1
|
Sawali MA, Zahid MA, Abdelsalam SS, Al-Zoubi RM, Shkoor M, Agouni A. The role of PTP1B in cardiometabolic disorders and endothelial dysfunction. J Drug Target 2025:1-16. [PMID: 39996501 DOI: 10.1080/1061186x.2025.2473024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 02/23/2025] [Indexed: 02/26/2025]
Abstract
Cardiovascular diseases (CVD) are a global health concern that accounts for a large share of annual mortality. Endothelial dysfunction is the main underlying factor that eventually leads to cardiovascular events. Recent studies have underscored the critical function of Protein Tyrosine Phosphatase 1B (PTP1B) in the onset of endothelial dysfunction, chiefly through its involvement in metabolic diseases such as diabetes, obesity, and leptin resistance. PTP1B attenuates insulin and leptin signalling by dephosphorylating their respective receptors at key tyrosine residues, resulting in resistance-both of which are significant mechanisms underpinning the development of endothelial dysfunction. PTP1B also contributes to the disruption of the endoplasmic reticulum, causing endoplasmic reticulum stress, another molecular driver of endothelial dysfunction. Efforts to inhibit PTP1B activity hold the promise of advancing the prevention and management of CVD and metabolic disorders, as these conditions share common risk factors and underlying cellular mechanisms. Numerous small molecules have been reported as PTP1B inhibitors; however, their progression to advanced clinical trials has been hindered by major challenges such as low selectivity and undesirable side effects. This review provides an in-depth analysis of PTP1B's involvement in metabolic diseases and its interaction with CVD and examines the strategies and challenges related to inhibiting this enzyme.
Collapse
Affiliation(s)
- Mona A Sawali
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Shahenda Salah Abdelsalam
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohanad Shkoor
- Department of Chemistry, College of Arts and Science, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Chen Q, Zhao X, Xu Z, Liu Y. Endoplasmic reticulum stress mechanisms and exercise intervention in type 2 diabetes mellitus. Biomed Pharmacother 2024; 177:117122. [PMID: 38991302 DOI: 10.1016/j.biopha.2024.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease primarily characterized by insulin resistance (IR) and insufficient insulin secretion. The unfolded protein response (UPR) overactivation induced by endoplasmic reticulum stress (ERS) appears to play a key role in this process, although the exact pathogenesis of T2DM is not fully understood. Studies have demonstrated that appropriate exercise can regulate ERS in the heart, liver, pancreas, skeletal muscle, and other body tissues leading to an improvement in diabetes and its complications. However, the exact mechanism remains unclear. By analyzing the relationship between ERS, T2DM pathology, and exercise intervention, this review concludes that exercise can increase insulin sensitivity, inhibit IR, promote insulin secretion and alleviate T2DM by regulating ERS. This paper specifically reviews the signaling pathways by which ERS induces diabetes, the mechanisms of exercise regulation of ERS in diabetes, and the varying effects of different types of exercise on diabetes improvement through ERS mechanisms. Physical exercise is an effective non-pharmacological intervention for T2DM. Thus, further exploration of how exercise regulates ERS in diabetes could refine "precision exercise medicine" for diabetes and identify new drug targets.
Collapse
Affiliation(s)
- Qianyu Chen
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zujie Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Yiyao Liu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
3
|
Zhou Y, Yao Z, Lin Y, Zhang H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024; 16:888. [PMID: 39065585 PMCID: PMC11279542 DOI: 10.3390/pharmaceutics16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as "undruggable" targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
- Zhuhai Institute of Jinan University, Zhuhai 511436, China
| |
Collapse
|
4
|
Xiao T, Zhi Y, Tian F, Huang F, Cheng X, Wu A, Tao L, Guo Z, Shen X. Ameliorative effect of black raspberry anthocyanins on diabetes retinopathy by inhibiting axis protein tyrosine phosphatase 1B-endoplasmic reticulum stress. J Funct Foods 2023; 107:105696. [DOI: 10.1016/j.jff.2023.105696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025] Open
|
5
|
Ye H, Liu Q, Wang Y, Zhen X, Yan N. The Effect of Cholesterol Efflux on Endothelial Dysfunction Caused by Oxidative Stress. Int J Mol Sci 2023; 24:ijms24065939. [PMID: 36983012 PMCID: PMC10056126 DOI: 10.3390/ijms24065939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Endothelial dysfunction (ED) is the initiation of atherosclerosis (AS). Our previous studies have found that cholesterol metabolism and the Wnt/β-catenin pathway can affect endoplasmic reticulum stress (ER stress), which ultimately leads to ED. However, the effects of cholesterol efflux on ED, which are caused by oxidative stress and the correlation among ER stress, Wnt/β-catenin pathway, and cholesterol efflux, are not clear during ED. To uncover them, the expressions of liver X receptors (LXRα and LXRβ) and ATP-binding cassette protein A1 (ABCA1) and G1 (ABCG1) in HUVECs (human umbilical vein endothelial cells) were measured under oxidative stress. Moreover, HUVECs were treated with LXR-623 (LXR agonist), cholesterol, tunicamycin, and salinomycin alone or together. The results indicated that oxidative stress-induced ED could deregulate the expressions of LXRα and LXRβ and trigger the ER stress and Wnt/β-catenin pathway, resulting thereafter in the accumulation of cholesterol. Furthermore, similar results were shown after treatment with cholesterol; however, the activation of liver X receptor (LXR) could reverse these changes. Furthermore, other results demonstrated that tunicamycin-induced ER stress could stimulate the accumulation of cholesterol and the Wnt/β-catenin pathway, further leading to ED. Inversely, salinomycin could reverse the above effects by deregulating the Wnt/β-catenin pathway. Collectively, our results showed that cholesterol efflux is partly responsible for the oxidative stress-induced ED; in addition, ER stress, the Wnt/β-catenin pathway, and cholesterol metabolism can interact with each other to promote ED.
Collapse
Affiliation(s)
- Hua Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, China
| | - Qian Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, China
| | - Yuanyuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, China
| | - Ximian Zhen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, China
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Endothelial dysfunction is a major risk factor for many cardiovascular diseases, notably hypertension. Obesity increases the risk of endothelial dysfunction in association with increasing production of the adipokine leptin. Preclinical studies have begun to unravel the mechanisms whereby leptin leads to the development of endothelial dysfunction, which are sex-specific. This review will summarize recent findings of mechanisms of leptin-induced endothelial impairment in both male and females and in pregnancy. RECENT FINDINGS Leptin receptors are found in high concentrations in the central nervous system (CNS), via which leptin promotes appetite suppression and upregulates sympathetic nervous system activation. However, leptin receptors are expressed in many other tissues, including the vascular endothelial cells and smooth muscle cells. Recent studies in mice with vascular endothelial or smooth muscle-specific knockdown demonstrate that endothelial leptin receptor activation plays a protective role against endothelial dysfunction in male animals, but not necessarily in females. Clinical studies indicate that women may be more sensitive to obesity-associated vascular endothelial dysfunction. Emerging preclinical data indicates that leptin and progesterone increase aldosterone production and endothelial mineralocorticoid receptor activation, respectively. Furthermore, decades of clinical studies indicate that leptin levels increase in the hypertensive pregnancy disorder preeclampsia, which is characterized by systemic endothelial dysfunction. Leptin infusion in mice induces the clinical characteristics of preeclampsia, including endothelial dysfunction. SUMMARY Novel preclinical data indicate that the mechanisms whereby leptin promotes endothelial dysfunction are sex-specific. Leptin-induced endothelial dysfunction may also play a role in hypertensive pregnancy as well.
Collapse
Affiliation(s)
- Elisabeth Mellott
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
- Department of OBGYN, Medical College of Georgia at Augusta University, Augusta, GA
| |
Collapse
|
7
|
Zhao Z, Wang X, Lu M, Gao Y. Rosuvastatin Improves Endothelial Dysfunction in Diabetes by Normalizing Endoplasmic Reticulum Stress via Calpain-1 Inhibition. Curr Pharm Des 2023; 29:2579-2590. [PMID: 37881071 DOI: 10.2174/0113816128250494231016065438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Rosuvastatin contributes to the improvement of vascular complications in diabetes, but the protective mechanisms remain unclear. The aim of the present study was to investigate the effect and mechanism of rosuvastatin on endothelial dysfunction induced by diabetes. METHODS Calpain-1 knockout (Capn1 EK684-/-) and C57BL/6 mice were intraperitoneally injected with STZ to induce type 1 diabetes. Human umbilical vein endothelial cells (HUVECs) were incubated with high glucose in this study. The function of isolated vascular rings, apoptosis, and endoplasmic reticulum stress (ERS) indicators were measured in this experiment. RESULTS The results showed that rosuvastatin (5 mg/kg/d) and calpain-1 knockout improved impaired vasodilation in an endothelial-dependent manner, and this effect was abolished by an ERS inducer. Rosuvastatin administration inhibited calpain-1 activation and ERS induced by high glucose, as well as apoptosis and oxidative stress both in vivo and in vitro. In addition, an ERS inducer (tunicamycin) offset the beneficial effect of rosuvastatin on endothelial dysfunction and ERS, which was accompanied by increased calpain-1 expression. The ERS inhibitor showed a similar improvement in endothelial dysfunction with rosuvastatin but could not increase the improvement in endothelial function of rosuvastatin. CONCLUSION These results suggested that rosuvastatin improves endothelial dysfunction by suppressing calpain- 1 and normalizing ERS, subsequently decreasing apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Zhao Zhao
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin, China
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xinpeng Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- Liaoning Provincial Key Laboratory of Cardiovascular Drugs, Jinzhou Medical University, Jinzhou, China
| | - Yuxia Gao
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
8
|
Sankrityayan H, Rao PD, Shelke V, Kulkarni YA, Mulay SR, Gaikwad AB. Endoplasmic Reticulum Stress and Renin-Angiotensin System Crosstalk in Endothelial Dysfunction. Curr Mol Pharmacol 2023; 16:139-146. [PMID: 35232343 DOI: 10.2174/1874467215666220301113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vascular endothelial dysfunction (VED) significantly results in catastrophic cardiovascular diseases with multiple aetiologies. Variations in vasoactive peptides, including angiotensin II and endothelin 1, and metabolic perturbations like hyperglycaemia, altered insulin signalling, and homocysteine levels result in pathogenic signalling cascades, which ultimately lead to VED. Endoplasmic reticulum (ER) stress reduces nitric oxide availability, causes aberrant angiogenesis, and enhances oxidative stress pathways, consequently promoting endothelial dysfunction. Moreover, the renin-angiotensin system (RAS) has widely been acknowledged to impact angiogenesis, endothelial repair and inflammation. Interestingly, experimental studies at the preclinical level indicate a possible pathological link between the two pathways in the development of VED. Furthermore, pharmacological modulation of ER stress ameliorates angiotensin-II mediated VED as well as RAS intervention either through inhibition of the pressor arm or enhancement of the depressor arm of RAS, mitigating ER stress-induced endothelial dysfunction and thus emphasizing a vital crosstalk. CONCLUSION Deciphering the pathway overlap between RAS and ER stress may open potential therapeutic avenues to combat endothelial dysfunction and associated diseases. Several studies suggest that alteration in a component of RAS may induce ER stress or induction of ER stress may modulate the RAS components. In this review, we intend to elaborate on the crosstalk of ER stress and RAS in the pathophysiology of VED.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Pooja Dhileepkumar Rao
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| |
Collapse
|
9
|
Rao Z, Zheng Y, Xu L, Wang Z, Zhou Y, Chen M, Dong N, Cai Z, Li F. Endoplasmic Reticulum Stress and Pathogenesis of Vascular Calcification. Front Cardiovasc Med 2022; 9:918056. [PMID: 35783850 PMCID: PMC9243238 DOI: 10.3389/fcvm.2022.918056] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular calcification (VC) is characterized by calcium phosphate deposition in blood vessel walls and is associated with many diseases, as well as increased cardiovascular morbidity and mortality. However, the molecular mechanisms underlying of VC development and pathogenesis are not fully understood, thus impeding the design of molecular-targeted therapy for VC. Recently, several studies have shown that endoplasmic reticulum (ER) stress can exacerbate VC. The ER is an intracellular membranous organelle involved in the synthesis, folding, maturation, and post-translational modification of secretory and transmembrane proteins. ER stress (ERS) occurs when unfolded/misfolded proteins accumulate after a disturbance in the ER environment. Therefore, downregulation of pathological ERS may attenuate VC. This review summarizes the relationship between ERS and VC, focusing on how ERS regulates the development of VC by promoting osteogenic transformation, inflammation, autophagy, and apoptosis, with particular interest in the molecular mechanisms occurring in various vascular cells. We also discuss, the therapeutic effects of ERS inhibition on the progress of diseases associated with VC are detailed.
Collapse
Affiliation(s)
- Zhenqi Rao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yidan Zheng
- Basic Medical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhang Y, Guan Q, Wang Z. PTP1B inhibition ameliorates inflammatory injury and dysfunction in ox‑LDL‑induced HUVECs by activating the AMPK/SIRT1 signaling pathway via negative regulation of KLF2. Exp Ther Med 2022; 24:467. [PMID: 35747159 PMCID: PMC9204542 DOI: 10.3892/etm.2022.11394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/15/2022] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is a key pathogenic factor of cardiovascular diseases. However, the role of protein tyrosine phosphatase 1B (PTP1B) in oxidized low-density lipoprotein (ox-LDL)-treated vascular endothelial cells remains unclear. The aim of the present study was to explore the possible physiological roles and mechanism of PTP1B in atherosclerosis using HUVECs as an in vitro model. PTP1B expression was assessed by reverse transcription-quantitative PCR. Cell viability was measured using the Cell Counting Kit-8 and lactate dehydrogenase activity assays. Levels of inflammatory factors, including IL-1β, IL-6 and TNF-α, and oxidative stress factors, including malondialdehyde, superoxide dismutase and glutathione peroxidase, were assessed using ELISA and commercially available kits, respectively. Furthermore, TUNEL assay and western blotting were performed to assess the extent of apoptosis-related factors, including Bcl-2, Bax, Cleaved caspase-3 and Caspase-3. Tube formation assay was used to assess tubule formation ability and western blotting was to analyze VEGFA protein level. Binding sites for the transcription factor Kruppel-like factor 2 (KLF2) on the PTP1B promoter were predicted using the JASPAR database and verified using luciferase reporter assays and chromatin immunoprecipitation. The protein levels of phosphorylated 5'AMP-activated protein kinase (p-AMPK), AMPK and SIRT1 were measured using western blotting. The results demonstrated that the PTP1B mRNA and protein expression levels were significantly upregulated in oxidized low-density lipoprotein (ox-LDL)-induced HUVECs. In addition, ox-LDL-induced HUVECs transfected with short hairpin RNA against PTP1B exhibited a significant increase in cell viability, reduced inflammatory factor levels, apoptosis and oxidative stress, as well as increased tubule formation ability. KLF2 was found to negatively regulate the transcriptional activity of PTP1B. KLF2 knockdown reversed the protective effects of PTP1B knockdown on ox-LDL-induced HUVECs. KLF2 knockdown also abolished PTP1B knockdown-triggered AMPK/SIRT1 signaling pathway activation in ox-LDL-induced HUVECs. To conclude, the results of the present study suggested that PTP1B knockdown can prevent ox-LDL-induced inflammatory injury and dysfunction in HUVECs, which is regulated at least in part by the AMPK/SIRT1 signaling pathway through KLF2.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Qiang Guan
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Zhenfeng Wang
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
11
|
Teimouri M, Hosseini H, ArabSadeghabadi Z, Babaei-Khorzoughi R, Gorgani-Firuzjaee S, Meshkani R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J Physiol Biochem 2022; 78:307-322. [PMID: 34988903 DOI: 10.1007/s13105-021-00860-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Insulin resistance, the most important characteristic of the type 2 diabetes mellitus (T2DM), is mostly caused by impairment in the insulin receptor (IR) signal transduction pathway. Protein tyrosine phosphatase 1B (PTP1B), one of the main negative regulators of the IR signaling pathway, is broadly expressed in various cells and tissues. PTP1B decreases the phosphorylation of the IR resulting in insulin resistance in various tissues. The evidence for the physiological role of PTP1B in regulation of metabolic pathways came from whole-body PTP1B-knockout mice. Whole-body and tissue-specific PTP1B-knockout mice showed improvement in adiposity, insulin resistance, and glucose tolerance. In addition, the key role of PTP1B in the pathogenesis of T2DM and its complications was further investigated in mice models of PTP1B deficient/overexpression. In recent years, targeting PTP1B using PTP1B inhibitors is being considered an attractive target to treat T2DM. PTP1B inhibitors improve the sensitivity of the insulin receptor and have the ability to cure insulin resistance-related diseases. We herein summarized the biological functions of PTP1B in different tissues in vivo and in vitro. We also describe the effectiveness of potent PTP1B inhibitors as pharmaceutical agents to treat T2DM.
Collapse
Affiliation(s)
- Maryam Teimouri
- Department of Clinical Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra ArabSadeghabadi
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Reyhaneh Babaei-Khorzoughi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Reduced Endothelial Leptin Signaling Increases Vascular Adrenergic Reactivity in a Mouse Model of Congenital Generalized Lipodystrophy. Int J Mol Sci 2021; 22:ijms221910596. [PMID: 34638939 PMCID: PMC8508873 DOI: 10.3390/ijms221910596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
The adipokine leptin, which is best-known for its role in the control of metabolic function, is also a master regulator of cardiovascular function. While leptin has been approved for the treatment of metabolic disorders in patients with congenital generalized lipodystrophy (CGL), the effects of chronic leptin deficiency and the treatment on vascular contractility remain unknown. Herein, we investigated the effects of leptin deficiency and treatment (0.3 mg/day/7 days) on aortic contractility in male Berardinelli-Seip 2 gene deficient mice (gBscl2-/-, model of CGL) and their wild-type control (gBscl2+/+), as well as in mice with selective deficiency in endothelial leptin receptor (LepREC-/-). Lipodystrophy selectively increased vascular adrenergic contractility via NO-independent mechanisms and induced hypertrophic vascular remodeling. Leptin treatment and Nox1 inhibition blunted adrenergic hypercontractility in gBscl2-/- mice, however, leptin failed to rescue vascular media thickness. Selective deficiency in endothelial leptin receptor did not alter baseline adrenergic contractility but abolished leptin-mediated reduction in adrenergic contractility, supporting the contribution of endothelium-dependent mechanisms. These data reveal a new direct role for endothelial leptin receptors in the control of vascular contractility and homeostasis, and present leptin as a safe therapy for the treatment of vascular disease in CGL.
Collapse
|
13
|
Abdelsalam SS, Pasha M, El-Gamal H, Hasan M, Elrayess MA, Zeidan A, Korashy HM, Agouni A. Protein tyrosine phosphatase 1B inhibition improves endoplasmic reticulum stress‑impaired endothelial cell angiogenic response: A critical role for cell survival. Mol Med Rep 2021; 24:665. [PMID: 34296297 DOI: 10.3892/mmr.2021.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/28/2021] [Indexed: 11/05/2022] Open
Abstract
Endoplasmic reticulum (ER) stress contributes to endothelial dysfunction, which is the initial step in atherogenesis. Blockade of protein tyrosine phosphatase (PTP)1B, a negative regulator of insulin receptors that is critically located on the surface of ER membrane, has been found to improve endothelial dysfunction. However, the role of ER stress and its related apoptotic sub‑pathways in PTP1B‑mediated endothelial dysfunction, particularly its angiogenic capacity, have not yet been fully elucidated. Thus, the present study aimed to investigate the impact of PTP1B suppression on ER stress‑mediated impaired angiogenesis and examined the contribution of apoptotic signals in this process. Endothelial cells were exposed to pharmacological ER stressors, including thapsigargin (TG) or 1,4‑dithiothreitol (DTT), in the presence or absence of a PTP1B inhibitor or small interfering (si)RNA duplexes. Then, ER stress, angiogenic capacity, cell cycle, apoptosis and the activation of key apoptotic signals were assessed. It was identified that the inhibition of PTP1B prevented ER stress caused by DTT and TG. Moreover, ER stress induction impaired the activation of endothelial nitric oxide synthase (eNOS) and the angiogenic capacity of endothelial cells, while PTP1B inhibition exerted a protective effect. The results demonstrated that blockade or knockdown of PTP1B prevented ER stress‑induced apoptosis and cell cycle arrest. This effect was associated with reduced expression levels of caspase‑12 and poly (ADP‑Ribose) polymerase 1. PTP1B blockade also suppressed autophagy activated by TG. The current data support the critical role of PTP1B in ER stress‑mediated endothelial dysfunction, characterized by reduced angiogenic capacity, with an underlying mechanism involving reduced eNOS activation and cell survival. These findings provide evidence of the therapeutic potential of targeting PTP1B in cardiovascular ischemic conditions.
Collapse
Affiliation(s)
- Shahenda S Abdelsalam
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Mazhar Pasha
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Heba El-Gamal
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Maram Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | | | - Asad Zeidan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| |
Collapse
|
14
|
Zhang G, Wang B, Cheng S, Fan H, Liu S, Zhou B, Liu W, Liang R, Tang Y, Zhang Y. KDELR2 knockdown synergizes with temozolomide to induce glioma cell apoptosis through the CHOP and JNK/p38 pathways. Transl Cancer Res 2021; 10:3491-3506. [PMID: 35116653 PMCID: PMC8799170 DOI: 10.21037/tcr-21-869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The C-terminal tetrapeptide Lys-Asp-Glu-Leu receptors (KDELRs) are transmembrane proteins that regulate ER stress (ERS) response, growth, differentiation, and immune responses. There is an association between KDELR2and promotion of glioblastoma tumorigenesis. The aim of the present study was to explore the functional mechanism of KDELR2 in glioma and during response to chemotherapy to temozolomide (TMZ). METHODS The expression of KDELR2 in glioma tissues and cells was evaluated by immunohistochemistry, western blot and RT-qPCR assay. Then role of KDELR2 was demonstrated by CCK8, colony formation, flow cytometry and Hochest 33258 assays. The expression of genes (ATF4, ATF6, PERK, eIF2-α, GRP78 and CHOP) in U373 cells was evaluated by RT-qPCR. The protein expression of genes (cleaved caspase 3, caspase 3, cleaved PARP, PARP, Bax, Bcl-2, JNK, p-JNK, p38, p-p38, ATF4, ATF6, XBP-1s, PERK, p-PERK, GRP78 and CHOP) was measured by western blot assay. RESULTS The expression of KDELR2 was upregulated in high-grade gliomas tissues. KDELR2 knockdown suppressed cell proliferation but increased cell apoptosis. Further, Knockdown of KDELR2 also activated the ER stress (ERS)-dependent CHOP pathway, and resulted in increased levels of phosphorylated c-Jun N-terminal kinase (JNK) and p38. Moreover, the combination of KDELR2 knockdown and TMZ application showed a synergistic cytotoxic effect in U373 cells through the ERS-dependent CHOP and JNK/p38 pathways. CONCLUSIONS KDELR2 knockdown induces apoptosis and sensitizes glioma cells to TMZ, which is mediated by the ERS-dependent CHOP and JNK/p38 pathways.
Collapse
Affiliation(s)
- Guofeng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurosurgery, The Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Bin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shiqi Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hengyi Fan
- Department Radiation Oncology, Klinikum rechts der lsar, Technische Universität München, Munich, Germany
| | - Shaowen Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Zhou
- Department of Pathology, The Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Weibin Liu
- Department of Neurosurgery, The Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Rui Liang
- Department of Neurosurgery, The Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Youjia Tang
- Department of Neurosurgery, The Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Lv S, Liu H, Wang H. Exogenous Hydrogen Sulfide Plays an Important Role by Regulating Autophagy in Diabetic-Related Diseases. Int J Mol Sci 2021; 22:ijms22136715. [PMID: 34201520 PMCID: PMC8268438 DOI: 10.3390/ijms22136715] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a vital cell mechanism which plays an important role in many physiological processes including clearing long-lived, accumulated and misfolded proteins, removing damaged organelles and regulating growth and aging. Autophagy also participates in a variety of biological functions, such as development, cell differentiation, resistance to pathogens and nutritional hunger. Recently, autophagy has been reported to be involved in diabetes, but the mechanism is not fully understood. Hydrogen sulfide (H2S) is a colorless, water-soluble, flammable gas with the typical odor of rotten eggs, which has been known as a highly toxic gas for many years. However, it has been reported recently that H2S, together with nitric oxide and carbon monoxide, is an important gas signal transduction molecule. H2S has been reported to play a protective role in many diabetes-related diseases, but the mechanism is not fully clear. Recent studies indicate that H2S plays an important role by regulating autophagy in many diseases including cancer, tissue fibrosis diseases and glycometabolic diseases; however, the related mechanism has not been fully studied. In this review, we summarize recent research on the role of H2S in regulating autophagy in diabetic-related diseases to provide references for future related research.
Collapse
|
16
|
Cai Z, Yuan S, Zhong Y, Deng L, Li J, Tan X, Feng J. Amelioration of Endothelial Dysfunction in Diabetes: Role of Takeda G Protein-Coupled Receptor 5. Front Pharmacol 2021; 12:637051. [PMID: 33995040 PMCID: PMC8113688 DOI: 10.3389/fphar.2021.637051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) eventually leads to chronic vascular complications, resulting in cardiovascular diseases. DM-associated endothelial dysfunction (ED) plays an important role in the development of chronic vascular complications. Low endothelial nitric oxide synthase (eNOS) activity, inflammation, and oxidative stress all contribute to ED. The G protein-coupled receptor Takeda G protein-coupled receptor 5 (TGR5) is a membrane receptor for bile acids that plays an important role in the regulation of glucose metabolism. Recent studies have shown that TGR5 is involved in the regulation of various mediators of ED, which suggests that TGR5 may represent a target for the treatment of DM-associated ED. In this review, we summarize the principal mechanisms of DM-associated ED, then propose TGR5 as a novel therapeutic target on the basis of its mechanistic involvement, and suggest potential directions for future research.
Collapse
Affiliation(s)
- Zhengyao Cai
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Suxin Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaoqiu Tan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Common targets for a deadly duo of diabetes mellitus and colon cancer: Catching two fish with one worm. Eur J Pharmacol 2021; 893:173805. [PMID: 33359221 DOI: 10.1016/j.ejphar.2020.173805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/05/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Colon cancer is a major health issue and number of cases are increasing every year. Diabetes mellitus is also a significant health issue that is growing day by day worldwide having negative influences on the survival of individuals. Research has shown a strong relationship between the two malignant diseases. The risk of colon cancer with patients who have type 2 diabetes mellitus has spiked by 30%. The scientific research suggests insulin has a major role in the spread of cancer and the condition unifying between the two diseases is hyperinsulinemia. Several anti-diabetic agents are used for the treatment of type 2 diabetesmellitus. However, their mechanism of action against cancer activity is a question and only a few agents have shown positive signs of action in colon cancer associated with type 2 diabetesmellitus. Hence, the identification of targets, which is common for both colon cancer, associated with type 2 diabetesmellitus has become an urgent requirement. Novel targets such as Liver X receptors, Histone deacetylase inhibitors (HDACi), Glucose Transporters (GLUTs), Peroxisome proliferator activator receptors (PPARs), Dipeptidyl peptidase-IV inhibitors (DPP4i), Cyclin-dependent kinase 4 inhibitors (CDK4i), Estrogen receptors,Mechanistic target of rapamycin (mTOR), Insulin-like growth factor receptors (IGF) are some of the targets which are common for both, type 2 diabetesmellitus and colon cancer. This current review gives an overview of the targets (using one worm) which are common for both viz. diabetes mellitus and colon cancer (two fish).
Collapse
|
18
|
Lin Z, Tong Y, Li N, Zhu Z, Li J. Network pharmacology-based study of the mechanisms of action of anti-diabetic triterpenoids from Cyclocarya paliurus. RSC Adv 2020; 10:37168-37181. [PMID: 35521232 PMCID: PMC9057148 DOI: 10.1039/d0ra06846b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a complex illness requiring long-term therapy. Cyclocarya paliurus, a recently confirmed new food resource, shows significant hypoglycemic and hypolipidemic effects in type II diabetes. Triterpenoid saponins are considered as the effective medicinal components of C. paliurus and are useful for the treatment of diabetes mellitus. However, little is known regarding their specific mechanism of actions. In this study, we used active ingredient screening and target prediction techniques to determine the components of C. paliurus responsible for its anti-diabetic effects as well as their targets. In addition, we used bioinformatics technology and molecular docking analysis to determine the mechanisms underlying their anti-diabetic effects. A total of 39 triterpenes were identified through a literature search and 1 triterpene compound by experiments. In all, 33 potential target proteins associated with 36 pathways were predicted to be related to diabetes. Finally, 7 compounds, 15 target proteins, and 15 signaling pathways were found to play important roles in the therapeutic effects of C. paliurus against diabetes. These results provide a theoretical framework for the use of C. paliurus against diabetes. Moreover, molecular docking verification showed that more than 90% of the active ingredients had binding activity when tested against key target proteins, and a literature search showed that the active ingredients identified had anti-diabetic effects, indicating that the results were highly reliable. Active ingredient screening and target prediction techniques were used to determine the components of Cyclocarya paliurus responsible for its anti-diabetic effects as well as their targets. ![]()
Collapse
Affiliation(s)
- Zixin Lin
- School of Life Science
- Shanghai Normal University
- Shanghai 200234
- China
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation
| | - Yingpeng Tong
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation
- Taizhou University
- Taizhou 318000
- China
- School of Advanced Study
| | - Na Li
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation
- Taizhou University
- Taizhou 318000
- China
| | - Ziping Zhu
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation
- Taizhou University
- Taizhou 318000
- China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation
- Taizhou University
- Taizhou 318000
- China
- School of Advanced Study
| |
Collapse
|