1
|
He M, Cui Q, Zheng Y, Feng B, Liu Z. Increased nuclear receptor subfamily 2, group E, member 1 (NR2E1) concentrations of PBMCs are associated with chronic inflammation in overweight/obesity. Heliyon 2024; 10:e37909. [PMID: 39323832 PMCID: PMC11422594 DOI: 10.1016/j.heliyon.2024.e37909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
Background Chronic inflammation plays a crucial role in the pathogenesis of overweight/obesity. Nuclear receptor subfamily 2, group E, member 1 (NR2E1) is one of the nuclear receptor family proteins that play crucial roles in regulating numerous life processes. In this study, we attempted to detect NR2E1 levels in peripheral blood mononuclear cells (PBMCs) of overweight/obese people and preliminarily elucidate the regulatory role of NR2E1 in obesity-related chronic inflammation. Methods We conducted a cross-sectional analysis of the clinical and biochemical data from 62 overweight/obese people and 70 control subjects. PBMCs of the participants were collected for detection of NR2E1 levels. PBMCs isolated from the control subjects were treated with different concentrations of palmitic acid (PA). We also transfected p-EGFP-N1-NR2E1 plasmids into PBMCs and treated them with PA, then detected TNF-α and IL-6 concentrations in the supernatant of PBMCs. Results The NR2E1 mRNA and protein levels in overweight/obese people were both significantly higher than those in normal-BMI people (p < 0.01). NR2E1 mRNA levels in PBMCs of overweight/obese people were positively related with TC, FFA, IL-6, TNF-α (r = 0.387, 0.440, 0.610, 0.530, p < 0.01) and LDL-c (r = 0.290, p < 0.05). A similar correlation was also found between NR2E1 protein levels and these parameters. The expression of NR2E1 in PBMCs from the control subjects increased apparently with the treatment of PA in a concentration-depend manner in vitro. Overexpression of NR2E1 in PBMCs decreased TNF-α and IL-6 expression induced by PA (p < 0.01). Conclusion NR2E1 levels are increased in overweight/obese people and have a positive relationship with TC, FFA, LDL-C, TNF-α and IL-6. Overexpression of NR2E1 could alleviate PA-induced chronic inflammation. NR2E1 may be a potential target for regulating chronic inflammation in obesity.
Collapse
Affiliation(s)
- Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Qiyuan Cui
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Yun Zheng
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Bin Feng
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Zheng Liu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
2
|
Xiong Q, Wang H, Feng J, Song L, Wu G, Xu Y. Lack of Nr2e1 expression in hepatocytes impaired cell survival and aggravated palmitate-induced oxidative stress. Adv Med Sci 2024; 69:320-330. [PMID: 38901547 DOI: 10.1016/j.advms.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE Nuclear receptor subfamily 2 group E member 1 (Nr2e1) has been regarded as an essential regulator in neural stem cells. However, its function is still not clear in hepatocytes. This study aimed to clarify the effects of Nr2e1-deficiency in hepatocytes in lipotoxic conditions. MATERIALS/METHODS Nr2e1-knockdown AML12 cells were generated by lentiviral vector transfection. The influences of Nr2e1-deficiency on hepatocyte survival were determined by cell cycle progression and cell apoptosis rate using flow cytometry. Real-time quantitative PCR and Western blot were used to examine the genes and protein expression related to apoptosis, lipid metabolism, and oxidative stress. Meanwhile, RNA sequencing was adopted in liver samples from Nr2e1-knockout (Nr2e1-KO) mice. RESULTS Nr2e1 expression was observed with a significant decrease in AML12 cells after palmitic acid-stimulation. Knockdown of Nr2e1 in AML12 cells resulted in increased sensitivity to lipotoxicity, evidenced by a partial G0/G1 cell-cycle arrest and higher rates of cell apoptosis. Moreover, Nr2e1-knockdown AML12 cells presented increased gene expressions relative to lipid synthesis but decreased levels of β-oxidation related genes. Lack of Nr2e1 augmented palmitate-induced oxidative stress in hepatocytes. In vivo, differential genes in Nr2e1-KO mice liver were enriched in pathways associated with liver regeneration and cell proliferation. CONCLUSIONS This study indicated that hepatocytes lacking Nr2e1 were more susceptible to lipotoxic-mediated damage. Nr2e1 may serve as a potential target for the development of novel therapies for lipotoxicity-induced liver injury.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Endocrinology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China; Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huawei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jieyuan Feng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Linyang Song
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guijun Wu
- Clinical Teaching and Research Sections, School of Nursing, Dalian University, Dalian, Liaoning, China; Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Huang P, Xiang T, Wang Q, Han L, Zheng S, Zhang D, Huang F, Duan B, Li J, Li H, Huang T. Protective effect of Xixin-Ganjiang herb pair for warming the lungs to dissolve phlegm in chronic obstructive pulmonary disease rats based on integrated network pharmacology and metabolomics. Biomed Chromatogr 2024; 38:e5851. [PMID: 38449348 DOI: 10.1002/bmc.5851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Xixin-Ganjiang herb pair (XGHP) is a classic combination for warming the lungs to dissolve phlegm and is often used to treat a variety of chronic lung diseases; it can treat the syndrome of cold phlegm obstruction of lungs. First, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to examine the composition of XGHP, and network pharmacology was used to predict its potential core targets and signaling pathways in the current study. Second, a rat model of chronic obstructive pulmonary disease (COPD) was established for assessing the anti-COPD activity of XGHP, and metabolomics was used to explore the biomarkers and metabolic pathways. Finally, the sample was validated using molecular docking and Western blotting. The integration of metabolomics and network pharmacology results identified 11 targets, 3 biomarkers, 3 pathways, and 2 metabolic pathways. Western blotting showed that XGHP effectively regulated the expression of core proteins via multiple signaling pathways (downregulation of toll-like receptor 4 [TLR4] and upregulation of serine/threonine-protein kinase 1 [p-AKT1] and nitric oxide synthase 3 [NOS3]). Molecular docking results showed that the 10 potentially active components of XGHP have good affinity with tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase 9 (MMP-9), TLR4, p-AKT1, and NOS3. Our findings suggest that XGHP may regulate glucolipid metabolism, improve energy supply, and inhibit inflammatory responses (TNF-α, IL-6, and MMP-9) via the PI3K-Akt signaling pathway and HIF-1 signaling pathway in the management of COPD.
Collapse
Affiliation(s)
- Ping Huang
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ting Xiang
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Qiong Wang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lintao Han
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| | - Sili Zheng
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongning Zhang
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bailu Duan
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingjing Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Huamao Li
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Tao Huang
- Department of Orthopedics, Wuhan Red Cross Hospital, Wuhan, China
| |
Collapse
|
4
|
Li Z, Zheng D, Zhang T, Ruan S, Li N, Yu Y, Peng Y, Wang D. The roles of nuclear receptors in cholesterol metabolism and reverse cholesterol transport in nonalcoholic fatty liver disease. Hepatol Commun 2024; 8:e0343. [PMID: 38099854 PMCID: PMC10727660 DOI: 10.1097/hc9.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
As the most prevalent chronic liver disease globally, NAFLD encompasses a pathological process that ranges from simple steatosis to NASH, fibrosis, cirrhosis, and HCC, closely associated with numerous extrahepatic diseases. While the initial etiology was believed to be hepatocyte injury caused by lipid toxicity from accumulated triglycerides, recent studies suggest that an imbalance of cholesterol homeostasis is of greater significance. The role of nuclear receptors in regulating liver cholesterol homeostasis has been demonstrated to be crucial. This review summarizes the roles and regulatory mechanisms of nuclear receptors in the 3 main aspects of cholesterol production, excretion, and storage in the liver, as well as their cross talk in reverse cholesterol transport. It is hoped that this review will offer new insights and theoretical foundations for the study of the pathogenesis and progression of NAFLD and provide new research directions for extrahepatic diseases associated with NAFLD.
Collapse
|
5
|
Escalante-Covarrubias Q, Mendoza-Viveros L, González-Suárez M, Sitten-Olea R, Velázquez-Villegas LA, Becerril-Pérez F, Pacheco-Bernal I, Carreño-Vázquez E, Mass-Sánchez P, Bustamante-Zepeda M, Orozco-Solís R, Aguilar-Arnal L. Time-of-day defines NAD + efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice. Nat Commun 2023; 14:1685. [PMID: 36973248 PMCID: PMC10043291 DOI: 10.1038/s41467-023-37286-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The circadian clock is an endogenous time-tracking system that anticipates daily environmental changes. Misalignment of the clock can cause obesity, which is accompanied by reduced levels of the clock-controlled, rhythmic metabolite NAD+. Increasing NAD+ is becoming a therapy for metabolic dysfunction; however, the impact of daily NAD+ fluctuations remains unknown. Here, we demonstrate that time-of-day determines the efficacy of NAD+ treatment for diet-induced metabolic disease in mice. Increasing NAD+ prior to the active phase in obese male mice ameliorated metabolic markers including body weight, glucose and insulin tolerance, hepatic inflammation and nutrient sensing pathways. However, raising NAD+ immediately before the rest phase selectively compromised these responses. Remarkably, timed NAD+ adjusted circadian oscillations of the liver clock until completely inverting its oscillatory phase when increased just before the rest period, resulting in misaligned molecular and behavioral rhythms in male and female mice. Our findings unveil the time-of-day dependence of NAD+-based therapies and support a chronobiology-based approach.
Collapse
Affiliation(s)
- Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucía Mendoza-Viveros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Mirna González-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Román Sitten-Olea
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ignacio Pacheco-Bernal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Erick Carreño-Vázquez
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Paola Mass-Sánchez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marcia Bustamante-Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ricardo Orozco-Solís
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados, 14330, Mexico City, Mexico
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Inonotus hispidus Protects against Hyperlipidemia by Inhibiting Oxidative Stress and Inflammation through Nrf2/NF-κB Signaling in High Fat Diet Fed Mice. Nutrients 2022; 14:nu14173477. [PMID: 36079733 PMCID: PMC9460493 DOI: 10.3390/nu14173477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/28/2022] Open
Abstract
Obesity is frequently associated with dysregulated lipid metabolism and lipotoxicity. Inonotus hispidus (Bull.: Fr.) P. Karst (IH) is an edible and medicinal parasitic mushroom. In this study, after a systematic analysis of its nutritional ingredients, the regulatory effects of IH on lipid metabolism were investigated in mice fed a high-fat diet (HFD). In HFD-fed mice, IH reversed the pathological state of the liver and the three types of fat and significantly decreased the levels of low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglycerides (TG), and leptin (LEP) and increased the level of high-density liptein cholesterol (HDL-C) in serum. Meanwhile, IH ameliorated liver damage by reducing alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and plasminogen activator inhibitor-1 (PAI-1) levels in the liver and serum. Compared with HFD-fed mice, IH significantly modulated the gut microbiota, changed the relative abundances of microflora at different taxonomic levels, and regulated lipid levels. The results showed that 30 differential lipids were found. Results from Western blotting confirmed that IH regulated the nuclear factor erythroid-2 related factor 2 (Nrf2)/nuclear factor-kappa B (NF-κB) signaling pathway and oxidative stress. This study aimed to provide experimental evidence for the applicability of IH in obesity treatment.
Collapse
|
7
|
Havula E, Ghazanfar S, Lamichane N, Francis D, Hasygar K, Liu Y, Alton LA, Johnstone J, Needham EJ, Pulpitel T, Clark T, Niranjan HN, Shang V, Tong V, Jiwnani N, Audia G, Alves AN, Sylow L, Mirth C, Neely GG, Yang J, Hietakangas V, Simpson SJ, Senior AM. Genetic variation of macronutrient tolerance in Drosophila melanogaster. Nat Commun 2022; 13:1637. [PMID: 35347148 PMCID: PMC8960806 DOI: 10.1038/s41467-022-29183-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Carbohydrates, proteins and lipids are essential nutrients to all animals; however, closely related species, populations, and individuals can display dramatic variation in diet. Here we explore the variation in macronutrient tolerance in Drosophila melanogaster using the Drosophila genetic reference panel, a collection of ~200 strains derived from a single natural population. Our study demonstrates that D. melanogaster, often considered a "dietary generalist", displays marked genetic variation in survival on different diets, notably on high-sugar diet. Our genetic analysis and functional validation identify several regulators of macronutrient tolerance, including CG10960/GLUT8, Pkn and Eip75B. We also demonstrate a role for the JNK pathway in sugar tolerance and de novo lipogenesis. Finally, we report a role for tailless, a conserved orphan nuclear hormone receptor, in regulating sugar metabolism via insulin-like peptide secretion and sugar-responsive CCHamide-2 expression. Our study provides support for the use of nutrigenomics in the development of personalized nutrition.
Collapse
Affiliation(s)
- E Havula
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - S Ghazanfar
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - N Lamichane
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - D Francis
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - K Hasygar
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Y Liu
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - L A Alton
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - J Johnstone
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - E J Needham
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - T Pulpitel
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - T Clark
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - H N Niranjan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - V Shang
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - V Tong
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - N Jiwnani
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - G Audia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - A N Alves
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - L Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - C Mirth
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - G G Neely
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - J Yang
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - V Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - S J Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - A M Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
8
|
Nelson AT, Wang Y, Nelson ER. TLX, an Orphan Nuclear Receptor With Emerging Roles in Physiology and Disease. Endocrinology 2021; 162:6360449. [PMID: 34463725 PMCID: PMC8462384 DOI: 10.1210/endocr/bqab184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 12/14/2022]
Abstract
TLX (NR2E1), an orphan member of the nuclear receptor superfamily, is a transcription factor that has been described to be generally repressive in nature. It has been implicated in several aspects of physiology and disease. TLX is best known for its ability to regulate the proliferation of neural stem cells and retinal progenitor cells. Dysregulation, overexpression, or loss of TLX expression has been characterized in numerous studies focused on a diverse range of pathological conditions, including abnormal brain development, psychiatric disorders, retinopathies, metabolic disease, and malignant neoplasm. Despite the lack of an identified endogenous ligand, several studies have described putative synthetic and natural TLX ligands, suggesting that this receptor may serve as a therapeutic target. Therefore, this article aims to briefly review what is known about TLX structure and function in normal physiology, and provide an overview of TLX in regard to pathological conditions. Particular emphasis is placed on TLX and cancer, and the potential utility of this receptor as a therapeutic target.
Collapse
Affiliation(s)
- Adam T Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Correspondence: Erik R. Nelson, PhD, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 S Goodwin Ave (MC-114), Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Yin M, Zhang L, Tang S, Matsuoka R, Xi Y, Tao N, Wang X. Egg Yolk Phospholipids Modulate Microbial Imbalance in the Intestinal Tract of Rats on a High‐Fructose Diet. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Yin
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- College of Fisheries and Life Science Shanghai Ocean University Shanghai 201306 China
- Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation Shanghai 201306 China
| | - Long Zhang
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- College of Fisheries and Life Science Shanghai Ocean University Shanghai 201306 China
- Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation Shanghai 201306 China
| | - Shijie Tang
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- College of Fisheries and Life Science Shanghai Ocean University Shanghai 201306 China
| | - Ryosuke Matsuoka
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| | - Yinci Xi
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| | - Ningping Tao
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- College of Fisheries and Life Science Shanghai Ocean University Shanghai 201306 China
| | - Xichang Wang
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- College of Fisheries and Life Science Shanghai Ocean University Shanghai 201306 China
- Shanghai Engineering Research Center of Aquatic‐Product Processing and Preservation Shanghai 201306 China
| |
Collapse
|
10
|
He G, Gu J, Wang H, Cheng S, Xiong Q, Ke M, Hu Y, Feng J, Song L, Liu Z, Xu Y. Nr2e1 deficiency aggravates insulin resistance and chronic inflammation of visceral adipose tissues in a diet-induced obese mice model. Life Sci 2021; 278:119562. [PMID: 33915130 DOI: 10.1016/j.lfs.2021.119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
AIMS To investigate the nuclear receptor subfamily 2 group E member 1 (Nr2e1) expression in adipose tissues of obese mice and assess the role of Nr2e1 in insulin resistance and chronic inflammation of the adipose tissues. MAIN METHODS An obese model was established in Nr2e1 knockout (KO) mice and their wild type (WT) littermates through a long-term high-fat diet (HFD) feeding regime. The epididymal fat weight, body weight, and daily food intake were recorded. The blood lipid profile, blood inflammatory factors, and the levels of fasting blood glucose (FBG) and fasting insulin were determined. We estimated insulin resistance by the homeostasis model assessment (HOMA). The expression of inflammatory factors and F4/80 was examined by polymerase chain reaction (PCR) and western blotting to assess adipose tissues inflammation. We also determined the molecules of insulin signaling and the nuclear factor kappa B (NF-κB) pathway by western blotting. KEY FINDINGS The Nr2e1 expression was upregulated in WT obese mice when compared with that in control mice. Despite a lower body weight and epididymal fat mass in Nr2e1-/- mice, these rats showed increased inflammatory cytokines secretion, more pronounced hyperlipidemia, and impaired insulin sensitivity after HFD treatment. Further investigation revealed that Nr2e1 deletion affected the expression of insulin signaling and NF-κB pathway-related molecules in visceral adipose tissues. SIGNIFICANCE Nr2e1 may act as a potential target to improve insulin sensitivity and inflammation in obesity and related complications.
Collapse
Affiliation(s)
- Guangzhen He
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Pediatrics, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| | - Jiaowei Gu
- Department of Pediatrics, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| | - Huawei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Siyuan Cheng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qing Xiong
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Mengting Ke
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yong Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jieyuan Feng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Linyang Song
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zheng Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Xiong Q, Li Z, Nie R, Meng X, Yang XJ. Comparison of the Effects of a Bean-Based and a White Rice-Based Breakfast Diet on Postprandial Glucose and Insulin Levels in Chinese Patients with Type 2 Diabetes. Med Sci Monit 2021; 27:e930349. [PMID: 33785707 PMCID: PMC8020724 DOI: 10.12659/msm.930349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND This study compared the effects of a bean-based and a white rice-based breakfast diet on postprandial glucose and insulin levels in Chinese patients with type 2 diabetes mellitus (T2DM). MATERIAL AND METHODS We recruited 63 patients with T2DM. The patients participated in the randomized 2×2 crossover trial. The bean-based diet group and white rice control group were matched for 50 g of available carbohydrate at breakfast. The patients followed the diets for 3 days. Vein blood samples were collected at 0, 30, 60, 120, and 180 min after eating. Data were analyzed using a repeated-measures analysis of variance. The results are expressed as the mean±standard error of mean (SEM) or as the median with interquartile range values. RESULTS Compared with the white rice control, postprandial glucose was significantly lower with the bean-based diet treatments at 60 min (P=0.004), 120 min (P=0.000), and 180 min (P=0.000). The insulin levels of the bean-based diet group were significantly higher at 60 min (P=0.013). The C-peptide levels of the bean-based diet group were significantly higher at 30 min (P=0.042) and 60 min (P=0.005) postprandial. The glucose area under the curve (AUC) showed a similar trend (P=0.000). There were no statistically significant differences in the AUC of insulin and C-peptide, except C-peptide AUC at 0 to 60 min (P=0.027). CONCLUSIONS Compared with a white rice-based breakfast, a bean-based diet significantly reduced postprandial glucose levels and promoted insulin secretion. These results support a dietary approach to reduce postprandial hyperglycemia.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Endocrinology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China (mainland).,Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Zhiming Li
- Department of Endocrinology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China (mainland)
| | - Rongjie Nie
- Department of Endocrinology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China (mainland)
| | - Xubiao Meng
- Department of Endocrinology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China (mainland)
| | - Xue-Jun Yang
- Department of Endocrinology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China (mainland)
| |
Collapse
|