1
|
Erukainure OL, Houreld NN. Vanillin Enhances Photobiomodulation Wound Healing by Modulating Glyco-Oxidative Stress and Glucose Dysmetabolism in Diabetic Wounded Fibroblast Cells. J Cell Mol Med 2025; 29:e70537. [PMID: 40194982 PMCID: PMC11975505 DOI: 10.1111/jcmm.70537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Delayed wound healing is among the major peripheral complications of diabetes. Synergistic treatment of diabetic wounds (DW) with phytochemicals and non-invasive techniques has shown promising results. The synergistic effect of vanillin and photobiomodulation (PBM) on DW healing, and their modulatory effect on oxidative stress and glucose metabolism was investigated in DW fibroblast cells (WS1). DW cells were treated with vanillin and vanillin + PBM. Control consisted of WS1 cells, untreated DW cells, and DW cells treated with PBM. Diabetes was induced by repeated growth in complete MEM containing high D-glucose (22.6 mM/L). Wounds were induced by central scratching. Cells were treated with vanillin at various concentrations for 2 h prior to PBM at 660 nm with a fluence of 5 J/cm2 for an irradiation time of 780 s, followed by 24 h incubation. Induction of DW led to a decreased glutathione level, and decreased superoxide dismutase, catalase, glutathione reductase, glyoxalase, and Na/K-ATPase activities, while concomitantly increasing the activities of fructose-1,6-bisphosphatase, glucose 6-phosphatase, E-NTPDase, and 5-lipoxygenase. These levels and activities were reversed following treatment with 12 μg/mL vanillin, and 6 μg/mL vanillin + PBM having the best effects. However, treatment with 24 μg/mL vanillin and vanillin + PBM showed no significant effects. Except for cells treated with 24 μg/mL vanillin and vanillin + PBM, morphological analysis indicated wound closures compared to the controls. These results indicate the synergistic therapeutic effect of vanillin + PBM on the management of diabetic wounds, with 6 μg/mL vanillin + PBM displaying the best effect.
Collapse
Affiliation(s)
- Ochuko L. Erukainure
- Laser Research CentreFaculty of Health Sciences, University of JohannesburgDoornfonteinSouth Africa
| | - Nicolette N. Houreld
- Laser Research CentreFaculty of Health Sciences, University of JohannesburgDoornfonteinSouth Africa
| |
Collapse
|
2
|
Mgwenya TN, Abrahamse H, Houreld NN. Photobiomodulation studies on diabetic wound healing: An insight into the inflammatory pathway in diabetic wound healing. Wound Repair Regen 2025; 33:e13239. [PMID: 39610015 PMCID: PMC11628774 DOI: 10.1111/wrr.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 11/30/2024]
Abstract
Diabetes mellitus remains a global challenge to public health as it results in non-healing chronic ulcers of the lower limb. These wounds are challenging to heal, and despite the different treatments available to improve healing, there is still a high rate of failure and relapse, often necessitating amputation. Chronic diabetic ulcers do not follow an orderly progression through the wound healing process and are associated with a persistent inflammatory state characterised by the accumulation of pro-inflammatory macrophages, cytokines and proteases. Photobiomodulation has been successfully utilised in diabetic wound healing and involves illuminating wounds at specific wavelengths using predominantly light-emitting diodes or lasers. Photobiomodulation induces wound healing through diminishing inflammation and oxidative stress, among others. Research into the application of photobiomodulation for wound healing is current and ongoing and has drawn the attention of many researchers in the healthcare sector. This review focuses on the inflammatory pathway in diabetic wound healing and the influence photobiomodulation has on this pathway using different wavelengths.
Collapse
Affiliation(s)
- Tintswalo N. Mgwenya
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgJohannesburgGautengSouth Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgJohannesburgGautengSouth Africa
| | - Nicolette N. Houreld
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgJohannesburgGautengSouth Africa
| |
Collapse
|
3
|
Wang YR, Zhang XX, Chen XX, Yin XH, Yang M, Jiang K, Liu SC. Enhancement of Bone Repair in Diabetic Rats with Metformin-Modified Silicified Collagen Scaffolds. Adv Healthc Mater 2025; 14:e2401430. [PMID: 39177124 DOI: 10.1002/adhm.202401430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/14/2024] [Indexed: 08/24/2024]
Abstract
Regenerating bone defects in diabetic rats presents a significant challenge due to the detrimental effects of reactive oxygen species and impaired autophagy on bone healing. To address these issues, a metformin-modified biomimetic silicified collagen scaffold is developed utilizing the principles of biomimetic silicification. In vitro and in vivo experiments demonstrated that the scaffold enhanced bone tissue regeneration within the diabetic microenvironment through the release of dual bio-factors. Further analysis reveals a potential therapeutic mechanism whereby these dual bio-factors synergistically promoted osteogenesis in areas of diabetic bone defects by improving mitochondrial autophagy and maintaining redox balance. The present study provides critical insights into the advancement of tissue engineering strategies aimed at bone regeneration in diabetic patients. The study also sheds light on the underlying biological mechanisms.
Collapse
Affiliation(s)
- Yi-Rong Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xiao-Xia Zhang
- Xi'an International University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xu-Xu Chen
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Xin-Hua Yin
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Ming Yang
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Kuo Jiang
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Shi-Chang Liu
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| |
Collapse
|
4
|
Summer M, Ali S, Fiaz U, Hussain T, Khan RRM, Fiaz H. Revealing the molecular mechanisms in wound healing and the effects of different physiological factors including diabetes, age, and stress. J Mol Histol 2024; 55:637-654. [PMID: 39120834 DOI: 10.1007/s10735-024-10223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Wounds are the common fates in various microbial infections and physical damages including accidents, surgery, and burns. In response, a healthy body with a potent immune system heals that particular site within optimal time by following the coagulation, inflammation, proliferation, and remodeling phenomenon. However, certain malfunctions in the body due to various diseases particularly diabetes and other physiological factors like age, stress, etc., prolong the process of wound healing through various mechanisms including the Akt, Polyol, and Hexosamine pathways. The current review thoroughly explains the wound types, normal wound healing mechanisms, and the immune system's role. Moreover, the mechanistic role of diabetes is also elaborated comprehensively.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | | | - Hashim Fiaz
- Ammer-ud-Din Medical College, Lahore, 54000, Pakistan
| |
Collapse
|
5
|
Selestin Raja I, Kim C, Oh N, Park JH, Hong SW, Kang MS, Mao C, Han DW. Tailoring photobiomodulation to enhance tissue regeneration. Biomaterials 2024; 309:122623. [PMID: 38797121 DOI: 10.1016/j.biomaterials.2024.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Photobiomodulation (PBM), the use of biocompatible tissue-penetrating light to interact with intracellular chromophores to modulate the fates of cells and tissues, has emerged as a promising non-invasive approach to enhancing tissue regeneration. Unlike photodynamic or photothermal therapies that require the use of photothermal agents or photosensitizers, PBM treatment does not need external agents. With its non-harmful nature, PBM has demonstrated efficacy in enhancing molecular secretions and cellular functions relevant to tissue regeneration. The utilization of low-level light from various sources in PBM targets cytochrome c oxidase, leading to increased synthesis of adenosine triphosphate, induction of growth factor secretion, activation of signaling pathways, and promotion of direct or indirect gene expression. When integrated with stem cell populations, bioactive molecules or nanoparticles, or biomaterial scaffolds, PBM proves effective in significantly improving tissue regeneration. This review consolidates findings from in vitro, in vivo, and human clinical outcomes of both PBM alone and PBM-combined therapies in tissue regeneration applications. It encompasses the background of PBM invention, optimization of PBM parameters (such as wavelength, irradiation, and exposure time), and understanding of the mechanisms for PBM to enhance tissue regeneration. The comprehensive exploration concludes with insights into future directions and perspectives for the tissue regeneration applications of PBM.
Collapse
Affiliation(s)
| | - Chuntae Kim
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
| | - Dong-Wook Han
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
6
|
Mohsin F, Javaid S, Tariq M, Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int Immunopharmacol 2024; 139:112713. [PMID: 39047451 DOI: 10.1016/j.intimp.2024.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.
Collapse
Affiliation(s)
- Fatima Mohsin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Sheza Javaid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Mishal Tariq
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
7
|
Hernández-Bule ML, Naharro-Rodríguez J, Bacci S, Fernández-Guarino M. Unlocking the Power of Light on the Skin: A Comprehensive Review on Photobiomodulation. Int J Mol Sci 2024; 25:4483. [PMID: 38674067 PMCID: PMC11049838 DOI: 10.3390/ijms25084483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Photobiomodulation (PBM) is a procedure that uses light to modulate cellular functions and biological processes. Over the past decades, PBM has gained considerable attention for its potential in various medical applications due to its non-invasive nature and minimal side effects. We conducted a narrative review including articles about photobiomodulation, LED light therapy or low-level laser therapy and their applications on dermatology published over the last 6 years, encompassing research studies, clinical trials, and technological developments. This review highlights the mechanisms of action underlying PBM, including the interaction with cellular chromophores and the activation of intracellular signaling pathways. The evidence from clinical trials and experimental studies to evaluate the efficacy of PBM in clinical practice is summarized with a special emphasis on dermatology. Furthermore, advancements in PBM technology, such as novel light sources and treatment protocols, are discussed in the context of optimizing therapeutic outcomes and improving patient care. This narrative review underscores the promising role of PBM as a non-invasive therapeutic approach with broad clinical applicability. Despite the need for further research to develop standard protocols, PBM holds great potential for addressing a wide range of medical conditions and enhancing patient outcomes in modern healthcare practice.
Collapse
Affiliation(s)
| | | | - Stefano Bacci
- Research Unit of Histology and Embriology, Department of Biology, University of Florence, 50139 Florence, Italy;
| | | |
Collapse
|
8
|
Rathna RP, Kulandhaivel M. Advancements in wound healing: integrating biomolecules, drug delivery carriers, and targeted therapeutics for enhanced tissue repair. Arch Microbiol 2024; 206:199. [PMID: 38563993 DOI: 10.1007/s00203-024-03910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Wound healing, a critical biological process vital for tissue restoration, has spurred a global market exceeding $15 billion for wound care products and $12 billion for scar treatment. Chronic wounds lead to delayed or impaired wound healing. Natural bioactive compounds, prized for minimal side effects, stand out as promising candidates for effective wound healing. In response, researchers are turning to nanotechnology, employing the encapsulation of these agents into drug delivery carriers. Drug delivery system will play a crucial role in enabling targeted delivery of therapeutic agents to promote tissue regeneration and address underlying issues such as inflammation, infection, and impaired angiogenesis in chronic wound healing. Drug delivery carriers offer distinct advantages, exhibiting a substantial ratio of surface area to volume and altered physical and chemical properties. These carriers facilitate sustained and controlled release, proving particularly advantageous for the extended process of wound healing, that typically comprise a diverse range of components, integrating both natural and synthetic polymers. Additionally, they often incorporate bioactive molecules. Despite their properties, including poor solubility, rapid degradation, and limited bioavailability, various natural bioactive agents face challenges in clinical applications. With a global research, emphasis on harnessing nanomaterial for wound healing application, this research overview engages advancing drug delivery technologies to augment the effectiveness of tissue regeneration using bioactive molecules. Recent progress in drug delivery has poised to enhance the therapeutic efficacy of natural compounds in wound healing applications.
Collapse
Affiliation(s)
- R Preethi Rathna
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India
| | - M Kulandhaivel
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India.
| |
Collapse
|
9
|
Sankar S, Kodiveri Muthukaliannan G. Deciphering the crosstalk between inflammation and biofilm in chronic wound healing: Phytocompounds loaded bionanomaterials as therapeutics. Saudi J Biol Sci 2024; 31:103963. [PMID: 38425782 PMCID: PMC10904202 DOI: 10.1016/j.sjbs.2024.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
In terms of the economics and public health, chronic wounds exert a significant detrimental impact on the health care system. Bacterial infections, which cause the formation of highly resistant biofilms that elude standard antibiotics, are the main cause of chronic, non-healing wounds. Numerous studies have shown that phytochemicals are effective in treating a variety of diseases, and traditional medicinal plants often include important chemical groups such alkaloids, phenolics, tannins, terpenes, steroids, flavonoids, glycosides, and fatty acids. These substances are essential for scavenging free radicals which helps in reducing inflammation, fending off infections, and hastening the healing of wounds. Bacterial species can survive in chronic wound conditions because biofilms employ quorum sensing as a communication technique which regulates the expression of virulence components. Fortunately, several phytochemicals have anti-QS characteristics that efficiently block QS pathways, prevent drug-resistant strains, and reduce biofilm development in chronic wounds. This review emphasizes the potential of phytocompounds as crucial agents for alleviating bacterial infections and promoting wound healing by reducing the inflammation in chronic wounds, exhibiting potential avenues for future therapeutic approaches to mitigate the healthcare burden provided by these challenging conditions.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| |
Collapse
|
10
|
Perrier Q, Moro C, Lablanche S. Diabetes in spotlight: current knowledge and perspectives of photobiomodulation utilization. Front Endocrinol (Lausanne) 2024; 15:1303638. [PMID: 38567306 PMCID: PMC10985212 DOI: 10.3389/fendo.2024.1303638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Diabetes is a global health concern characterized by chronic hyperglycemia resulting from insulinopenia and/or insulin resistance. The rising prevalence of diabetes and its associated complications (ulcers, periodontitis, healing of bone defect, neuropathy, retinopathy, cardiopathy and nephropathy) necessitate innovative therapeutic approaches. Photobiomodulation (PBM), involves exposing tissues and cells to low-energy light radiation, leading to biological effects, largely via mitochondrial activation. Methods This review evaluates preclinical and clinical studies exploring the potential of PBM in diabetes and its complications, as well all clinical trials, both planned and completed, available on ClinicalTrials database. Results This review highlights the variability in PBM parameters across studies, hindering consensus on optimal protocols. Standardization of treatment parameters and rigorous clinical trials are needed to unlock PBM's full therapeutic potential. 87 clinical trials were identified that investigated PBM in diabetes mellitus (with 5,837 patients planned to be treated with PBM). Clinical trials assessing PBM effects on diabetic neuropathy revealed pain reduction and potential quality of life improvement. Studies focusing on wound healing indicated encouraging results, with PBM enhancing angiogenesis, fibroblast proliferation, and collagen density. PBM's impact on diabetic retinopathy remains inconclusive however, requiring further investigation. In glycemic control, PBM exhibits positive effects on metabolic parameters, including glucose tolerance and insulin resistance. Conclusion Clinical studies have reported PBM-induced reductions in fasting and postprandial glycemia without an increased hypoglycemic risk. This impact of PBM may be related to its effects on the beta cells and islets in the pancreas. Notwithstanding challenges, PBM emerges as a promising adjunctive therapy for managing diabetic neuropathy, wound healing, and glycemic control. Further investigation into its impact on diabetic retinopathy and muscle recovery is warranted.
Collapse
Affiliation(s)
- Quentin Perrier
- Univ. Grenoble Alpes, INSERM U1055, Pharmacy Department, Grenoble Alpes University Hospital, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Cécile Moro
- Univ. Grenoble Alpes, CEA-Leti, Clinatec, Grenoble, France
| | - Sandrine Lablanche
- Univ. Grenoble Alpes, INSERM U1055, Diabetology and Endocrinology Department, Grenoble Alpes University Hospital, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| |
Collapse
|
11
|
Vazquez-Ayala L, Del Ángel-Olarte C, Escobar-García DM, Rosales-Mendoza S, Solis-Andrade I, Pozos-Guillén A, Palestino G. Chitosan sponges loaded with metformin and microalgae as dressing for wound healing: A study in diabetic bio-models. Int J Biol Macromol 2024; 254:127691. [PMID: 37898249 DOI: 10.1016/j.ijbiomac.2023.127691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Among the conditions caused by diabetes, the diabetic foot is a significant public health problem due to its delayed healing process. That makes it essential to design, manufacture, and apply auxiliary dressings during healing. In this work, chitosan sponges were developed and evaluated as wound dressings. Metformin, fucoidan, and exopolysaccharide from Porphyridium purpureum algae were loaded into the sponges and studied as healing promoters. The composite sponges were physicochemically, morphologically, and thermally characterized, allowing us to determine the chemical mechanisms involved in the sponge formation. The mechanical analysis demonstrated that sponge composites have shape memory and good mechanical performance under compression stress, showing a compressive strength above 30 kPa. These results correlated with the materials' porosity, influencing the swelling capacity that reached a maximum of 70 %. The morphology of materials was observed by SEM, resulting in folded films with surface porosity. The results of the biocompatibility tests confirmed that the materials are not cytotoxic or hemolytic and have good antibacterial activity. In vivo wound healing evaluation showed that metformin-loaded chitosan sponges regenerated skin tissue after 21 days of treatment, highlighting the rate of healing provided when exopolysaccharide was added to promote tissue regeneration, which can be corroborated by histological analysis. These results make chitosan sponge compounds promising dressings for diabetic foot wound treatment.
Collapse
Affiliation(s)
- Laura Vazquez-Ayala
- Grupo de Biopolímeros y Nanoestructuras, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. sección, San Luis Potosí 78210, Mexico
| | - César Del Ángel-Olarte
- Grupo de Biopolímeros y Nanoestructuras, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico
| | - Diana María Escobar-García
- Laboratorio de Ciencias Básicas, Universidad Autónoma de San Luis Potosí, Facultad de Estomatología, Av. Dr. Manuel Nava No. 2, San Luis Potosí 78290, Mexico
| | - Sergio Rosales-Mendoza
- Grupo de Biopolímeros y Nanoestructuras, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. sección, San Luis Potosí 78210, Mexico
| | - Ivon Solis-Andrade
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. sección, San Luis Potosí 78210, Mexico
| | - Amaury Pozos-Guillén
- Laboratorio de Ciencias Básicas, Universidad Autónoma de San Luis Potosí, Facultad de Estomatología, Av. Dr. Manuel Nava No. 2, San Luis Potosí 78290, Mexico
| | - Gabriela Palestino
- Grupo de Biopolímeros y Nanoestructuras, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. sección, San Luis Potosí 78210, Mexico.
| |
Collapse
|
12
|
Arte PA, Tungare K, Bhori M, Jobby R, Aich J. Treatment of type 2 diabetes mellitus with stem cells and antidiabetic drugs: a dualistic and future-focused approach. Hum Cell 2024; 37:54-84. [PMID: 38038863 DOI: 10.1007/s13577-023-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Type 2 Diabetes Mellitus (T2DM) accounts for more than 90% of total diabetes mellitus cases all over the world. Obesity and lack of balance between energy intake and energy expenditure are closely linked to T2DM. Initial pharmaceutical treatment and lifestyle interventions can at times lead to remission but usually help alleviate it to a certain extent and the condition remains, thus, recurrent with the patient being permanently pharmaco-dependent. Mesenchymal stromal cells (MSCs) are multipotent, self-renewing cells with the ability to secrete a variety of biological factors that can help restore and repair injured tissues. MSC-derived exosomes possess these properties of the original stem cells and are potentially able to confer superior effects due to advanced cell-to-cell signaling and the presence of stem cell-specific miRNAs. On the other hand, the repository of antidiabetic agents is constantly updated with novel T2DM disease-modifying drugs, with higher efficacy and increasingly convenient delivery protocols. Delving deeply, this review details the latest progress and ongoing studies related to the amalgamation of stem cells and antidiabetic drugs, establishing how this harmonized approach can exert superior effects in the management and potential reversal of T2DM.
Collapse
Affiliation(s)
- Priyamvada Amol Arte
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India.
- Anatek Services PVT LTD, Sai Chamber, 10, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra, 400055, India.
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Mustansir Bhori
- Inveniolife Technology PVT LTD, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
- Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
| | - Jyotirmoi Aich
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| |
Collapse
|
13
|
Cai F, Wang P, Chen W, Zhao R, Liu Y. The physiological phenomenon and regulation of macrophage polarization in diabetic wound. Mol Biol Rep 2023; 50:9469-9477. [PMID: 37688679 DOI: 10.1007/s11033-023-08782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
Macrophages play a crucial role in regulating wound healing, as they undergo a transition from the proinflammatory M1 phenotype to the proliferative M2 phenotype, ultimately contributing to a favorable outcome. However, in hyperglycemic and hyper-reactive oxygen species environments, the polarization of macrophages becomes dysregulated, hindering the transition from the inflammatory to proliferative phase and consequently delaying the wound healing process. Consequently, regulating macrophage polarization is often regarded as a potential target for the treatment of diabetic wounds. The role of macrophages in wound healing and the changes in macrophages in diabetic conditions were discussed in this review. After that, we provide a discussion of recent therapeutic strategies for diabetic wounds that utilize macrophage polarization. Furthermore, this review also provides a comprehensive summary of the efficacious treatment strategies aimed at enhancing diabetic wound healing through the regulation of macrophage polarization. By encompassing a thorough understanding of the fundamental principles and their practical implementation, the advancement of treatment strategies for diabetic wounds can be further facilitated.
Collapse
Affiliation(s)
- Feiyu Cai
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Peng Wang
- Department of Burns and skin surgery, The First Affiliated Hospital of Air Force Military Medical University, Shanxi, Xi'an, China
| | - Wenjiao Chen
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ruomei Zhao
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yi Liu
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
14
|
Kim TH, Heo SY, Han JS, Jung WK. Anti-inflammatory effect of polydeoxyribonucleotides (PDRN) extracted from red alga (Porphyra sp.) (Ps-PDRN) in RAW 264.7 macrophages stimulated with Escherichia coli lipopolysaccharides: A comparative study with commercial PDRN. Cell Biochem Funct 2023; 41:889-897. [PMID: 37589166 DOI: 10.1002/cbf.3840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Polydeoxyribonucleotide (PDRN) is a DNA-derived drug extracted from the sperm cells of Oncorhynchus mykiss or O. keta. PDRN exhibits wound healing and anti-inflammatory activities by activating adenosine A2A receptor and salvage pathways. However, commercial PDRN products (e.g., Placentex, Rejuvenex, and HiDr) have limitations as they are exclusively extracted O. mykiss and O. keta, which are expensive and can only be used as extraction sources during a specific period when their sperm cells are activated. Therefore, this study aimed to extract PDRN from Porphyra sp. (Ps-PDRN) and investigate whether it has anti-inflammatory activity through a comparative study with commercial product. The results indicated that Ps-PDRN had an anti-inflammatory effect on Escherichia coli lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages. It inhibited nitric oxide production and inducible nitric oxygen synthase protein expression by suppressing phosphorylation of p38 and ERK, without cytotoxicity. Furthermore, Ps-PDRN promoted cell proliferation and collagen production in human dermal fibroblast. In conclusion, our study confirms that Ps-PDRN exhibits both anti-inflammatory and cell proliferative effects. These results indicated that Ps-PDRN has the potential as a bioactive drug for tissue engineering.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Republic of Korea
| | - Ji Sung Han
- All In One GENETECH, Busan, Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
15
|
Huang H, Xin R, Li X, Zhang X, Chen Z, Zhu Q, Tai Z, Bao L. Physical therapy in diabetic foot ulcer: Research progress and clinical application. Int Wound J 2023; 20:3417-3434. [PMID: 37095726 PMCID: PMC10502280 DOI: 10.1111/iwj.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Diabetes foot ulcer (DFU) is one of the most intractable complications of diabetes and is related to a number of risk factors. DFU therapy is difficult and involves long-term interdisciplinary collaboration, causing patients physical and emotional pain and increasing medical costs. With a rising number of diabetes patients, it is vital to figure out the causes and treatment techniques of DFU in a precise and complete manner, which will assist alleviate patients' suffering and decrease excessive medical expenditure. Here, we summarised the characteristics and progress of the physical therapy methods for the DFU, emphasised the important role of appropriate exercise and nutritional supplementation in the treatment of DFU, and discussed the application prospects of non-traditional physical therapy such as electrical stimulation (ES), and photobiomodulation therapy (PBMT) in the treatment of DFU based on clinical experimental records in ClinicalTrials.gov.
Collapse
Affiliation(s)
- Hao Huang
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of PharmacyThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Rujuan Xin
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaolong Li
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of PharmacyThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Zhongjian Chen
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Quangang Zhu
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Leilei Bao
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Department of PharmacyThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
16
|
Priyadarshi A, Keshri GK, Gupta A. Effect of combination of photobiomodulation 904 nm superpulsed laser therapy and Hippophae rhamnoides L. on third-degree burn wound healing. J Cosmet Dermatol 2023; 22:2492-2501. [PMID: 37272267 DOI: 10.1111/jocd.15806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Burn is a traumatic injury and aesthetic scarless repair poses a great challenge in area of cosmetic dermatology. Focus on multimode therapeutic strategies to promote healing of burns by regulating various stages of healing is warranted. Photobiomodulation therapy (PBMT), a non-invasive modality grabs the attention to repair impaired wounds. Seabuckthorn extract (SBTL-ALE) is known to possess antioxidant, anti-inflammation, and tissue-repair abilities. Current study aims to assess the effect of combination treatment of PBM 904 nm superpulsed laser and SBTL-ALE (2.5%) on repair of third-degree burn in rats. METHODS Rats were randomized into five groups: uninjured, control, SBTL-ALE, 904 nm PBMT, and combination. A transdermal burn wound was induced on the dorsal side of rats of all groups except the uninjured group and respective treatment was applied for 7 days postwounding. RESULTS Dual treatment increased wound area contraction compared to control and either treatment alone. Immunohistochemical analyses exhibited increased angiogenesis, dermal hydration, collagen synthesis, and maintained redox homeostasis as evidenced by enhanced expression (p < 0.05) of CD31, aquaporin3, collagen type 3, Nrf2, and HO1 in combination group compared with control. Conversely, pro-inflammatory and oxidative stress markers exhibited reduced (p < 0.05) TNF-α, IL-6, IL-1β, NOS-2, ROS levels, and increased catalase activity in combined treatment. Furthermore, energy metabolizing enzymes viz. citrate synthase, CCO, and ATP contents were substantially (p < 0.05) increased, and LDH activity was reduced in the combination group. CONCLUSIONS Dual treatment (PBMT + SBTL-ALE) prominently accelerates third-degree burn wound healing in rats, which could pave the path for multimode therapeutic strategies for the management of burns and dermal cosmetic care.
Collapse
Affiliation(s)
- Ashok Priyadarshi
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, India
| | - Gaurav K Keshri
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, India
| | - Asheesh Gupta
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, India
| |
Collapse
|
17
|
Amini A, Ghasemi Moravej F, Mostafavinia A, Ahmadi H, Chien S, Bayat M. Photobiomodulation Therapy Improves Inflammatory Responses by Modifying Stereological Parameters, microRNA-21 and FGF2 Expression. J Lasers Med Sci 2023; 14:e16. [PMID: 37583493 PMCID: PMC10423949 DOI: 10.34172/jlms.2023.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 08/17/2023]
Abstract
Introduction: Photobiomodulation treatment (PBMT) is a relatively invasive method for treating wounds. An appropriate type of PBMT can produce desired and directed cellular and molecular processes. The aim of this study was to investigate the impacts of PBMT on stereological factors, bacterial count, and the expression of microRNA-21 and FGF2 in an infected, ischemic, and delayed wound healing model in rats with type one diabetes mellitus. Methods: A delayed, ischemic, and infected wound was produced on the back skin of all 24 DM1 rats. Then, they were put into 4 groups at random (n=6 per group): 1=Control group day4 (CGday4); 2=Control group day 8 (CGday8); 3=PBMT group day4 (PGday4), in which the rats were exposed to PBMT and killed on day 4; 4=PBMT group day8 (PGday8), in which the rats received PBMT and they were killed on day 8. The size of the wound, the number of microbial colonies, stereological parameters, and the expression of microRNA-21 and FGF2 were all assessed in this study throughout the inflammation (day 4) and proliferation (day 8) stages of wound healing. Results: On days 4 and 8, we discovered that the PGday4 and PGday8 groups significantly improved stereological parameters in comparison with the same CG groups. In terms of ulcer area size and microbiological counts, the PGday4 and PGday8 groups performed much better than the same CG groups. Simultaneously, the biomechanical findings in the PGday4 and PGday8 groups were much more extensive than those in the same CG groups. On days 4 and 8, the expression of FGF2 and microRNA-21 was more in all PG groups than in the CG groups (P<0.01). Conclusion: PBMT significantly speeds up the repair of ischemic and MARS-infected wounds in DM1 rats by lowering microbial counts and modifying stereological parameters, microRNA-21, and FGF2 expression.
Collapse
Affiliation(s)
- Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky, USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky, USA
| |
Collapse
|
18
|
Application of Collagen-Based Hydrogel in Skin Wound Healing. Gels 2023; 9:gels9030185. [PMID: 36975634 PMCID: PMC10048510 DOI: 10.3390/gels9030185] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The repair of skin injury has always been a concern in the medical field. As a kind of biopolymer material with a special network structure and function, collagen-based hydrogel has been widely used in the field of skin injury repair. In this paper, the current research and application status of primal hydrogels in the field of skin repair in recent years are comprehensively reviewed. Starting from the structure and properties of collagen, the preparation, structural properties, and application of collagen-based hydrogels in skin injury repair are emphatically described. Meanwhile, the influences of collagen types, preparation methods, and crosslinking methods on the structural properties of hydrogels are emphatically discussed. The future and development of collagen-based hydrogels are prospected, which is expected to provide reference for the research and application of collagen-based hydrogels for skin repair in the future.
Collapse
|
19
|
Rahmannia M, Amini A, Chien S, Bayat M. Impact of photobiomodulation on macrophages and their polarization during diabetic wound healing: a systematic review. Lasers Med Sci 2022; 37:2805-2815. [PMID: 35635648 DOI: 10.1007/s10103-022-03581-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023]
Abstract
This review aims to providing essential information and the current knowledge about the potential role of macrophages, especially their M2 subtypes in different diabetic wounds both in clinical and pre-clinical models under the influence of photobiomodulation (PBM). The long-term goal is to advance the macrophage-based therapies to accelerate healing of diabetic foot ulcers. We reviewed all databases provided by PubMed, Google Scholar, Scopus, Web of Science, and Cochrane precisely from their dates of inception to 25/10/2021. The keywords of Diabetes mellitus diseases, wound healing, macrophage, and photobiomodulation or low-level laser therapy were used in this systematic review.A total of 438 articles were initially identified in pubmed.ncbi.nlm.nih.gov (15 articles), Google scholar (398 articles), Scopus (18 articles), and Web of Science (7 articles). Four hundred sixteen articles that remained after duplicate studies (22 articles) were excluded. After screening abstracts and full texts, 14 articles were included in our analysis. Among them, 4 articles were about the effect of PBM on macrophages in type 2 diabetes and also found 10 articles about the impact of PBM on macrophages in type 1 diabetes. The obtained data from most of the reviewed studies affirmed that the PBM alone or combined with other agents (e.g., stem cells) could moderate the inflammatory response and accelerate the wound healing process in pre-clinical diabetic wound models. However, only very few studies conducted the detailed functions of polarized macrophages and M2 subtypes in wound healing of diabetic models under the influence of PBM. Further pre-clinical and clinical investigations are still needed to investigate the role of M2 macrophages, especially its M2c subtype, in the healing processes of diabetic foot ulcers in clinical and preclinical settings.
Collapse
Affiliation(s)
- Maryam Rahmannia
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville; and Noveratech LLC of Louisville, Louisville, KY, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville; and Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
20
|
Zhu H, Xu J, Zhao M, Luo H, Lin M, Luo Y, Li Y, He H, Wu J. Adhesive, injectable, and ROS-responsive hybrid polyvinyl alcohol (PVA) hydrogel co-delivers metformin and fibroblast growth factor 21 (FGF21) for enhanced diabetic wound repair. Front Bioeng Biotechnol 2022; 10:968078. [PMID: 36118565 PMCID: PMC9471317 DOI: 10.3389/fbioe.2022.968078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
As conventional treatments for diabetic wounds often fail to achieve rapid satisfactory healing, the development of effective strategies to accelerate diabetic wound repair is highly demanded. Herein, fibroblast growth factor 21 (FGF21) and metformin co-loaded multifunctional polyvinyl alcohol (PVA) hydrogel were fabricated for improved diabetic wound healing. The in vitro results proved that the hydrogel was adhesive and injectable, and that it could particularly scavenge reactive oxygen species (ROSs), while the in vivo data demonstrated that the hydrogel could promote angiogenesis by recruiting endothelial progenitor cells (EPCs) through upregulation of Ang-1. Both ROSs’ removal and EPCs’ recruitment finally resulted in enhanced diabetic wound healing. This work opens a strategy approach to diabetic wound management by combining biological macromolecules and small chemical molecules together using one promising environmental modulating drug delivery system.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Xu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Zhao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hangqi Luo
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minjie Lin
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Luo
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Jiang Wu,
| | - Jiang Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Jiang Wu,
| |
Collapse
|
21
|
The role of MicroRNA networks in tissue-specific direct and indirect effects of metformin and its application. Biomed Pharmacother 2022; 151:113130. [PMID: 35598373 DOI: 10.1016/j.biopha.2022.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Metformin is a first-line oral antidiabetic agent that results in clear benefits in relation to glucose metabolism and diabetes-related complications. The specific regulatory details and mechanisms underlying these benefits are still unclear and require further investigation. There is recent mounting evidence that metformin has pleiotropic effects on the target tissue development in metabolic organs, including adipose tissue, the gastrointestinal tract and the liver. The mechanism of actions of metformin are divided into direct effects on target tissues and indirect effects via non-targeted tissues. MicroRNAs (miRNAs) are a class of endogenous, noncoding, negative gene regulators that have emerged as important regulators of a number of diseases, including type 2 diabetes mellitus (T2DM). Metformin is involved in many aspects of miRNA regulation, and metformin treatment in T2DM should be associated with other miRNA targets. A large number of miRNAs regulation by metformin in target tissues with either direct or indirect effects has gradually been revealed in the context of numerous diseases and has gradually received increasing attention. This paper thoroughly reviews the current knowledge about the role of miRNA networks in the tissue-specific direct and indirect effects of metformin. Furthermore, this knowledge provides a novel theoretical basis and suggests therapeutic targets for the clinical treatment of metformin and miRNA regulators in the prevention and treatment of cancer, cardiovascular disorders, diabetes and its complications.
Collapse
|
22
|
Ma Z, Li Y, Lv J, Ma J, Jia S, Ma H, Ye G, Zeng R. Construction and assessment of carboxymethyl Bletilla striata polysaccharide/Polyvinyl alcohol wet-spun fibers load with Polydopamine@Metformin microcapsules. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Golledge J, Thanigaimani S. Novel therapeutic targets for diabetes-related wounds or ulcers: an update on preclinical and clinical research. Expert Opin Ther Targets 2021; 25:1061-1075. [PMID: 34873970 DOI: 10.1080/14728222.2021.2014816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Diabetes-related wounds, particularly diabetes-related foot ulcers, are mainly caused by lack of foot sensation and high plantar tissue stress secondary to peripheral neuropathy, ischemia secondary to peripheral artery disease, and dysfunctional wound healing. Current management of diabetes-related wounds involves the offloading of high foot pressures and the treatment of ischemia through revascularization. Despite these treatments, the global burden of diabetes-related wounds is growing, and thus, novel therapies are needed. The normal wound healing process is a coordinated remodeling process orchestrated by fibroblasts, endothelial cells, phagocytes, and platelets, controlled by an array of growth factors. In diabetes-related wounds, these coordinated processes are dysfunctional. The past animal model and human research suggest that prolonged wound inflammation, failure to adequately correct ischemia, and impaired wound maturation are key therapeutic targets to improve diabetes-related wound healing. AREAS COVERED This review summarizes recent preclinical and clinical research on novel diabetes-related wound treatments. Animal models of diabetes-related wounds and recent studies testing novel therapeutic agents in these models are described. Findings from clinical trials are also discussed. Finally, challenges to identifying and implementing novel therapies are described. EXPERT OPINION Given the growing volume of promising drug therapies currently under investigation, it is expected within the next decade, that diabetes-related wound treatment will be transformed.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
24
|
Tombulturk FK, Todurga-Seven ZG, Huseyinbas O, Ozyazgan S, Ulutin T, Kanigur-Sultuybek G. Topical application of metformin accelerates cutaneous wound healing in streptozotocin-induced diabetic rats. Mol Biol Rep 2021; 49:73-83. [PMID: 34718940 DOI: 10.1007/s11033-021-06843-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Diabetic chronic wound, which is one of the diabetic complications caused by hyperglycemia, characterized by prolonged inflammation has become one of the most serious challenges in the clinic. Hyperglycemia during diabetes not only causes prolonged inflammation and delayed wound healing but also modulates the activation of nuclear factor-kappa B (NF-κB) and the expression of matrix metalloproteinases (MMPs). Although metformin is the oldest oral antihyperglycemic drug commonly used for treating type 2 diabetes, few studies have explored the molecular mechanism of its topical effect on wound healing. Therefore, we aimed to investigate the molecular effects of topical metformin application on delayed wound healing, which's common in diabetes. METHODS AND RESULTS In this context, we created a full-thickness excisional wound model in Wistar albino rats and, investigated NF-κB p65 DNA-binding activity and expression levels of RELA (p65), MMP2 and MMP9 in wound samples taken on days 0, 3, 7, and 14 from diabetic/non-diabetic rats treated with metformin and saline. As a result of our study, we showed that topically applied metformin accelerates wound healing by suppressing NF-κB p65 activity and diminishing the expression of MMP2 and MMP9. CONCLUSIONS Diabetic wounds treated with metformin healed even faster than those in the control group that mimicked standard wound healing.
Collapse
Affiliation(s)
- Fatma Kubra Tombulturk
- Medical Laboratory Techniques, Vocational School of Health Services, Istinye University, Istanbul, Turkey.,Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeynep Gizem Todurga-Seven
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Department of Medical Pharmacology, Medical Faculty, Halic University, Istanbul, Turkey
| | - Onder Huseyinbas
- Research Centre, Medical Faculty, Bezmialem University, Istanbul, Turkey
| | - Sibel Ozyazgan
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gonul Kanigur-Sultuybek
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
25
|
Cellular Signalling and Photobiomodulation in Chronic Wound Repair. Int J Mol Sci 2021; 22:ijms222011223. [PMID: 34681882 PMCID: PMC8537491 DOI: 10.3390/ijms222011223] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/29/2022] Open
Abstract
Photobiomodulation (PBM) imparts therapeutically significant benefits in the healing of chronic wounds. Chronic wounds develop when the stages of wound healing fail to progress in a timely and orderly frame, and without an established functional and structural outcome. Therapeutic benefits associated with PBM include augmenting tissue regeneration and repair, mitigating inflammation, relieving pain, and reducing oxidative stress. PBM stimulates the mitochondria, resulting in an increase in adenosine triphosphate (ATP) production and the downstream release of growth factors. The binding of growth factors to cell surface receptors induces signalling pathways that transmit signals to the nucleus for the transcription of genes for increased cellular proliferation, viability, and migration in numerous cell types, including stem cells and fibroblasts. Over the past few years, significant advances have been made in understanding how PBM regulates numerous signalling pathways implicated in chronic wound repair. This review highlights the significant role of PBM in the activation of several cell signalling pathways involved in wound healing.
Collapse
|
26
|
Oubiña G, Pascuali N, Scotti L, Bianchi S, May M, Martínez JE, Marchese Ragona C, Higuera J, Abramovich D, Parborell F. Local application of low level laser therapy in mice ameliorates ovarian damage induced by cyclophosphamide. Mol Cell Endocrinol 2021; 531:111318. [PMID: 33989716 DOI: 10.1016/j.mce.2021.111318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/06/2023]
Abstract
The aim of the present study is to assess whether low level laser therapy (LLLT) can protect ovaries from chemotherapy-induced gonadotoxicity using a mice model of premature ovarian failure induced by cyclophosphamide (CTX). LLLT (64 J/cm2) increased the number of antral follicles whilst decreasing the number of atretic follicles compared to CTX alone. LLLT increased the number of primordial follicles compared with those in the CTX group but they did not differ from those in the control group. LLLT treatment increased the number of AMH-positive follicles compared to CTX alone. LLLT application increased ovarian weight, serum progesterone concentration and P450scc protein levels compared to CTX alone. LLLT reduced the apoptosis in antral follicles and the BAX/BCL-2 ratio compared to CTX alone. Vascular morphology, analysed by CD31 and α-SMA immunostaining, was restored in LLLT-treated ovaries compared to CTX alone. In conclusion, application of LLLT prior to CTX might serve as a promising and novel protocol to preserve female fertility in cancer survivors.
Collapse
Affiliation(s)
- Gonzalo Oubiña
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Leopoldina Scotti
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Silvia Bianchi
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - María May
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of Acute and Chronic Wound Healing. Biomolecules 2021; 11:700. [PMID: 34066746 PMCID: PMC8150999 DOI: 10.3390/biom11050700] [Citation(s) in RCA: 411] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Skin wounds greatly affect the global healthcare system, creating a substantial burden on the economy and society. Moreover, the situation is exacerbated by low healing rates, which in fact are overestimated in reports. Cutaneous wounds are generally classified into acute and chronic. The immune response plays an important role during acute wound healing. The activation of immune cells and factors initiate the inflammatory process, facilitate wound cleansing and promote subsequent tissue healing. However, dysregulation of the immune system during the wound healing process leads to persistent inflammation and delayed healing, which ultimately result in chronic wounds. The microenvironment of a chronic wound is characterized by high quantities of pro-inflammatory macrophages, overexpression of inflammatory mediators such as TNF-α and IL-1β, increased activity of matrix metalloproteinases and abundance of reactive oxygen species. Moreover, chronic wounds are frequently complicated by bacterial biofilms, which perpetuate the inflammatory phase. Continuous inflammation and microbial biofilms make it very difficult for the chronic wounds to heal. In this review, we discuss the role of innate and adaptive immunity in the pathogenesis of acute and chronic wounds. Furthermore, we review the latest immunomodulatory therapeutic strategies, including modifying macrophage phenotype, regulating miRNA expression and targeting pro- and anti-inflammatory factors to improve wound healing.
Collapse
Affiliation(s)
- Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Kuat Kassymbek
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Shiro Jimi
- Central Lab for Pathology and Morphology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan;
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| |
Collapse
|
28
|
Martins MD, Silveira FM, Martins MAT, Almeida LO, Bagnato VS, Squarize CH, Castilho RM. Photobiomodulation therapy drives massive epigenetic histone modifications, stem cells mobilization and accelerated epithelial healing. JOURNAL OF BIOPHOTONICS 2021; 14:e202000274. [PMID: 33025746 DOI: 10.1002/jbio.202000274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidence indicates the clinical benefits of photobiomodulation therapy (PBMT) in the management of skin and mucosal wounds. Here, we decided to explore the effects of different regiments of PBMT on epithelial cells and stem cells, and the potential implications over the epigenetic circuitry during healing. Scratch-wound migration, immunofluorescence (anti-acetyl-Histone H3, anti-acetyl-CBP/p300 and anti-BMI1), nuclear morphometry and western blotting (anti-Phospho-S6, anti-methyl-CpG binding domain protein 2 [MBD2]) were performed. Epithelial stem cells were identified by the aldehyde dehydrogenase enzymatic levels and sphere-forming assay. We observed that PBMT-induced accelerated epithelial migration and chromatin relaxation along with increased levels of histones acetylation, the transcription cofactors CBP/p300 and mammalian target of rapamycin. We further observed a reduction of the transcription repression-associated protein MBD2 and a reduced number of epithelial stem cells and spheres. In this study, we showed that PBMT could induce epigenetic modifications of epithelial cells and control stem cell fate, leading to an accelerated healing phenotype.
Collapse
Affiliation(s)
- Manoela D Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Felipe Martins Silveira
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Marco A T Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Oral Medicine, Hospital de Clínicas de Porto Alegre (HCPA/UFRGS), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana O Almeida
- Laboratory of Tissue Culture, Department of Basic and Oral Biology, University of Sao Paulo School of Dentistry, Ribeirao Preto, Rio Grande do Sul, Brazil
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Mieczkowski M, Mrozikiewicz-Rakowska B, Siwko T, Bujalska-Zadrozny M, de Corde-Skurska A, Wolinska R, Gasinska E, Grzela T, Foltynski P, Kowara M, Mieczkowska Z, Czupryniak L. Insulin, but Not Metformin, Supports Wound Healing Process in Rats with Streptozotocin-Induced Diabetes. Diabetes Metab Syndr Obes 2021; 14:1505-1517. [PMID: 33854349 PMCID: PMC8039538 DOI: 10.2147/dmso.s296287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Optimal glycemic control is crucial for proper wound healing in patients with diabetes. However, it is not clear whether other antidiabetic drugs support wound healing in mechanisms different from the normalization of blood glucose control. We assessed the effect of insulin and metformin administration on the wound healing process in rats with streptozotocin-induced diabetes. METHODS The study was conducted on 200 male Wistar rats with streptozotocin-induced diabetes. In the last phase of the study, 45 rats, with the most stable glucose levels in the range of 350-500 mg/dL, were divided into three groups: group I received human non-protamine insulin subcutaneously (5 IU/kg body mass) once a day, group II received metformin intragastrically (500 mg/kg b.m.), and group III (control) was given saline subcutaneously. After 14 days of antidiabetic treatment, a 2 cm × 2 cm thin layer of skin was cut from each rat's dorsum and a 4 cm disk with a hole in its center was sewn in to stabilize the skin and standardize the healing process. The wound healing process was followed up for 9 days, with assessment every 3 days. Biopsy samples were subjected to hematoxylin and eosin staining and immunohistochemical assays. RESULTS Analysis of variance revealed significant influence of treatment type (insulin, control, or metformin) on the relative change in wound surface area. The wound healing process in rats treated with insulin was more effective than in the metformin and control groups. Wound tissue samples taken from the insulin-treated animals presented significantly lower levels of inflammatory infiltration. Immunohistochemical assessment showed the greatest density of centers of proliferation Ki-67 in insulin-treated animals. CONCLUSION These results suggest that an insulin-based treatment is more beneficial than metformin, in terms of accelerating the wound healing process in an animal model of streptozocin-induced diabetes.
Collapse
Affiliation(s)
- Mateusz Mieczkowski
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Beata Mrozikiewicz-Rakowska
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
- Correspondence: Beata Mrozikiewicz-Rakowska Department of Diabetology and Internal Medicine, Medical University of Warsaw, Poland ul. Banacha 1A, Warsaw, 02-097, PolandTel +48 600 311 399Fax +48225992832 Email
| | - Tomasz Siwko
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Renata Wolinska
- Department of Pharmacodynamics, Medical University of Warsaw, Warsaw, Poland
| | - Emilia Gasinska
- Department of Pharmacodynamics, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Grzela
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Foltynski
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Michal Kowara
- Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Mieczkowska
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Czupryniak
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Ji Z, Jiang X, Li Y, Song J, Chai C, Lu X. Neural stem cells induce M2 polarization of macrophages through the upregulation of interleukin-4. Exp Ther Med 2020; 20:148. [PMID: 33093886 PMCID: PMC7571360 DOI: 10.3892/etm.2020.9277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are divided into two types: M1- and M2-type macrophages. Both types of macrophages serve important roles during the process of inflammation. M1-type macrophages release various pro-inflammatory cytokines, such as IL-1, IFN-γ and other inflammatory mediators, such as nitric oxide, glutamate and reactive oxygen species to generate inflammation. In contrast, M2-type macrophages counteract the pro-inflammatory M1 conditions and promote tissue repair by secreting anti-inflammatory cytokines, such as IL-10. In spinal cord injury (SCI), an imbalance in M1/M2 macrophages leads to irreversible tissue destruction. Thus, it is crucial to increase the number of M2-type macrophages and promote M2 polarization of macrophages in SCI. Accordingly, in this study an in vitro co-culture system was established to investigate the effect of neural stem cells (NSCs) on macrophages. The results of the present study demonstrated that NSCs induced M2 polarization and suppressed M1 polarization of macrophages in an interleukin (IL)-4-dependent manner. Furthermore, the nuclear factor (NF)-κB/p65 signaling pathway was involved in the M1 polarization of macrophages and NSCs suppressed the activation of the NF-κB/p65 pathway in an IL-4-dependent manner to induce M2 macrophage polarization. These findings provide more insight into SCI and help to identify novel treatment strategies.
Collapse
Affiliation(s)
- Zhuangqi Ji
- Department of Gastrointestinal-Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, P.R. China
| | - Xianming Jiang
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Yubin Li
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jian Song
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Cuicui Chai
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Xiaofang Lu
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
31
|
Guo S, Gong L, Shen Q, Xing D. Photobiomodulation reduces hepatic lipogenesis and enhances insulin sensitivity through activation of CaMKKβ/AMPK signaling pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112075. [PMID: 33152638 DOI: 10.1016/j.jphotobiol.2020.112075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Photobiomodulation (PBM) could improve systemic blood glucose and insulin resistance in diet-induced diabetic mice. A few possible molecular mechanisms for the beneficial effects of PBM on diabetes have been proposed, but there is still an urgent need to explore the underlying mechanisms that support the application of PBM in the treatment of diabetes. Our study aimed to evaluate the effects of PBM on lipid metabolism in the liver of high-fat diet (HFD)-induced mice and explore the potential mechanisms of PBM on obesity and type 2 diabetes. Here, we administered PBM therapy (wavelength: 635 nm, energy density: 8 J/cm2) daily for eight weeks to HFD-induced mice. We detected that eight-week daily administration of PBM ameliorated HFD-induced gain weight, hyperlipidemia, and hyperglycemia, but also protected against diet-induced hepatic steatosis and insulin resistance. Furthermore, PBM increased AMP-activated protein kinase (AMPK) activation, lowered nuclear translocation of sterol regulatory element binding protein 1 (SREBP1), decreased aberrant lipogenesis, and enhanced insulin sensitive in HFD-induced mice livers. We also observed that Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) activation was responsible for AMPK activation in insulin-resistant HepG2 cells exposed to PBM. In summary, PBM at 635 nm and 8 J/cm2 improved hepatic lipid metabolism and inhibited the development of HFD-induced obesity and type 2 diabetes. Moreover, increased intracellular Ca2+ content and CaMKKβ-dependent AMPK activation were possible molecular mechanisms underlying the PBM-induced improvement on obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Shuang Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Longlong Gong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
32
|
Zhao Y, Wang X, Yang S, Song X, Sun N, Chen C, Zhang Y, Yao D, Huang J, Wang J, Zhang Y, Yang B. Kanglexin accelerates diabetic wound healing by promoting angiogenesis via FGFR1/ERK signaling. Biomed Pharmacother 2020; 132:110933. [PMID: 33128943 DOI: 10.1016/j.biopha.2020.110933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic foot is one of the main causes of non-traumatic amputation. However, there is still lack of effective drugs to treat diabetic foot in clinical practice. Kanglexin (KLX) is a new anthraquinone compound with cardiovascular protective effects. Here we report that KLX accelerates diabetic wound healing by promoting angiogenesis via FGFR1/ERK signaling. Firstly, KM mice were injected (ip) with streptozocin to establish type 1 diabetic model. The full thickness wound with the diameter of 5 mm was prepared on the back of each mice. The wounds were treated with KLX once a day for 14 consecutive days. Results showed that KLX significantly accelerated the closure of diabetic wounds. Pathological studies of skin tissues around the wounds showed that KLX promoted the formation of granulation tissue and new blood vessels, increased collagen deposition and reduced inflammatory cell infiltration. Besides, KLX significantly alleviated advanced glycation end products (AGEs) - induced abnormal proliferation, migration and tubule formation of human umbilical vein endothelial cells (HUVECs), and up-regulated phospho-ERK1/2 both in the diabetic wound tissue and AGEs - treated HUVECs. Moreover, molecular docking results indicated that KLX had the potential to bind with FGF receptor 1 (FGFR1), and subsequent experiments confirmed that FGFR1 inhibitor PD173074 reversed the effect of KLX on promoting the phosphorylation of ERK1/2 and angiogenesis, suggesting that KLX promoted angiogenesis through FGFR1/ERK signaling. In conclusion, our study provides a new effective compound for treating diabetic wounds. More importantly, KLX has the potential to be developed as a topical drug to promote diabetic wound healing.
Collapse
Affiliation(s)
- Yixiu Zhao
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xinhui Wang
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuang Yang
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xia Song
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Na Sun
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chao Chen
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yannan Zhang
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Dahong Yao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Zhang
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Baofeng Yang
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
33
|
Rahbar Layegh E, Fadaei Fathabadi F, Lotfinia M, Zare F, Mohammadi Tofigh A, Abrishami S, Piryaei A. Photobiomodulation therapy improves the growth factor and cytokine secretory profile in human type 2 diabetic fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111962. [PMID: 32712344 DOI: 10.1016/j.jphotobiol.2020.111962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023]
Abstract
Impaired wound healing is a common complication of diabetes mellitus (DM) and the underlying mechanism of this impairment is still unclear. Fibroblast, as the main reconstructing cell, secretes some critical growth factors and cytokine contributing to wound healing. It is well known that DM alters the behavior of these cells and photobiomodulation therapy (PBMT) compensates some impairments in diabetic fibroblasts. Therefore, the aim of the present study was to demonstrate the impact of diabetes and the role of PBMT through low level laser irradiation on secretory profile of human diabetic fibroblasts. Primary human dermal fibroblasts from normal (HDFs) and diabetic (DHDFs) donors were harvested. For PBMT, the DHDFs were irradiated with a Helium-Neon laser at 632.8 nm wavelength and energy density of 0.5 J/cm2, as laser treated group (LT-DHDFs). Next, some cellular behaviors and secretory profiling array for 60 growth factors/cytokines were investigated in LT-DHDFs and then compared with those of controls. The data showed that the PBMT could compensate such impairments occurred in DHDFs in terms of viability, proliferation, and migration. Furthermore, considering our novel findings, out of those 20 growth factors/cytokines involved in cell proliferation, immune system regulation, and cell-cell communication pathways, which significantly decreased in DHDF as compared with HDFs, the PBMT could compensate seven in LT-DHDFs as compared with DHDFs. The seven growth factor/cytokines, which are mainly involved in cell-cell communication, positive regulation of cell proliferation, and chemokine mediated pathway included BDNF, Eotaxin-3, FGF6, FGF7, Fractalkine, fit-3ligand, and GCP-2. Therefore, it is suggested that scrutinizing these differentially secreted molecules and the impaired pathways in DHDFs, in combination with those compensated in LT-DHDFs, could raise our knowledge to manage diabetic ulcer through a feasible and cost effective intervention, specifically PBMT.
Collapse
Affiliation(s)
- E Rahbar Layegh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Fadaei Fathabadi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - M Lotfinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - F Zare
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Mohammadi Tofigh
- Department of General Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Abrishami
- Department of Cardiovascular Surgery, Imam Khomeini Hospital Complex, Tehran Iniversity Medical Center, Tehran, Iran
| | - A Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals (Basel) 2020; 13:ph13040060. [PMID: 32244718 PMCID: PMC7243111 DOI: 10.3390/ph13040060] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic wounds often occur in patients with diabetes mellitus due to the impairment of wound healing. This has negative consequences for both the patient and the medical system and considering the growing prevalence of diabetes, it will be a significant medical, social, and economic burden in the near future. Hence, the need for therapeutic alternatives to the current available treatments that, although various, do not guarantee a rapid and definite reparative process, appears necessary. We here analyzed current treatments for wound healing, but mainly focused the attention on few classes of drugs that are already in the market with different indications, but that have shown in preclinical and few clinical trials the potentiality to be used in the treatment of impaired wound healing. In particular, repurposing of the antiglycemic agents dipeptidylpeptidase 4 (DPP4) inhibitors and metformin, but also, statins and phenyotin have been analyzed. All show encouraging results in the treatment of chronic wounds, but additional, well designed studies are needed to allow these drugs access to the clinics in the therapy of impaired wound healing.
Collapse
|