1
|
Chen C, Li P, Fan G, Yang E, Jing S, Shi Y, Gong Y, Zhang L, Wang Z. Role of TRIP13 in human cancer development. Mol Biol Rep 2024; 51:1088. [PMID: 39436503 DOI: 10.1007/s11033-024-10012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
As an AAA + ATPase, thyroid hormone receptor interacting protein 13 (TRIP13) primarily functions in DNA double-strand break repair, chromosome recombination, and cell cycle checkpoint regulation; aberrant expression of TRIP13 can result in chromosomal instability (CIN). According to recent research, TRIP13 is aberrantly expressed in a variety of cancers, and a patient's poor prognosis and tumor stage are strongly correlated with high expression of TRIP13. Tumor cell and subcutaneous xenograft growth can be markedly inhibited by TRIP13 knockdown or TRIP13 inhibitor administration. In the initiation and advancement of human malignancies, TRIP13 seems to function as an oncogene. Based on available data, TRIP13 may function as a biological target and biomarker for cancer. The creation of inhibitors that specifically target TRIP13 may present novel approaches to treating cancer.
Collapse
Affiliation(s)
- Chaohu Chen
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Pan Li
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Guangrui Fan
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Enguang Yang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Suoshi Jing
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Yibo Shi
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Yuwen Gong
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Luyang Zhang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China.
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China.
| |
Collapse
|
2
|
Jacob Bunu S, Cai H, Wu L, Zhang H, Zhou Z, Xu Z, Shi J, Zhu W. TRIP13 - a potential drug target in cancer pharmacotherapy. Bioorg Chem 2024; 151:107650. [PMID: 39042962 DOI: 10.1016/j.bioorg.2024.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA+ATPases) are important enzymatic functional proteins in human cells. Thyroid Hormone Receptor Interacting Protein-13 (TRIP13) is a member of this protein superfamily, that partly regulates DNA repair pathways and spindle assembly checkpoints during mitosis. TRIP13 is reported as an oncogene involving multiple pathways in many human malignancies, including multiple myeloma, brain tumors, etc. The structure of TRIP13 reveals the mechanisms for ATP binding and how TRIP13 recognizes the Mitotic Arrest Deficiency-2 (MAD2) protein, with p31comet acting as an adapter protein. DCZ0415, TI17, DCZ5417, and DCZ5418 are the reported small-molecule inhibitors of TRIP13, which have been demonstrated to inhibit TRIP13's biological functions significantly and effective in suppressing various types of malignant cells, indicating that TRIP13 is a significant anticancer drug target. Currently, no systematic reviews are cutting across the functions, structure, and novel inhibitors of TRIP13. This review provides a comprehensive overview of TRIP13's biological functions, its roles in eighteen different cancers, four small molecule inhibitors, different underlying molecular mechanisms, and its functionality as a potential anticancer drug target.
Collapse
Affiliation(s)
- Samuel Jacob Bunu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Haiyan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Leyun Wu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhaoyin Zhou
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
3
|
Craig O, Lee S, Pilcher C, Saoud R, Abdirahman S, Salazar C, Williams N, Ascher D, Vary R, Luu J, Cowley K, Ramm S, Li MX, Thio N, Li J, Semple T, Simpson K, Gorringe K, Holien J. A new method for network bioinformatics identifies novel drug targets for mucinous ovarian carcinoma. NAR Genom Bioinform 2024; 6:lqae096. [PMID: 39184376 PMCID: PMC11344246 DOI: 10.1093/nargab/lqae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Mucinous ovarian carcinoma (MOC) is a subtype of ovarian cancer that is distinct from all other ovarian cancer subtypes and currently has no targeted therapies. To identify novel therapeutic targets, we developed and applied a new method of differential network analysis comparing MOC to benign mucinous tumours (in the absence of a known normal tissue of origin). This method mapped the protein-protein network in MOC and then utilised structural bioinformatics to prioritise the proteins identified as upregulated in the MOC network for their likelihood of being successfully drugged. Using this protein-protein interaction modelling, we identified the strongest 5 candidates, CDK1, CDC20, PRC1, CCNA2 and TRIP13, as structurally tractable to therapeutic targeting by small molecules. siRNA knockdown of these candidates performed in MOC and control normal fibroblast cell lines identified CDK1, CCNA2, PRC1 and CDC20, as potential drug targets in MOC. Three targets (TRIP13, CDC20, CDK1) were validated using known small molecule inhibitors. Our findings demonstrate the utility of our pipeline for identifying new targets and highlight potential new therapeutic options for MOC patients.
Collapse
Affiliation(s)
- Olivia Craig
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Samuel Lee
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Carlton, VIC 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Courtney Pilcher
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| | - Rita Saoud
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Suad Abdirahman
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Carolina Salazar
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Nathan Williams
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4067, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robert Vary
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Jennii Luu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Karla J Cowley
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Susanne Ramm
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Mark Xiang Li
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Jason Li
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Tim Semple
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Kaylene J Simpson
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jessica K Holien
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Carlton, VIC 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| |
Collapse
|
4
|
Sinnarasan VSP, Paul D, Das R, Venkatesan A. Gastric Cancer Biomarker Candidates Identified by Machine Learning and Integrative Bioinformatics: Toward Personalized Medicine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023. [PMID: 37229622 DOI: 10.1089/omi.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gastric cancer (GC) is among the leading causes of cancer-related deaths worldwide. The discovery of robust diagnostic biomarkers for GC remains a challenge. This study sought to identify biomarker candidates for GC by integrating machine learning (ML) and bioinformatics approaches. Transcriptome profiles of patients with GC were analyzed to identify differentially expressed genes between the tumor and adjacent normal tissues. Subsequently, we constructed protein-protein interaction networks so as to find the significant hub genes. Along with the bioinformatics integration of ML methods such as support vector machine, the recursive feature elimination was used to select the most informative genes. The analysis unraveled 160 significant genes, with 88 upregulated and 72 downregulated, 10 hub genes, and 12 features from the variable selection method. The integrated analyses found that EXO1, DTL, KIF14, and TRIP13 genes are significant and poised as potential diagnostic biomarkers in relation to GC. The receiver operating characteristic curve analysis found KIF14 and TRIP13 are strongly associated with diagnosis of GC. We suggest KIF14 and TRIP13 are considered as biomarker candidates that might potentially inform future research on diagnosis, prognosis, or therapeutic targets for GC. These findings collectively offer new future possibilities for precision/personalized medicine research and development for patients with GC.
Collapse
Affiliation(s)
| | - Dahrii Paul
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rajesh Das
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Amouda Venkatesan
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
5
|
Ultrasound-targeted microbubble destruction (UTMD)-mediated miR-150-5p attenuates oxygen and glucose deprivation-induced cardiomyocyte injury by inhibiting TTC5 expression. Mol Biol Rep 2022; 49:6041-6052. [PMID: 35357625 DOI: 10.1007/s11033-022-07392-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cardiomyocyte injury is a typical feature in cardiovascular diseases. Changes in cardiomyocytes strongly affect the progression of cardiovascular diseases. This work aimed to investigate the biological function and potential mechanism of action of miR-150-5p in cardiomyocytes. METHODS AND RESULTS A myocardial ischemia (MI) injury rat model was constructed to detect miR-150-5p and tetratricopeptide repeat domain 5 (TTC5) expression during heart ischemia injury. Primary cardiomyocytes were isolated for in vitro study. CCK-8 assays were used to detect cardiomyocyte viability. Western blots were used to detect TTC5 and P53 expression. qPCR was utilized to measure RNA expression of miR-150-5p and TTC5. The TUNEL assay was used to determine cell apoptosis. ELISA was used to determine cytokine (TNF-α, IL-1β, IL-6, and IL-8) levels in heart tissues and cell culture supernatants. A dual-luciferase reporter assay was carried out to verify the binding ability between miR-150-5p and TTC5. Oxygen-glucose deprivation (OGD) treatment significantly inhibited cell viability. Ultrasound-targeted microbubble destruction (UTMD)-mediated uptake of miR-150-5p inverted these results. Additionally, UTMD-mediated uptake of miR-150-5p retarded the effects of OGD treatment on cell apoptosis. Besides, UTMD-mediated uptake of miR-150-5p counteracted the effects of OGD treatment on the inflammatory response by regulating cytokine (TNF-α, IL-1β, IL-6, and IL-8) levels. For the mechanism of the protective effect on the heart, we predicted and confirmed that miR-150-5p bound to TTC5 and inhibited TTC5 expression. CONCLUSIONS UTMD-mediated uptake of miR-150-5p attenuated OGD-induced primary cardiomyocyte injury by inhibiting TTC5 expression. This discovery contributes toward further understanding the progression of primary cardiomyocyte injury.
Collapse
|
6
|
Gu Y, Desai A, Corbett KD. Evolutionary Dynamics and Molecular Mechanisms of HORMA Domain Protein Signaling. Annu Rev Biochem 2022; 91:541-569. [PMID: 35041460 DOI: 10.1146/annurev-biochem-090920-103246] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Controlled assembly and disassembly of multi-protein complexes is central to cellular signaling. Proteins of the widespread and functionally diverse HORMA family nucleate assembly of signaling complexes by binding short peptide motifs through a distinctive safety-belt mechanism. HORMA proteins are now understood as key signaling proteins across kingdoms, serving as infection sensors in a bacterial immune system and playing central roles in eukaryotic cell cycle, genome stability, sexual reproduction, and cellular homeostasis pathways. Here, we describe how HORMA proteins' unique ability to adopt multiple conformational states underlies their functions in these diverse contexts. We also outline how a dedicated AAA+ ATPase regulator, Pch2/TRIP13, manipulates HORMA proteins' conformational states to activate or inactivate signaling in different cellular contexts. The emergence of Pch2/TRIP13 as a lynchpin for HORMA protein action in multiple genome-maintenance pathways accounts for its frequent misregulation in human cancers and highlights TRIP13 as a novel therapeutic target. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA;
| | - Arshad Desai
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA; .,Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, USA.,Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California, USA
| | - Kevin D Corbett
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Liu X, Shen X, Zhang J. TRIP13 exerts a cancer-promoting role in cervical cancer by enhancing Wnt/β-catenin signaling via ACTN4. ENVIRONMENTAL TOXICOLOGY 2021; 36:1829-1840. [PMID: 34061428 DOI: 10.1002/tox.23303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Increasing evidence has indicated that thyroid hormone receptor interacting protein 13 (TRIP13) exerts a cancer-promoting role in a broad spectrum of cancers. However, the detailed relevance and function of TRIP13 in cervical cancer remain undefined. The goal of this work was to evaluate the functional significance and mechanism of TRIP13 in cervical cancer. Our data demonstrated that TRIP13 expression was markedly increased in cervical cancer tissue, and high expression of TRIP13 predicted a low survival rate in cervical cancer patients. Knockdown of TRIP13 caused a significant reduction in the proliferation and invasion of cervical cancer cells. By contrast, over-expression of TRIP13 accelerated the proliferation and invasion of cervical cancer cells. Further data revealed that TRIP13 enhanced the activation of Wnt/β-catenin signaling associated with modulation of α-Actinin-4 (ACTN4). Knockdown of ACTN4 markedly reversed TRIP13-mediated activation of Wnt/β-catenin signaling. In addition, inhibition of Wnt/β-catenin signaling reversed TRIP13-induced cancer-promoting effects in cervical cancer cells. Knockdown of TRIP13 markedly retarded the tumor formation and growth of cervical cells in vivo in nude mice. Taken together, the data of this work indicate that TRIP13 accelerates the proliferation and invasion of cervical cancer by enhancing Wnt/β-catenin signaling via regulation of ACTN4. These findings underscore a relevance of the TRIP13/ACTN4/Wnt/β-catenin signaling axis in the progression of cervical cancer and suggest TRIP13 as a potential target for treatment of cervical cancer.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Xin Shen
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Jing Zhang
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
8
|
Cai W, Ni W, Jin Y, Li Y. TRIP13 promotes lung cancer cell growth and metastasis through AKT/mTORC1/c-Myc signaling. Cancer Biomark 2021; 30:237-248. [PMID: 33136091 DOI: 10.3233/cbm-200039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a primary cause of cancer-patient mortality throughout the world. Thyroid hormone receptor interactor 13 (TRIP13) is a gene that expresses a protein involved in cell division, including tumorigenesis. Its expression is high in various human tumors; however, its role in LUAD cells remains undetermined. OBJECTIVE To investigate the TRIP13's role in the development of LUAD. METHODS Bioinformation analysis was used to analyze the expression of TRIP13 in LUAD tissues and the impact on the prognosis of LUAD; CRISPR/Cas9 was used to construct the cell lines; CCK-8 was used to explore the cell proliferation; Transwell assays was applied to exam the cell migration and cell invasion abilities; Western blot and immunoprecipitation was used to explore the relation between TRIP13 and AKT/mTORC1/c-Myc signaling pathway. RESULTS By analyzing LUAD data from The Cancer Genome Atlas and the Gene Expression Omnibus databases, we determined that TRIP13 is highly expressed in LUAD tissues and that this expression level has a negative impact on the patient mortality. TRIP13 has also proved to promote LUAD cell proliferation, migration, and invasion. In this study, we demonstrated that TRIP13 activates AKT/mTORC1/c-Myc signaling in these cells. CONCLUSION Our results have identified the role and potential mechanism by which TRIP13 affects LUAD cells, which may provide a useful marker for helping to diagnose this disease and create new therapies against it.
Collapse
Affiliation(s)
- Weiyang Cai
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Ni
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yin Jin
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanyan Li
- Department of Ultrasound, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Ashrafizadeh M, Zarabi A, Hushmandi K, Moghadam ER, Hashemi F, Daneshi S, Hashemi F, Tavakol S, Mohammadinejad R, Najafi M, Dudha N, Garg M. C-Myc Signaling Pathway in Treatment and Prevention of Brain Tumors. Curr Cancer Drug Targets 2021; 21:2-20. [PMID: 33069197 DOI: 10.2174/1568009620666201016121005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Brain tumors are responsible for high morbidity and mortality worldwide. Several factors such as the presence of blood-brain barrier (BBB), sensitive location in the brain, and unique biological features challenge the treatment of brain tumors. The conventional drugs are no longer effective in the treatment of brain tumors, and scientists are trying to find novel therapeutics for brain tumors. In this way, identification of molecular pathways can facilitate finding an effective treatment. c-Myc is an oncogene signaling pathway capable of regulation of biological processes such as apoptotic cell death, proliferation, survival, differentiation, and so on. These pleiotropic effects of c-Myc have resulted in much fascination with its role in different cancers, particularly brain tumors. In the present review, we aim to demonstrate the upstream and down-stream mediators of c-Myc in brain tumors such as glioma, glioblastoma, astrocytoma, and medulloblastoma. The capacity of c-Myc as a prognostic factor in brain tumors will be investigated. Our goal is to define an axis in which the c-Myc signaling pathway plays a crucial role and to provide direction for therapeutic targeting in these signaling networks in brain tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Universite Caddesi No. 27, Orhanli, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of physiotherapy, Faculty of rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, Uttar Pradesh, India
| | - Manoj Garg
- Amity of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida-201313, India
| |
Collapse
|
10
|
Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Taranejoo S, Zali H. HSP90 and Co-chaperones: Impact on Tumor Progression and Prospects for Molecular-Targeted Cancer Therapy. Cancer Invest 2020; 38:310-328. [PMID: 32274949 DOI: 10.1080/07357907.2020.1752227] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heat shock protein 90 (HSP90), a highly and unique chaperone, presents as a double-edged sword. It plays an essential role in many physiological and pathological processes, including tumor development. The current review highlights a recent understanding of the roles of HSP90 in molecular mechanisms underlying cancer survival and progression. HSP90 and its client proteins through the regulation of oncoproteins including signaling proteins, receptors, and transcriptional factors involved in tumorigenesis. It also has potential clinical application as diagnostic and prognostic biomarkers for assessing cancer progression. In this way, using HSP90 to develop new anticancer therapeutic agents including HSP90 inhibitors, anti-HSP90 antibody, and HSP90-based vaccines has been promising.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrouz Taranejoo
- Wellman Centre for Photomedicine, Harvard-MIT Division of Health Sciences and Technology (HST), Boston, MA, USA
| | - Hakimeh Zali
- Department of Tissue engineering and applied cell, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|