chain 3 (LC3-II), p62, mechanistic target of rapamycin (mTOR), and Atg5 were assessed using western blot analysis. RESULTS Imiquimod significantly inhibited the activity of tyrosinase activity and decreased melanin content in melanocytes and significantly increased apoptosis and IL-6, IL-8, and sICAM-1 production in melanocytes. Moreover, the expression of TLR7 and TLR9 proteins were significantly increased, and the expression of mTOR, p62 protein were markedly decreased, but the expression of LC3II/I and Atg5 protein were significantly increased in melanocytes after incubating with imiquimod. CONCLUSIONS This study shows that imiquimod directly inhibits melanogenesis and increases melanocyte apoptosis rates. These effects combined with the upregulation of TLR7 and TLR9 together with increased autophagy activity and inflammatory cytokines production, might be the main reasons leading to hypopigmented lesions after imiquimod application.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University Medical College, Hangzhou, Zhejiang, China
| | - Jianping Cen
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University Medical College, Hangzhou, Zhejiang, China
| | - Xiaoxia Lin
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University Medical College, Hangzhou, Zhejiang, China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University Medical College, Hangzhou, Zhejiang, China
| | - Oliver Seifert
- Division of Dermatology and Venereology, Ryhov Hospital, Jönköping, Sweden.,Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
18
|
Espósito ACC, de Souza NP, Miot LDB, Miot HA. Deficit in autophagy: A possible mechanism involved in melanocyte hyperfunction in melasma. Indian J Dermatol Venereol Leprol 2021; 0:1-3. [PMID: 33871200 DOI: 10.25259/ijdvl_927_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/01/2020] [Indexed: 11/04/2022]
|
19
|
Jeong D, Qomaladewi NP, Lee J, Park SH, Cho JY. The Role of Autophagy in Skin Fibroblasts, Keratinocytes, Melanocytes, and Epidermal Stem Cells. J Invest Dermatol 2021; 140:1691-1697. [PMID: 32800183 DOI: 10.1016/j.jid.2019.11.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 10/30/2019] [Accepted: 11/09/2019] [Indexed: 12/20/2022]
Abstract
Human skin acts as a barrier to protect our bodies from UV rays and external pathogens and to prevent water loss. Phenotypes of aging, or natural aging due to chronic damage, include wrinkles and the reduction of skin thickness that occur because of a loss of skin cell function. The dysregulation of autophagy, a lysosome-related degradation pathway, can lead to cell senescence, cancer, and various human diseases due to abnormal cellular homeostasis. Here, we discuss the roles and molecular mechanisms of autophagy involved in the anti-aging effects of autophagy and the relationship between autophagy and aging in skin cells.
Collapse
Affiliation(s)
- Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | | | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
20
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Autophagy regulation using luteolin: new insight into its anti-tumor activity. Cancer Cell Int 2020; 20:537. [PMID: 33292250 PMCID: PMC7641824 DOI: 10.1186/s12935-020-01634-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Application of novel methods in cancer therapy is important in terms of management and treatment of the life-threatening disorder. It appears that autophagy is a potential target in cancer therapy, as a variety of drugs targeting autophagy have shown great potential in reducing the viability and proliferation of cancer cells. Autophagy is primarily a catabolic process which provides energy during starvation. Besides, this process contributes to the degradation of aged or potentially toxic components and organelles. On the other hand, the source of a variety of naturally occurring anti-tumor drugs are flavonoids which have high anti-tumor activity. Luteolin is a polyphenolic flavone with the great pharmacological effects such as anti-diabetic, hepatoprotective, antioxidant, anti-inflammation, and anti-tumor. At the present review, we demonstrate how luteolin affects on autophagy process to induce anti-tumor activity.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, 34956, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), 34956, Tuzla, Istanbul, Turkey
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
21
|
Martic I, Wedel S, Jansen-Dürr P, Cavinato M. A new model to investigate UVB-induced cellular senescence and pigmentation in melanocytes. Mech Ageing Dev 2020; 190:111322. [PMID: 32735894 PMCID: PMC7116475 DOI: 10.1016/j.mad.2020.111322] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Ultraviolet (UV) light is known to potentially damage human skin and accelerate the skin aging process. Upon UVB exposure, melanocytes execute skin protection by increasing melanin production. Senescent cells, including senescent melanocytes, are known to accumulate in aged skin and contribute to the age-associated decline of tissue function. However, melanocyte senescence is still insufficiently explored. Here we describe a new model to investigate mechanisms of UVB-induced senescence in melanocytes and its role in photoaging. Exposure to mild and repeated doses of UVB directly influenced melanocyte proliferation, morphology and ploidy. We confirmed UVB-induced senescence with increased senescence-associated β-galactosidase positivity and changed expression of several senescence markers, including p21, p53 and Lamin B1. UVB irradiation impaired proteasome and increased autophagic activity in melanocytes, while expanding intracellular melanin content. In addition, using a co-culture system, we could confirm that senescence-associated secretory phenotype components secreted by senescent fibroblasts modulated melanogenesis. In conclusion, our new model serves as an important tool to explore UVB-induced melanocyte senescence and its involvement in photoaging and skin pigmentation.
Collapse
Affiliation(s)
- Ines Martic
- Institute for Biomedical Aging Research, Universität Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Sophia Wedel
- Institute for Biomedical Aging Research, Universität Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Universität Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Maria Cavinato
- Institute for Biomedical Aging Research, Universität Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria.
| |
Collapse
|
22
|
Pang H, Wang N, Chai J, Wang X, Zhang Y, Bi Z, Wu W, He G. Discovery of novel TNNI3K inhibitor suppresses pyroptosis and apoptosis in murine myocardial infarction injury. Eur J Med Chem 2020; 197:112314. [PMID: 32344181 DOI: 10.1016/j.ejmech.2020.112314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
Myocardial infarction (MI) injury is a highly lethal syndrome that has, until recently, suffered from a lack of clinically efficient targeted therapeutics. The cardiac troponin I interacting kinase (TNNI3K) exacerbates ischemia-reperfusion (IR) injury via oxidative stress, thereby promoting cardiomyocyte death. In this current study, we designed and synthesized 35 novel TNNI3K inhibitors with a pyrido[4,5]thieno[2,3-d] pyrimidine scaffold. In vitro results indicated that some of the inhibitors exhibited sub-micromolar TNNI3K inhibitory capacity and good kinase selectivity, as well as cytoprotective activity, in an oxygen-glucose deprivation (OGD) injury cardiomyocyte model. Furthermore, investigation of the mechanism of the representative derivative compound 6o suggested it suppresses pyroptosis and apoptosis in cardiomyocytes by interfering with p38MAPK activation, which was further confirmed in a murine myocardial infarction injury model. In vivo results indicate that compound 6o can markedly reduce myocardial infarction size and alleviate cardiac tissue damage in rats. In brief, our results provide the basis for further development of novel TNNI3K inhibitors for targeted MI therapy.
Collapse
Affiliation(s)
- Haiying Pang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Jinlong Chai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Xiaoyun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Yuehua Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Zhiang Bi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China
| | - Wenbin Wu
- Department of Neurology, Chongzhou People's Hospital, Chengdu, 611230, PR China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
23
|
Zhao Q, Zhu HP, Xie X, Mao Q, Liu YQ, He XH, Peng C, Jiang QL, Huang W. Novel HSP90-PI3K Dual Inhibitor Suppresses Melanoma Cell Proliferation by Interfering with HSP90-EGFR Interaction and Downstream Signaling Pathways. Int J Mol Sci 2020; 21:E1845. [PMID: 32156008 PMCID: PMC7084941 DOI: 10.3390/ijms21051845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer, and its incidence has continuously increased over the past 20 years. Therefore, the discovery of a novel targeted therapeutic strategy for melanoma is urgently needed. In our study, MTT-based cell proliferation assay, cell cycle, and apoptosis assays through flow cytometry, protein immunoblotting, protein immunoprecipitation, designing of melanoma xenograft models, and immunohistochemical/immunofluorescent assays were carried out to determine the detailed molecular mechanisms of a novel HSP90-PI3K dual inhibitor. Our compound, named DHP1808, was found to suppress A375 cell proliferation through apoptosis induction by activating the Fas/FasL signaling pathway; it also induced cell-cycle arrest and inhibited the cell migration and invasion of A375 cells by interfering with Hsp90-EGFR interactions and downstream signaling pathways. Our results indicate that DHP1808 could be a promising lead compound for the Hsp90/PI3K dual inhibitor.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Hong-Ping Zhu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China;
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Qing Mao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Qing-Lin Jiang
- Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| |
Collapse
|
24
|
Ren W, Zhao Q, Yu M, Guo L, Chang H, Jiang X, Luo Y, Huang W, He G. Design and synthesis of novel spirooxindole–indenoquinoxaline derivatives as novel tryptophanyl-tRNA synthetase inhibitors. Mol Divers 2019; 24:1043-1063. [DOI: 10.1007/s11030-019-10011-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
|
25
|
Liu H, Dong J, Song S, Zhao Y, Wang J, Fu Z, Yang J. Spermidine ameliorates liver ischaemia-reperfusion injury through the regulation of autophagy by the AMPK-mTOR-ULK1 signalling pathway. Biochem Biophys Res Commun 2019; 519:227-233. [PMID: 31493865 DOI: 10.1016/j.bbrc.2019.08.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hepatic ischaemia-reperfusion (IR) injury is a common clinical challenge lacking effective therapy. The aim of this study was to investigate whether spermidine has protective effects against hepatic IR injury through autophagy. METHODS Liver ischaemia reperfusion was induced in male C57BL/6 mice. Then, liver function, histopathology, cytokine production and immunofluorescence were evaluated to assess the impact of spermidine pre-treatment on IR-induced liver injury. Autophagosome formation was observed by transmission electron microscopy. Western blotting was used to explore the underlying mechanism and its relationship with autophagy, and TUNEL staining was conducted to determine the relationship between apoptosis and autophagy in the ischaemic liver. RESULTS The results of the transaminase assay, histopathological examination, and pro-inflammatory cytokine production and immunofluorescence evaluations demonstrated that mice pre-treated with spermidine showed significantly preserved liver function. Further experiments demonstrated that mice administered spermidine before the induction of IR exhibited increased autophagy via the AMPK-mTOR-ULK1 pathway, and TUNEL staining revealed that spermidine attenuated IR-induced apoptosis in the liver. CONCLUSIONS Our results provide the first line of evidence that spermidine provides protection against IR-induced injury in the liver by regulating autophagy through the AMPK-mTOR-ULK1 signalling pathway. These results suggest that spermidine may be beneficial for hepatic IR injury.
Collapse
Affiliation(s)
- Hao Liu
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jiayong Dong
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Shaohua Song
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yuanyu Zhao
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jiyuan Wang
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Zhiren Fu
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Jinghui Yang
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|