1
|
Feng B, Guo HY, Ning Y, Zhao YY, Wang X, Cui R. LPCAT3 regulates the immune infiltration and prognosis of ccRCC patients by mediating ferroptosis and endoplasmic reticulum stress. Discov Oncol 2025; 16:574. [PMID: 40253575 PMCID: PMC12009263 DOI: 10.1007/s12672-025-02283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/01/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) accounts for 70% of renal cell carcinoma (RCC) cases. Although surgery remains the mainstay treatment, renal injury and high metastasis rates after nephrectomy dramatically reduce patient quality of life. Drugs that stimulate the immune system by targeting checkpoint pathways improve overall survival in patients with RCC. Here, we investigated the applicability of lysophosphatidylcholine acyltransferase 3 (LPCAT3) as a target for immunotherapy. METHODS In the present study, high LPCAT3 expression in ccRCC was identified using The Cancer Genome Atlas (TCGA) data and validated in two external cohorts from the Gene Expression Omnibus (GEO) database. qRT-PCR was performed to identify the mRNA level of LPCAT3 in tumors and adjacent normal tissues. And immunohistochemistry was used to evaluate the protein level of LPCAT3 between two groups of samples. Furthermore, gene set enrichment analysis was performed to explore the biological processes and pathways related to LPCAT3 expression. Key gene expression and correlation analyses were performed to determine the crosstalk among LPCAT3 expression, ferroptosis, and endoplasmic reticulum stress (ERS). Subsequently, CIBERSORT was used to analyze the immune infiltration status of patients with high and low LPCAT3 expression. RESULTS TCGA and GEO data revealed that LPCAT3 expression in ccRCC tumor tissues was higher than that in adjacent normal tissues; moreover, patients with high LPCAT3 expression had better survival outcomes. qRT-PCR and immunohistochemistry verified the high LPCAT3 expression in tumor tissue. Pathways related to ferroptosis and ERS were upregulated in patients with high LPCAT3 expression. Univariate and multivariate regression analyses revealed that low LPCAT3 levels represent an independent risk factor for ccRCC. LPCAT3 expression was positively correlated with M2 macrophage infiltration levels but negatively correlated with the memory B cell, CD8+ T cell, follicular helper T cell, regulatory T cell, activated natural killer cell, and activated memory CD4+ T cell infiltration levels. CONCLUSIONS LPCAT3was identified as a ccRCC biomarker and may regulate immune infiltration and prognosis in ccRCC by mediating ferroptosis and ERS. Thus, it has potential for exploitation as a prognostic and immune therapeutic target for patients with ccRCC.
Collapse
Affiliation(s)
- Bei Feng
- Department of Nephrology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Nephrology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hai-Ying Guo
- Department of Nephrology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Nephrology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Ning
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Nephrology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu-Ying Zhao
- Department of Nephrology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiang Wang
- Department of Nephrology, The First People's Hospital in Jinzhou, Dalian, China
- Department of Nephrology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Cui
- Department of Nephrology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Gao S, Li J, Wang W, Wang Y, Shan Y, Tan H. Rabdosia rubescens (Hemsl.) H. Hara: A potent anti-tumor herbal remedy - Botany, phytochemistry, and clinical applications and insights. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119200. [PMID: 39631716 DOI: 10.1016/j.jep.2024.119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicine has unique advantages as anti-cancer drugs and adjuvant therapies. Rabdosia rubescens (Hemsl.) H. Hara (R. rubescens) is a traditional medicinal plant known for its anti-inflammatory, antioxidant, antibacterial, anti-angiogenic and antitumor properties. The antitumor activity of R. rubescens is widely recognized among the folk communities in Henan Province, China. AIM OF THE STUDY This study reviews the botany, ethnopharmacology, phytochemistry, anti-tumor active ingredients, mechanisms, and clinical applications of R. rubescens, aiming to provide a comprehensive understanding for its use as an anti-cancer drug and adjuvant therapy. MATERIALS AND METHODS We systematically searched the literature in PubMed, Web of Science, and CNKI using the following keywords: "Rabdosia rubescens", "Isodon rubescens", "traditional application", "anti-tumor", "phytochemistry", "anti-tumor active compounds", "oridonin" and "clinical application". The search covered publications from 1997 to 2024. Inclusion criteria included original studies or reviews focusing on the anti-tumor properties of R. rubescens or its active components. Exclusion criteria included studies related to non-R. rubescens applications. RESULTS R. rubescens is a perennial herbaceous plant in the family Lamiaceae, mainly found in central and southern China. Historically, it has been used to treat conditions such as sore throat, cough, and excess phlegm. The plant contains various compounds, including diterpenes, triterpenes, steroids, flavonoids, phenolic acids, essential oils, amino acids, alkaloids, and polysaccharides, with diterpenes, triterpenes, flavonoids, and phenolic acids being the most active. This review identifies 50 compounds with anti-tumor properties, comprising 34 diterpenes, 2 triterpenes, 7 flavonoids, and 7 phenolic acids. Notably, besides oridonin and ponicidin, the ent-kaurane diterpenoids (20S)-11β,14β,20-trihydroxy-7α,20-epoxy-ent-kaur-16-en15-one and (20S)-11β,14β-dihydroxy-20-ethoxy7α,20-epoxy-ent-kaur-16-en-15-one demonstrate significant anti-tumor activity, attributed to their carbonyl group at C-15, hydroxyl group at C-1, and OEt group at C-20. Mechanistically, R. rubescens combats tumors by blocking the tumor cell cycle, promoting apoptosis, inhibiting cell migration and angiogenesis, inducing ferroptosis, reversing drug resistance, and enhancing radiosensitivity in tumor cells. Clinically, R. rubescens is available in various forms, including tablets, drops, syrups, capsules, and lozenges, and is primarily used for tonsillitis, pharyngitis, and stomatitis. According to the 2020 edition of the Pharmacopoeia of China, R. rubescens tablets are recognized as an adjuvant therapy for cancer. Clinical studies indicate that R. rubescens syrup, tablets, and thermal therapy can enhance cancer patient survival rates and lower tumor recurrence rates. CONCLUSIONS Given its traditional and modern uses, active anti-tumor components, and mechanisms, R. rubescens is a promising resource in traditional Chinese medicine for anti-tumor therapy. To realize its full potential, future research should explore additional active anti-tumor compounds beyond oridonin and ponicidin. For these key components, studies should focus on structural modifications to identify new active molecules and essential anti-tumor structures. Clinically, it is important to investigate how R. rubescens interacts with other Chinese herbs in anti-tumor formulations to enhance treatment efficacy and guide appropriate clinical use. Furthermore, future studies should undergo ethical review and include larger-scale randomized controlled trials to validate the efficacy of R. rubescens in treating tumors, thereby promoting its role as an anti-tumor traditional Chinese medicine.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Jianwen Li
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Weiya Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yue Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yanmin Shan
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Huixin Tan
- Department of Pharmacy, Fourth Affiliated Hospital of Harbin Medicine University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
3
|
Chaudhary A, Patil P, Raina P, Kaul-Ghanekar R. Matairesinol repolarizes M2 macrophages to M1 phenotype to induce apoptosis in triple-negative breast cancer cells. Immunopharmacol Immunotoxicol 2024:1-15. [PMID: 39722605 DOI: 10.1080/08923973.2024.2425028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/27/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Triple-Negative Breast Cancer (TNBC), the most challenging subtype of Breast Cancer (BC), currently lacks targeted therapy, presenting a significant therapeutic gap in its management. Tumor Associated Macrophages (TAMs) play a significant role in TNBC progression and could be targeted by repolarizing them from M2 to M1 phenotype. Matairesinol (MAT), a plant lignan, has been shown to exhibit anticancer, anti-inflammatory and immunomodulatory activities. In this study, we explored how MAT-induced repolarization of THP-1-derived M2 macrophages towards the M1 phenotype, which could effectively target the TNBC cell line, MDA-MB-231. METHODS The differential expression of genes in THP-1-derived macrophages at mRNA levels was evaluated by RNAseq assay. An inverted microscope equipped with a CMOS camera was utilized to capture the morphological variations in THP-1 cells and THP-1-derived macrophages. Relative mRNA expression of M1 and M2 specific marker genes was quantified by qRT-PCR. Cell viability and induction of apoptosis were evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1 dye) assays, respectively. RESULTS MAT reduced the viability of M2a and M2d macrophages and repolarized them to M1 phenotype. Conditioned medium (CM) from MAT-treated M2a and M2d macrophages significantly reduced the viability of TNBC cells by apoptosis. CONCLUSION Targeting M2 macrophages is an important strategy to regulate cancer progression. Our study provides evidence that MAT may be a promising drug candidate for developing novel anti-TNBC therapy. However, further studies are warranted to thoroughly elucidate the molecular mechanism of action of MAT and evaluate its therapeutic potential in TNBC in vitro and in vivo models.
Collapse
Affiliation(s)
- Amol Chaudhary
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Prajakta Patil
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Prerna Raina
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Analytical Department (ADT), Lupin Limited, Pune, India
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Symbiosis Centre for Research and Innovation (SCRI); Symbiosis International Deemed University (SIU), Pune, India
- Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International Deemed University (SIU), Pune, India
| |
Collapse
|
4
|
Qian J, Zhao L, Xu L, Zhao J, Tang Y, Yu M, Lin J, Ding L, Cui Q. Cell Death: Mechanisms and Potential Targets in Breast Cancer Therapy. Int J Mol Sci 2024; 25:9703. [PMID: 39273650 PMCID: PMC11395276 DOI: 10.3390/ijms25179703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer (BC) has become the most life-threatening cancer to women worldwide, with multiple subtypes, poor prognosis, and rising mortality. The molecular heterogeneity of BC limits the efficacy and represents challenges for existing therapies, mainly due to the unpredictable clinical response, the reason for which probably lies in the interactions and alterations of diverse cell death pathways. However, most studies and drugs have focused on a single type of cell death, while the therapeutic opportunities related to other cell death pathways are often neglected. Therefore, it is critical to identify the predominant type of cell death, the transition to different cell death patterns during treatment, and the underlying regulatory mechanisms in BC. In this review, we summarize the characteristics of various forms of cell death, including PANoptosis (pyroptosis, apoptosis, necroptosis), autophagy, ferroptosis, and cuproptosis, and discuss their triggers and signaling cascades in BC, which may provide a reference for future pathogenesis research and allow for the development of novel targeted therapeutics in BC.
Collapse
Affiliation(s)
- Jiangying Qian
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Linna Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ling Xu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jin Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yongxu Tang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
5
|
Qian P, Yuan G, Yang C, Zhang Q, Chen L, He N. Kuwanon C inhibits proliferation and induction of apoptosis via the intrinsic pathway in MDA-MB231 and T47D breast cancer cells. Steroids 2024; 208:109450. [PMID: 38823755 DOI: 10.1016/j.steroids.2024.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Breast cancer ranks as the most prevalent malignancy, presenting persistent therapeutic challenges encompassing issues such as drug resistance, recurrent occurrences, and metastatic progression. Therefore, there is a need for targeted drugs that are less toxic and more effective against breast cancer. Kuwanon C, an isoamylated flavonoid derived from mulberry resources, has shown promise as a potential candidate due to its strong cytotoxicity against cancer cells. The present study focused on investigating the anticancer activity of kuwanon C in two human breast cancer cell lines, MDA-MB231 and T47D cells. MTS assay results indicated a decrease in cell proliferation with increasing concentrations of kuwanon C. Furthermore, kuwanon C upregulated the expression levels of the cyclin-dependent kinase inhibitor p21 and effectively inhibited cell DNA replication and induced DNA damage. Flow cytometry confirmed that kuwanon C induced cell apoptosis and upregulated the expression levels of pro-apoptotic proteins (Bax and c-caspase3). Additionally, it stimulated the production of reactive oxygen species (ROS) in the cells. Transmission electron microscopy and Fluo-4 AM-calcium ion staining experiments provided insights into the endoplasmic reticulum (ER), revealing that kuwanon C induced ER stress. Kuwanon C upregulated the expression levels of unfolded protein response-related proteins (ATF4, GADD34, HSPA5, and DDIT3). Overall, the present findings suggested that kuwanon C exerts a potent inhibitory effect on breast cancer cell proliferation through modulating of the p21, induction of mitochondrial-mediated apoptosis, activation of ER stress and induction of DNA damage. These results position kuwanon C as a potential targeted therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Peng Qian
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China.
| | - Gangxiang Yuan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China.
| | - Chao Yang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China.
| | - Qi Zhang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China.
| | - Lin Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China.
| | - Ningjia He
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Wu Q, Liu X, Wang LM, Yang YH, Pan LF, Zhang JJ, Wang YQ, Yao QH, Ma SL, Zhang SR. Oleandrin enhances radiotherapy sensitivity in lung cancer by inhibiting the ATM/ATR-mediated DNA damage response. Phytother Res 2024; 38:4151-4167. [PMID: 39136618 DOI: 10.1002/ptr.8237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 09/25/2024]
Abstract
Despite active clinical trials on the use of Oleandrin alone or in combination with other drugs for the treatment of solid tumors, the potential synergistic effect of Oleandrin with radiotherapy remains unknown. This study reveals a new mechanism by which Oleandrin targets ATM and ATR kinase-mediated radiosensitization in lung cancer. Various assays, including clonogenic, Comet, immunofluorescence staining, apoptosis and Cell cycle assays, were conducted to evaluate the impact of oleandrin on radiation-induced double-strand break repair and cell cycle distribution. Western blot analysis was utilized to investigate alterations in signal transduction pathways related to double-strand break repair. The efficacy and toxicity of the combined therapy were assessed in a preclinical xenotransplantation model. Functionally, Oleandrin weakens the DNA damage repair ability and enhances the radiation sensitivity of lung cells. Mechanistically, Oleandrin inhibits ATM and ATR kinase activities, blocking the transmission of ATM-CHK2 and ATR-CHK1 cell cycle checkpoint signaling axes. This accelerates the passage of tumor cells through the G2 phase after radiotherapy, substantially facilitating the rapid entry of large numbers of inadequately repaired cells into mitosis and ultimately triggering mitotic catastrophe. The combined treatment of Oleandrin and radiotherapy demonstrated superior inhibition of tumor proliferation compared to either treatment alone. Our findings highlight Oleandrin as a novel and effective inhibitor of ATM and ATR kinase, offering new possibilities for the development of clinical radiosensitizing adjuvants.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xue Liu
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Li-Min Wang
- Department of Respiratory Diseases, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Yu-Hong Yang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Li-Fang Pan
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Jing-Jing Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Yu-Qing Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Qing-Hua Yao
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Sheng-Lin Ma
- Department of Oncology, Affiliated Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Shi-Rong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| |
Collapse
|
7
|
Ainembabazi D, Zhang Y, Turchi JJ. The mechanistic role of cardiac glycosides in DNA damage response and repair signaling. Cell Mol Life Sci 2023; 80:250. [PMID: 37584722 PMCID: PMC10432338 DOI: 10.1007/s00018-023-04910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
Cardiac glycosides (CGs) are a class of bioactive organic compounds well-known for their application in treating heart disease despite a narrow therapeutic window. Considerable evidence has demonstrated the potential to repurpose CGs for cancer treatment. Chemical modification of these CGs has been utilized in attempts to increase their anti-cancer properties; however, this has met limited success as their mechanism of action is still speculative. Recent studies have identified the DNA damage response (DDR) pathway as a target of CGs. DDR serves to coordinate numerous cellular pathways to initiate cell cycle arrest, promote DNA repair, regulate replication fork firing and protection, or induce apoptosis to avoid the survival of cells with DNA damage or cells carrying mutations. Understanding the modus operandi of cardiac glycosides will provide critical information to better address improvements in potency, reduced toxicity, and the potential to overcome drug resistance. This review summarizes recent scientific findings of the molecular mechanisms of cardiac glycosides affecting the DDR signaling pathway in cancer therapeutics from 2010 to 2022. We focus on the structural and functional differences of CGs toward identifying the critical features for DDR targeting of these agents.
Collapse
Affiliation(s)
- Diana Ainembabazi
- Department of Medicine, School of Medicine, Joseph E Walther Hall, Indiana University, 980 W. Walnut St, C560, R3-C560, Indianapolis, IN 46202 USA
| | - Youwei Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - John J. Turchi
- Department of Medicine, School of Medicine, Joseph E Walther Hall, Indiana University, 980 W. Walnut St, C560, R3-C560, Indianapolis, IN 46202 USA
| |
Collapse
|
8
|
Bouabdallah S, Al-Maktoum A, Amin A. Steroidal Saponins: Naturally Occurring Compounds as Inhibitors of the Hallmarks of Cancer. Cancers (Basel) 2023; 15:3900. [PMID: 37568716 PMCID: PMC10417465 DOI: 10.3390/cancers15153900] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is a global health burden responsible for an exponentially growing number of incidences and mortalities, regardless of the significant advances in its treatment. The identification of the hallmarks of cancer is a major milestone in understanding the mechanisms that drive cancer initiation, development, and progression. In the past, the hallmarks of cancer have been targeted to effectively treat various types of cancers. These conventional cancer drugs have shown significant therapeutic efficacy but continue to impose unfavorable side effects on patients. Naturally derived compounds are being tested in the search for alternative anti-cancer drugs. Steroidal saponins are a group of naturally occurring compounds that primarily exist as secondary metabolites in plant species. Recent studies have suggested that steroidal saponins possess significant anti-cancer capabilities. This review aims to summarize the recent findings on steroidal saponins as inhibitors of the hallmarks of cancer and covers key studies published between the years 2014 and 2024. It is reported that steroidal saponins effectively inhibit the hallmarks of cancer, but poor bioavailability and insufficient preclinical studies limit their utilization.
Collapse
Affiliation(s)
- Salwa Bouabdallah
- Theranostic Biomarkers, LR23ES02, Faculty of Medicine of Tunis, Université Tunis El Manar, Tunis 1006, Tunisia
| | - Amna Al-Maktoum
- Biology Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Amr Amin
- Biology Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| |
Collapse
|
9
|
Zhao W, Li G, Zhang Q, Chen M, He L, Wu Z, Zhang Y, Fan M, Liang Y, Zhang W, Zeng F, Deng F. Cardiac glycoside neriifolin exerts anti-cancer activity in prostate cancer cells by attenuating DNA damage repair through endoplasmic reticulum stress. Biochem Pharmacol 2023; 209:115453. [PMID: 36792037 DOI: 10.1016/j.bcp.2023.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men. Patients with recurrent disease initially respond to androgen-deprivation therapy, but the tumor eventually progresses into castration-resistant PCa. Thus, new therapeutic approaches for PCa resistance to current treatments are urgently needed. Here, we report that cardiac glycoside neriifolin suppresses the malignancy of cancer cells via increasing DNA damage and apoptosis through activation of endoplasmic reticulum stress (ERS) in prostate cancers. We found that cardiac glycoside neriifolin markedly inhibited the cell growth and induced apoptosis in prostate cancer cells. Transcriptome sequence analysis revealed that neriifolin significantly induced DNA damage and double strand breaks (DSBs), validated with attenuation expression of genes in DSBs repair and increasing phosphorylated histone H2AX (γ-H2AX) foci formation, a quantitative marker of DSBs. Moreover, we found that neriifolin also activated ERS, evidenced by upregulation and activation of ERS related proteins, including eukaryotic initiation factor 2α (eIF2α), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and C/EBP homologous protein (CHOP) as well as downregulation of CCAATenhancerbinding protein alpha (C/EBP-α), a transcriptional factor that forms heterodimers with CHOP. In addition, neriifolin treatment dramatically inhibited the by tumor growth, which were reversed by CHOP loss or overexpression of C/EBP-α in nude mice. Mechanistically, neriifolin suppressed the tumor growth by increasing DNA damage and apoptosis through CHOP-C/EBP-α signaling axis of ERS in prostate cancers. Taken together, these results suggest that cardiac glycoside neriifolin may be a potential tumor-specific chemotherapeutic agent in prostate cancer treatment.
Collapse
Affiliation(s)
- Wanlu Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guihuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meixuan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lijun He
- Department of Nursing, Nanfang Hospital, Southern Medical University, Guangzhou 501515, China
| | - Zhicong Wu
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Yihe Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingming Fan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanling Liang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Wenlong Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fangyin Zeng
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Ke G, Zhang J, Gao W, Chen J, Liu L, Wang S, Zhang H, Yan G. Application of advanced technology in traditional Chinese medicine for cancer therapy. Front Pharmacol 2022; 13:1038063. [PMID: 36313284 PMCID: PMC9606699 DOI: 10.3389/fphar.2022.1038063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Although cancer has seriously threatened people’s health, it is also identified by the World Health Organization as a controllable, treatable and even curable chronic disease. Traditional Chinese medicine (TCM) has been extensively used to treat cancer due to its multiple targets, minimum side effects and potent therapeutic effects, and thus plays an important role in all stages of tumor therapy. With the continuous progress in cancer treatment, the overall efficacy of cancer therapy has been significantly improved, and the survival time of patients has been dramatically prolonged. In recent years, a series of advanced technologies, including nanotechnology, gene editing technology, real-time cell-based assay (RTCA) technology, and flow cytometry analysis technology, have been developed and applied to study TCM for cancer therapy, which efficiently improve the medicinal value of TCM and accelerate the research progress of TCM in cancer therapy. Therefore, the applications of these advanced technologies in TCM for cancer therapy are summarized in this review. We hope this review will provide a good guidance for TCM in cancer therapy.
Collapse
Affiliation(s)
- Gaofeng Ke
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wufeng Gao
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Luotong Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| | - Guojun Yan
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| |
Collapse
|
11
|
Pro-Apoptotic and Pro-Autophagic Properties of Cardenolides from Aerial Parts of Pergularia tomentosa. Molecules 2022; 27:molecules27154874. [PMID: 35956822 PMCID: PMC9369610 DOI: 10.3390/molecules27154874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Pergularia tomentosa L., a milkweed tropical plant belonging to the family Asclepiadaceae, is a rich source of unusual cardiac glycosides, characterised by transfused A/B rings and a sugar moiety linked by a double link, generating a dioxanoid structure. In the present report, five cardenolides isolated from the aerial parts of the plant (calactin, calotropin, 12β-hydroxycalactin, 12β,6'-dihydroxycalotropin, and 16α-hydroxycalotropin) were investigated for their biological effects on a human hepatocarcinoma cell line. Cell viability was monitored by an MTT assay. The occurrence of apoptosis was evaluated by detecting caspase-3 activation and chromatin fragmentation. The ability of these compounds to induce autophagy was analysed by monitoring two markers of the autophagic process, LC3 and p62. Our results indicated that all cardenolides had cytotoxic effects, with IC50 ranging from 0.127 to 6.285 μM. All compounds were able to induce apoptosis and autophagy, calactin being the most active one. Some of them also caused a reduction in cell migration and a partial block of the cell cycle into the S-phase. The present study suggests that selected cardenolides from aerial parts of P. tomentosa, particularly calactin, possess potentially desirable properties for further investigation as anticancer agents.
Collapse
|
12
|
Apoptosis Induction Associated with Enhanced ER Stress Response and Up-Regulation of c-Jun/p38 MAPK Proteins in Human Cervical Cancer Cells by Colocasia esculenta var. aquatilis Hassk Extract. Sci Pharm 2022. [DOI: 10.3390/scipharm90030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colocasia esculenta var. Aquatilis Hassk, elephant ear (CF-EE) has been widely used as traditional food and medicine. It also shows other therapeutic properties, such as antimicrobial and anti-cancer activity. In this study, we aim to investigate the effect of CF-EE extract on apoptosis induction associated with ER stress in cervical cancer HeLa cells. Cell viability was determined by MTT assay. Assessments of nuclear morphological changes, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) production were conducted by hoeshst33342, JC-1, and DCFH-DA fluorescence staining, respectively. Sub-G1 DNA content was analyzed by flow cytometry, and protein expression was determined by Western blotting. The results demonstrate that CF-EE extract suppressed HeLa cell growth and induced nuclear condensation and apoptotic bodies. There was also a loss of mitochondrial membrane potential and increased apoptosis marker protein expression, including Bax, cleaved-caspase-7, and cleaved-PARP. In addition, the results show that CF-EE extract induced ROS, increased ER stress proteins (GRP78 and CHOP), enhanced p38 and c-Jun phosphorylation, and inhibited Akt expression in HeLa cells. In summary, CF-EE extract induced apoptotic cell death-associated ROS-induced ER stress and the MAPK/AKT signaling pathway. Therefore, CF-EE extract has anticancer therapeutic potential for cervical cancer treatment in the future.
Collapse
|
13
|
Francischini CRD, Mendonça CR, Barcelos KA, Silva MAM, Botelho AFM. Antitumor effects of oleandrin in different types of cancers: Systematic review. Toxicon 2022; 216:15-27. [PMID: 35772506 DOI: 10.1016/j.toxicon.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
Oleandrin, a cardiac glycoside isolated from the leaves of Nerium oleander, has known effects on the heart. Evidence from recent studies have highlighted its potential for anticancer properties. Therefore, we aimed to investigate the effects of oleandrin on cancer cell proliferation, viability and apoptosis in vitro and in vivo. We performed a systematic search in six electronic databases up to Jan 2022. We extracted information about the effects of oleandrin on cell proliferation, cell viability, apoptosis and/or cell cycle arrest in in vitro studies, and the effects on tumor size and volume in animal experimental models. We have retrieved 775 scientific studies. 14 studies met the inclusion criteria. They investigated the effects of oleandrin on breast, lung, pancreatic, colon, prostate, colorectal, oral, ovarian, glioma, melanoma, glioblastoma, osteosarcoma, and histiocytic lymphoma cancers. Overall, in vitro studies demonstrated that oleandrin was able to inhibit cell proliferation, decrease cell viability, and induce apoptosis and/or cell cycle arrest. In addition, oleandrin had an effect on reducing mean tumor size and volume in animal studies. Oleandrin, as a cytotoxic agent, demonstrated antitumor effects in different types of cancers, however important clinical limitations remain a concern. These results encourage future studies to verify the applicability of oleandrin in antineoplastic therapeutic protocols human and veterinary medicine, the investigation of antimetastatic properties, as well as the potential increase in patient survival and the decrease of tumor markers.
Collapse
Affiliation(s)
| | | | - Kênia Alves Barcelos
- Postgraduate Program of Animal Science, Escola de Veterinária e Zootecnia, Federal University of Goiás, Brazil
| | - Marco Augusto Machado Silva
- Postgraduate Program of Animal Science, Escola de Veterinária e Zootecnia, Federal University of Goiás, Brazil
| | - Ana Flávia Machado Botelho
- Postgraduate Program of Animal Science, Escola de Veterinária e Zootecnia, Federal University of Goiás, Brazil.
| |
Collapse
|
14
|
Wang L, Ji X, Mao C, Yu R. BAY-885, a mitogen-activated protein kinase kinase 5 inhibitor, induces apoptosis by regulating the endoplasmic reticulum stress/Mcl-1/Bim pathway in breast cancer cells. Bioengineered 2022; 13:12888-12898. [PMID: 35609325 PMCID: PMC9275924 DOI: 10.1080/21655979.2022.2078557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
The mitogen-activated protein kinase kinase 5 (MEK5)/extracellular signal-regulated kinase 5 (ERK5) axis has been reported to promote tumorigenesis in breast cancer (BC). Therefore, targeting the MEK5/ERK5 axis is a potential strategy against BC. BAY-885 is a novel inhibitor of ERK5; however, to date, its anti-tumor effects in BC have not been investigated. This study aimed to assess the anti-tumor effects of BAY-885 in BC and identify its underlying mechanisms of action. Unlike other ERK5 inhibitors, which frequently failed to mimic ERK5 genetic ablation phenotypes, the BAY-885 treatment effectively recapitulated ERK5 depletion effects in BC cells. Results revealed that BAY-885 affected the viability and induced apoptosis in BC cells. Moreover, the BAY-885-mediated downregulation of myeloid cell leukemia-1 (Mcl-1) and upregulation of Bim were dependent on ERK5 inhibition. Furthermore, BAY-885 triggered activation of endoplasmic reticulum (ER) stress, which further led to the upregulation of Bim and downregulation of Mcl-1. ER stress was induced in an ERK5 inhibition-dependent manner. These findings suggested that BAY-885 induced apoptosis in BC cells via ER stress/Mcl-1/Bim axis, suggesting that BAY-885 may serve as a therapeutic agent for BC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Thyroid and Breast Surgery, Ningbo Medical Centre, the Affiliated Lihuili Hospital of Ningbo University, Ningbo
| | - Xiaochun Ji
- Department of Thyroid and Breast Surgery, Ningbo Medical Centre, the Affiliated Lihuili Hospital of Ningbo University, Ningbo
| | - Chenxiao Mao
- Department of Electronic Commerce, Zhejiang Fashion Institute of Technology, Ningbo
| | - Rui Yu
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo
| |
Collapse
|
15
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Yuan L, Cai Y, Zhang L, Liu S, Li P, Li X. Promoting Apoptosis, a Promising Way to Treat Breast Cancer With Natural Products: A Comprehensive Review. Front Pharmacol 2022; 12:801662. [PMID: 35153757 PMCID: PMC8836889 DOI: 10.3389/fphar.2021.801662] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the top-ranked malignant carcinomas associated with morbidity and mortality in women worldwide. Chemotherapy is one of the main approaches to breast cancer treatment. Breast cancer initially responds to traditional first- and second-line drugs (aromatase inhibitor, tamoxifen, and carboplatin), but eventually acquires resistance, and certain patients relapse within 5 years. Chemotherapeutic drugs also have obvious toxic effects. In recent years, natural products have been widely used in breast cancer research because of their low side effects, low toxicity, and good efficacy based on their multitarget therapy. Apoptosis, a programmed cell death, occurs as a normal and controlled process that promotes cell growth and death. Inducing apoptosis is an important strategy to control excessive breast cancer cell proliferation. Accumulating evidence has revealed that natural products become increasingly important in breast cancer treatment by suppressing cell apoptosis. In this study, we reviewed current studies on natural product–induced breast cancer cell apoptosis and summarized the proapoptosis mechanisms including mitochondrial, FasL/Fas, PI3K/AKT, reactive oxygen species, and mitogen-activated protein kinase–mediated pathway. We hope that our review can provide direction in the search for candidate drugs derived from natural products to treat breast cancer by promoting cell apoptosis.
Collapse
Affiliation(s)
- Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Liang Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Sijia Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Pan Li
- Department of Pharmacy, Fengdu County Hospital of Traditional Chinese Medicine, Chongqing, China
- *Correspondence: Xiaoli Li, ; Pan Li,
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
- *Correspondence: Xiaoli Li, ; Pan Li,
| |
Collapse
|
17
|
Li X, Miao S, Li F, Ye F, Yue G, Lu R, Shen H, Ye Y. Cellular Calcium Signals in Cancer Chemoprevention and Chemotherapy by Phytochemicals. Nutr Cancer 2022; 74:2671-2685. [PMID: 35876249 DOI: 10.1080/01635581.2021.2020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang, China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Ye
- Department of Clinical Laboratory Center, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guang Yue
- Department of Internal Medicine, The Third Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Experimental Research, Affiliated Kunshan Hospital, Jiangsu University, Kunshan, Suzhou, China
| | - Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Newman RA, Chase CCL, Matos JR, Abdelsalam K, Buterbaugh R, Van Holland S, Abdelaal H, Woolum A, Jagannadha Sastry K. Efficacy of oleandrin and PBI-05204 against bovine viruses of importance to commercial cattle health. Antivir Chem Chemother 2022; 30:20402066221103960. [PMID: 35611441 PMCID: PMC9136442 DOI: 10.1177/20402066221103960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV). and bovine coronavirus (BCV) threaten the productivity of cattle worldwide. Development of therapeutics that can control the spread of these viruses is an unmet need. The present research was designed to explore the in vitro antiviral activity of the Nerium oleander derived cardiac glycoside oleandrin and a defined N. oleander plant extract (PBI-05204) containing oleandrin. Methods Madin Darby Bovine Kidney (MDBK) cells, Bovine Turbinate (BT) cells, and Human Rectal Tumor-18 (HRT-18) cells were used as in vitro culture systems for BVDV, BRSV and BCV, respectively. Cytotoxicity was established using serial dilutions of oleandrin or PBI-05204. Noncytotoxic concentrations of each drug were used either prior to or at 12 h and 24 h following virus exposure to corresponding viruses. Infectious virus titers were determined following each treatment. Results Both oleandrin as well as PBI-05204 demonstrated strong antiviral activity against BVDV, BRSV, and BCV, in a dose-dependent manner, when added prior to or following infection of host cells. Determination of viral loads by PCR demonstrated a concentration dependent decline in virus replication. Importantly, the relative ability of virus produced from treated cultures to infect new host cells was reduced by as much as 10,000-fold at noncytotoxic concentrations of oleandrin or PBI-05204. Conclusions The research demonstrates the potency of oleandrin and PBI-05204 to inhibit infectivity of three important enveloped bovine viruses in vitro. These data showing non-toxic concentrations of oleandrin inhibiting infectivity of three bovine viruses support further investigation of in vivo antiviral efficacy.
Collapse
Affiliation(s)
- Robert A Newman
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA.,Phoenix Biotechnology, Inc., San Antonio, TX 78217, USA
| | - Christopher C L Chase
- Department of Veterinary and Biomedical Sciences, 2019South Dakota State University, Brookings, SD 57006, USA.,RTI, LLC, Brookings SD 57006, USA
| | - Jose R Matos
- Department of Pathobiology and Population Medicine, Mississippi State University, Starkville, MS 39762, USA.,Innovar, LLC, Plano, TX 75025, USA
| | | | | | | | | | - Amelia Woolum
- Department of Pathobiology and Population Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - K Jagannadha Sastry
- Departments of Thoracic, Head and Neck Medical Oncology and Veterinary Sciences, 4002The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
19
|
Yang P, Jiang PW, Li C, Gao MX, Sun YS, Zhang DY, Du WQ, Zhao J, Shi ST, Li Y, Yang T, Cheng L, Li MH. Cdc25C/cdc2/cyclin B, raf/MEK/ERK and PERK/eIF2α/CHOP pathways are involved in forskolin-induced growth inhibition of MM.1S cells by G2/M arrest and mitochondrion-dependent apoptosis. Cell Cycle 2021; 20:2402-2412. [PMID: 34606419 PMCID: PMC8794531 DOI: 10.1080/15384101.2021.1983280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/14/2021] [Indexed: 10/20/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable hematological malignancy characterized by proliferation and accumulation of plasma cells in the bone marrow. Innovative and effective therapeutic approaches that are able to improve the outcome and the survival of MM sufferers, especially the identification of novel natural compounds and investigation of their anti-MM mechanisms, are needed. Here, we investigated the effects and the potential mechanisms against MM of forskolin, a diterpene derived from the medicinal plant Coleus forskohlii, in MM cell line MM.1S. CCK-8 assay showed that forskolin significantly inhibited MM.1S cells viability in a time- and dose-dependent manner. Furthermore, we demonstrated that forskolin induced G2/M phase arrest with a remarkable increase of p-cdc25c, p-cdc2, and a decrease of cyclin B1, indicating the suppression of cdc25C/cdc2/cyclin B pathway. Moreover, we found that forskolin induced mitochondrion-dependent apoptosis which was accompanied by the increase of pro-apoptotic proteins Bax, Bad, Bim and Bid, the decrease of anti-apoptotic proteins Bcl-2 and Bcl-xl, the changes of the mitochondrial membrane potential (MMP) and increase of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. Of note, we demonstrated that forskolin induced a decrease of p-C-Raf, p-MEK, p-ERK1/2 and p-p90Rsk, and an increase of p-PERK, p-eIF2α and CHOP, which indicated that the inhibition of Raf/MEK/ERK pathway and activation of PERK/eIF2α/CHOP pathway were involved, at least partially, in forskolin-induced MM.1S cells apoptosis. These findings confirm the anti-MM action of forskolin and extend the understanding of its anti-MM mechanism in MM.1S cells, as well as reinforcing the evidence for forskolin as a natural chemotherapeutic compound against MM.
Collapse
Affiliation(s)
| | - Pei-Wen Jiang
- School of Basic Medicine
- Center of Science and Research
| | - Chen Li
- School of Basic Medicine
- School of Bioscience and Technology
| | - Ming-Xiang Gao
- Center of Science and Research
- School of Clinical Medicine
| | | | | | | | | | - Song-Ting Shi
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yan Li
- School of Basic Medicine
- School of Bioscience and Technology
| | | | | | - Min-Hui Li
- School of Basic Medicine
- Center of Science and Research
| |
Collapse
|
20
|
Winitchaikul T, Sawong S, Surangkul D, Srikummool M, Somran J, Pekthong D, Kamonlakorn K, Nangngam P, Parhira S, Srisawang P. Calotropis gigantea stem bark extract induced apoptosis related to ROS and ATP production in colon cancer cells. PLoS One 2021; 16:e0254392. [PMID: 34343190 PMCID: PMC8330925 DOI: 10.1371/journal.pone.0254392] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Conventional chemotherapeutic agents for colorectal cancer (CRC) cause systemic side effects and eventually become less efficacious owing to the development of drug resistance in cancer cells. Therefore, new therapeutic regimens have focused on the use of natural products. The anticancer activity of several parts of Calotropis gigantea has been reported; however, the effects of its stem bark extract on inhibition of cancer cell proliferation have not yet been examined. In this study, the anticancer activity of C. gigantea stem bark extract, both alone and in combination with 5-fluorouracil (5-FU), was evaluated. A crude ethanolic extract was prepared from dry, powdered C. gigantea barks using 95% ethanol. This was then partitioned to obtain dichloromethane (CGDCM), ethyl acetate, and water fractions. Quantitative analysis of the constituent secondary metabolites and calotropin was performed. These fractions exhibited cytotoxicity in HCT116 and HT-29 cells, with CGDCM showing the highest potency in both the cell lines. A combination of CGDCM and 5-FU significantly enhanced the cytotoxic effect. Moreover, the resistance of normal fibroblast, HFF-1, cells to this combination demonstrated its safety in normal cells. The combination significantly enhanced apoptosis through the mitochondria-dependent pathway. Additionally, the combination reduced adenosine triphosphate production and increased the production of reactive oxygen species, demonstrating the mechanisms involved in the induction of apoptosis. Our results suggest that CGDCM is a promising anti-cancer agent and may enhance apoptosis induction by 5-FU in the treatment of CRC, while minimizing toxicity toward healthy cells.
Collapse
Affiliation(s)
- Thanwarat Winitchaikul
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
| | - Suphunwadee Sawong
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
| | - Damratsamon Surangkul
- Faculty of Medical Science, Department of Biochemistry, Naresuan University, Phitsanulok, Thailand
| | - Metawee Srikummool
- Faculty of Medical Science, Department of Biochemistry, Naresuan University, Phitsanulok, Thailand
| | - Julintorn Somran
- Faculty of Medicine, Department of Pathology, Naresuan University, Phitsanulok, Thailand
| | - Dumrongsak Pekthong
- Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Naresuan University, Phitsanulok, Thailand
| | - Kittiya Kamonlakorn
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry and Pharmacognosy, Naresuan University, Phitsanulok, Thailand
| | - Pranee Nangngam
- Faculty of Science, Department of Biology, Naresuan University, Phitsanulok, Thailand
| | - Supawadee Parhira
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, Thailand
- * E-mail: (SP); (PS)
| | - Piyarat Srisawang
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
- * E-mail: (SP); (PS)
| |
Collapse
|
21
|
Li X, Zheng J, Chen S, Meng FD, Ning J, Sun SL. Oleandrin, a cardiac glycoside, induces immunogenic cell death via the PERK/elF2α/ATF4/CHOP pathway in breast cancer. Cell Death Dis 2021; 12:314. [PMID: 33762577 PMCID: PMC7990929 DOI: 10.1038/s41419-021-03605-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
Chemotherapeutic agents have been linked to immunogenic cell death (ICD) induction that is capable of augmenting anti-tumor immune surveillance. The cardiac glycoside oleandrin, which inhibits Na+/K+-ATPase pump (NKP), has been shown to suppress breast cancer growth via inducing apoptosis. In the present study, we showed that oleandrin treatment triggered breast cancer cell ICD by inducing calreticulin (CRT) exposure on cell surface and the release of high-mobility group protein B1 (HMGB1), heat shock protein 70/90 (HSP70/90), and adenosine triphosphate (ATP). The maturation and activation of dendritic cells (DCs) were increased by co-culturing with the oleandrin-treated cancer cells, which subsequently enhanced CD8+ T cell cytotoxicity. Murine breast cancer cell line EMT6 was engrafted into BALB/c mice, and tumor-bearing mice were administered with oleandrin intraperitoneally every day. Oleandrin inhibited tumor growth and increased tumor infiltrating lymphocytes including DCs and T cells. Furthermore, the differential mRNA expression incurred by oleandrin was investigated by mRNA sequencing and subsequently confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Mechanistically, oleandrin induced endoplasmic reticulum (ER) stress-associated, caspase-independent ICD mainly through PERK/elF2α/ATF4/CHOP pathway. Pharmacological and genetic inhibition of protein kinase R-like ER kinase (PERK) suppressed oleandrin-triggered ICD. Taken together, our findings showed that oleandrin triggered ER stress and induced ICD-mediated immune destruction of breast cancer cells. Oleandrin combined with immune checkpoint inhibitors might improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Xiaoxi Li
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Jian Zheng
- Department of Thoracic Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Shi Chen
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Fan-Dong Meng
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Jing Ning
- Department of General Medicine (VIP ward) & Department of Tumor Supportive and Palliative Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Shu-Lan Sun
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
22
|
Cytotoxicity of Oleandrin Is Mediated by Calcium Influx and by Increased Manganese Uptake in Saccharomyces cerevisiae Cells. Molecules 2020; 25:molecules25184259. [PMID: 32957533 PMCID: PMC7570853 DOI: 10.3390/molecules25184259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/22/2022] Open
Abstract
Oleandrin, the main component of Nerium oleander L. extracts, is a cardiotoxic glycoside with multiple pharmacological implications, having potential anti-tumoral and antiviral characteristics. Although it is accepted that the main mechanism of oleandrin action is the inhibition of Na+/K+-ATPases and subsequent increase in cell calcium, many aspects which determine oleandrin cytotoxicity remain elusive. In this study, we used the model Saccharomyces cerevisiae to unravel new elements accounting for oleandrin toxicity. Using cells expressing the Ca2+-sensitive photoprotein aequorin, we found that oleandrin exposure resulted in Ca2+ influx into the cytosol and that failing to pump Ca2+ from the cytosol to the vacuole increased oleandrin toxicity. We also found that oleandrin exposure induced Mn2+ accumulation by yeast cells via the plasma membrane Smf1 and that mutants with defects in Mn2+ homeostasis are oleandrin-hypersensitive. Our data suggest that combining oleandrin with agents which alter Ca2+ or Mn2+ uptake may be a way of controlling oleandrin toxicity.
Collapse
|