1
|
Iheagwam FN, Joseph AJ, Adedoyin ED, Iheagwam OT, Ejoh SA. Mitochondrial Dysfunction in Diabetes: Shedding Light on a Widespread Oversight. PATHOPHYSIOLOGY 2025; 32:9. [PMID: 39982365 DOI: 10.3390/pathophysiology32010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 02/22/2025] Open
Abstract
Diabetes mellitus represents a complicated metabolic condition marked by ongoing hyperglycemia arising from impaired insulin secretion, inadequate insulin action, or a combination of both. Mitochondrial dysfunction has emerged as a significant contributor to the aetiology of diabetes, affecting various metabolic processes critical for glucose homeostasis. This review aims to elucidate the complex link between mitochondrial dysfunction and diabetes, covering the spectrum of diabetes types, the role of mitochondria in insulin resistance, highlighting pathophysiological mechanisms, mitochondrial DNA damage, and altered mitochondrial biogenesis and dynamics. Additionally, it discusses the clinical implications and complications of mitochondrial dysfunction in diabetes and its complications, diagnostic approaches for assessing mitochondrial function in diabetics, therapeutic strategies, future directions, and research opportunities.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amarachi Joy Joseph
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| | - Eniola Deborah Adedoyin
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| | | | - Samuel Akpoyowvare Ejoh
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| |
Collapse
|
2
|
Wang TY, Yang Q, Cheng XY, Ding JC, Hu PF. Beyond weight loss: the potential of glucagon-like peptide-1 receptor agonists for treating heart failure with preserved ejection fraction. Heart Fail Rev 2025; 30:17-38. [PMID: 39269643 DOI: 10.1007/s10741-024-10438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with various phenotypes, and obesity is one of the most common and clinically relevant phenotypes of HFpEF. Obesity contributes to HFpEF through multiple mechanisms, including sodium retention, neurohormonal dysregulation, altered energy substrate metabolism, expansion of visceral adipose tissue, and low-grade systemic inflammation. Glucagon-like peptide-1 (GLP-1) is a hormone in the incretin family. It is produced by specialized cells called neuroendocrine L cells located in the distal ileum and colon. GLP-1 reduces blood glucose levels by promoting glucose-dependent insulin secretion from pancreatic β cells, suppressing glucagon release from pancreatic α cells, and blocking hepatic gluconeogenesis. Recent evidence suggests that GLP-1 receptor agonists (GLP-1 RAs) can significantly improve physical activity limitations and exercise capacity in obese patients with HFpEF. The possible cardioprotective mechanisms of GLP-1 RAs include reducing epicardial fat tissue thickness, preventing activation of the renin-angiotensin-aldosterone system, improving myocardial energy metabolism, reducing systemic inflammation and cardiac oxidative stress, and delaying the progression of atherosclerosis. This review examines the impact of obesity on the underlying mechanisms of HFpEF, summarizes the trial data on cardiovascular outcomes of GLP-1 RAs in patients with type 2 diabetes mellitus, and highlights the potential cardioprotective mechanisms of GLP-1 RAs to give a pathophysiological and clinical rationale for using GLP-1 RAs in obese HFpEF patients.
Collapse
Affiliation(s)
- Tian-Yu Wang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin-Yi Cheng
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-Can Ding
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peng-Fei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Liu QK. Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists. Front Endocrinol (Lausanne) 2024; 15:1431292. [PMID: 39114288 PMCID: PMC11304055 DOI: 10.3389/fendo.2024.1431292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are two incretins that bind to their respective receptors and activate the downstream signaling in various tissues and organs. Both GIP and GLP-1 play roles in regulating food intake by stimulating neurons in the brain's satiety center. They also stimulate insulin secretion in pancreatic β-cells, but their effects on glucagon production in pancreatic α-cells differ, with GIP having a glucagonotropic effect during hypoglycemia and GLP-1 exhibiting glucagonostatic effect during hyperglycemia. Additionally, GIP directly stimulates lipogenesis, while GLP-1 indirectly promotes lipolysis, collectively maintaining healthy adipocytes, reducing ectopic fat distribution, and increasing the production and secretion of adiponectin from adipocytes. Together, these two incretins contribute to metabolic homeostasis, preventing both hyperglycemia and hypoglycemia, mitigating dyslipidemia, and reducing the risk of cardiovascular diseases in individuals with type 2 diabetes and obesity. Several GLP-1 and dual GIP/GLP-1 receptor agonists have been developed to harness these pharmacological effects in the treatment of type 2 diabetes, with some demonstrating robust effectiveness in weight management and prevention of cardiovascular diseases. Elucidating the underlying cellular and molecular mechanisms could potentially usher in the development of new generations of incretin mimetics with enhanced efficacy and fewer adverse effects. The treatment guidelines are evolving based on clinical trial outcomes, shaping the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Qiyuan Keith Liu
- MedStar Medical Group, MedStar Montgomery Medical Center, Olney, MD, United States
| |
Collapse
|
4
|
Lu G, Li J, Gao T, Liu Q, Chen O, Zhang X, Xiao M, Guo Y, Wang J, Tang Y, Gu J. Integration of dietary nutrition and TRIB3 action into diabetes mellitus. Nutr Rev 2024; 82:361-373. [PMID: 37226405 PMCID: PMC10859691 DOI: 10.1093/nutrit/nuad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Despite intensive studies for decades, the common mechanistic correlations among the underlying pathology of diabetes mellitus (DM), its complications, and effective clinical treatments remain poorly characterized. High-quality diets and nutrition therapy have played an indispensable role in the management of DM. More importantly, tribbles homolog 3 (TRIB3), a nutrient-sensing and glucose-responsive regulator, might be an important stress-regulatory switch, linking glucose homeostasis and insulin resistance. Therefore, this review aimed to introduce the latest research progress on the crosstalk between dietary nutrition intervention and TRIB3 in the development and treatment of DM. This study also summarized the possible mechanisms involved in the signaling pathways of TRIB3 action in DM, in order to gain an in-depth understanding of dietary nutrition intervention and TRIB3 in the pathogenesis of DM at the organism level.
Collapse
Affiliation(s)
- Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
5
|
Zhou Y, Suo W, Zhang X, Liang J, Zhao W, Wang Y, Li H, Ni Q. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs. Biomed Pharmacother 2023; 168:115669. [PMID: 37820568 DOI: 10.1016/j.biopha.2023.115669] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Jiaojiao Liang
- Zhengzhou Shuqing Medical College, Zhengzhou 450064, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Yue Wang
- Capital Medical University, Beijing 100069, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
6
|
Kong F, Wu T, Dai J, Zhai Z, Cai J, Zhu Z, Xu Y, Sun T. Glucagon-like peptide 1 (GLP-1) receptor agonists in experimental Alzheimer's disease models: a systematic review and meta-analysis of preclinical studies. Front Pharmacol 2023; 14:1205207. [PMID: 37771725 PMCID: PMC10525376 DOI: 10.3389/fphar.2023.1205207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the nervous system. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), a drug used to treat type 2 diabetes, have been shown to have neuroprotective effects. This systematic review and meta-analysis evaluated the effects and potential mechanisms of GLP-1 RAs in AD animal models. 26 studies were included by searching relevant studies from seven databases according to a predefined search strategy and inclusion criteria. Methodological quality was assessed using SYRCLE's risk of bias tool, and statistical analysis was performed using ReviewManger 5.3. The results showed that, in terms of behavioral tests, GLP-1 RAs could improve the learning and memory abilities of AD rodents; in terms of pathology, GLP-1 RAs could reduce Aβ deposition and phosphorylated tau levels in the brains of AD rodents. The therapeutic potential of GLP-1 RAs in AD involves a range of mechanisms that work synergistically to enhance the alleviation of various pathological manifestations associated with the condition. A total of five clinical trials were retrieved from ClinicalTrials.gov. More large-scale and high-quality preclinical trials should be conducted to more accurately assess the therapeutic effects of GLP-1 RAs on AD.
Collapse
Affiliation(s)
- Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyu Wu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Dai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Pant T, Uche N, Juric M, Bosnjak ZJ. Clinical Relevance of lncRNA and Mitochondrial Targeted Antioxidants as Therapeutic Options in Regulating Oxidative Stress and Mitochondrial Function in Vascular Complications of Diabetes. Antioxidants (Basel) 2023; 12:antiox12040898. [PMID: 37107272 PMCID: PMC10135521 DOI: 10.3390/antiox12040898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic imbalances and persistent hyperglycemia are widely recognized as driving forces for augmented cytosolic and mitochondrial reactive oxygen species (ROS) in diabetes mellitus (DM), fostering the development of vascular complications such as diabetic nephropathy, diabetic cardiomyopathy, diabetic neuropathy, and diabetic retinopathy. Therefore, specific therapeutic approaches capable of modulating oxidative milieu may provide a preventative and/or therapeutic benefit against the development of cardiovascular complications in diabetes patients. Recent studies have demonstrated epigenetic alterations in circulating and tissue-specific long non-coding RNA (lncRNA) signatures in vascular complications of DM regulating mitochondrial function under oxidative stress. Intriguingly, over the past decade mitochondria-targeted antioxidants (MTAs) have emerged as a promising therapeutic option for managing oxidative stress-induced diseases. Here, we review the present status of lncRNA as a diagnostic biomarker and potential regulator of oxidative stress in vascular complications of DM. We also discuss the recent advances in using MTAs in different animal models and clinical trials. We summarize the prospects and challenges for the use of MTAs in treating vascular diseases and their application in translation medicine, which may be beneficial in MTA drug design development, and their application in translational medicine.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Nnamdi Uche
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Zeljko J Bosnjak
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Biesenbach IIA, Heinsen LJ, Overgaard KS, Andersen TR, Auscher S, Egstrup K. The Effect of Clinically Indicated Liraglutide on Pericoronary Adipose Tissue in Type 2 Diabetic Patients. Cardiovasc Ther 2023; 2023:5126825. [PMID: 36714196 PMCID: PMC9867582 DOI: 10.1155/2023/5126825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Vascular inflammation can be detected in the pericoronary adipose tissue (PCAT) by coronary computed tomography angiography (CCTA) attenuation. Treatment with liraglutide is associated with anti-inflammatory effects and reduces cardiovascular risk in diabetic patients. This study is aimed at examining the effect of clinically indicated liraglutide on PCAT attenuation. Asymptomatic patients with type 2 diabetes mellitus (T2DM) and without known ischemic heart disease underwent clinical examination, blood analysis, and CCTA. The main coronary arteries were outlined and PCAT attenuation was measured on the proximal 40 mm. Patients treated with liraglutide on a clinical indication were compared to patients not receiving liraglutide. The study included 190 patients; 53 (28%) received liraglutide (Lira+) and 137 (72%) did not (Lira-). There were no significant differences in PCAT attenuation between the two groups in either artery. However, PCAT attenuation measured around the left anterior descending artery (LAD) was lower in the Lira+ group after adjustment for age, sex, body mass index, and T2DM duration (b coefficient -2.4, p = 0.029). In a population of cardiac asymptomatic T2DM patients, treatment with clinically indicated liraglutide was not associated with differences in PCAT attenuation compared to nonliraglutide treatment in the unadjusted model. An association was seen in the adjusted model for the left anterior descending artery, possibly indicating an anti-inflammatory effect.
Collapse
Affiliation(s)
- Irmelin I. A. Biesenbach
- Faculty of Health Science, University of Southern Denmark, Winsløwparken 19, 5000 Odense C, Denmark
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Laurits J. Heinsen
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Katrine S. Overgaard
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Thomas R. Andersen
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Søren Auscher
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Kenneth Egstrup
- Faculty of Health Science, University of Southern Denmark, Winsløwparken 19, 5000 Odense C, Denmark
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| |
Collapse
|
9
|
Wu Q, Li D, Huang C, Zhang G, Wang Z, Liu J, Yu H, Song B, Zhang N, Li B, Chu X. Glucose control independent mechanisms involved in the cardiovascular benefits of glucagon-like peptide-1 receptor agonists. Biomed Pharmacother 2022; 153:113517. [DOI: 10.1016/j.biopha.2022.113517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
|
10
|
Cheng D, Yang S, Zhao X, Wang G. The Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA) in Diabetes-Related Neurodegenerative Diseases. Drug Des Devel Ther 2022; 16:665-684. [PMID: 35340338 PMCID: PMC8943601 DOI: 10.2147/dddt.s348055] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Recent clinical guidelines have emphasized the importance of screening for cognitive impairment in older adults with diabetes, however, there is still a lack of understanding about the drug therapy. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are widely used in the treatment of type 2 diabetes and potential applications may include the treatment of obesity as well as the adjunctive treatment of type 1 diabetes mellitus in combination with insulin. Growing evidence suggests that GLP-1 RA has the potential to treat neurodegenerative diseases, particularly in diabetes-related Alzheimer’s disease (AD) and Parkinson’s disease (PD). Here, we review the molecular mechanisms of the neuroprotective effects of GLP-1 RA in diabetes-related degenerative diseases, including AD and PD, and their potential effects.
Collapse
Affiliation(s)
- Dihe Cheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
11
|
Huang WQ, Zou Y, Tian Y, Ma XF, Zhou QY, Li ZY, Gong SX, Wang AP. Mammalian Target of Rapamycin as the Therapeutic Target of Vascular Proliferative Diseases: Past, Present, and Future. J Cardiovasc Pharmacol 2022; 79:444-455. [PMID: 34983907 DOI: 10.1097/fjc.0000000000001208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The abnormal proliferation of vascular smooth muscle cells (VSMCs) is a key pathological characteristic of vascular proliferative diseases. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays an important role in regulating cell growth, motility, proliferation, and survival, as well as gene expression in response to hypoxia, growth factors, and nutrients. Increasing evidence shows that mTOR also regulates VSMC proliferation in vascular proliferative diseases and that mTOR inhibitors, such as rapamycin, effectively restrain VSMC proliferation. However, the molecular mechanisms linking mTOR to vascular proliferative diseases remain elusive. In our review, we summarize the key roles of the mTOR and the recent discoveries in vascular proliferative diseases, focusing on the therapeutic potential of mTOR inhibitors to target the mTOR signaling pathway for the treatment of vascular proliferative diseases. In this study, we discuss mTOR inhibitors as promising candidates to prevent VSMC-associated vascular proliferative diseases.
Collapse
Affiliation(s)
- Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Yan Zou
- Department of Hand and Foot Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China ; and
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Xiao-Feng Ma
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Qin-Yi Zhou
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Zhen-Yu Li
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| |
Collapse
|
12
|
Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II-induced hypertension. Redox Biol 2021; 46:102115. [PMID: 34474396 PMCID: PMC8408632 DOI: 10.1016/j.redox.2021.102115] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota produce Trimethylamine N-oxide (TMAO) by metabolizing dietary phosphatidylcholine, choline, l-carnitine and betaine. TMAO is implicated in the pathogenesis of chronic kidney disease (CKD), diabetes, obesity and atherosclerosis. We test, whether TMAO augments angiotensin II (Ang II)-induced vasoconstriction and hence promotes Ang II-induced hypertension. Plasma TMAO levels were indeed elevated in hypertensive patients, thus the potential pathways by which TMAO mediates these effects were explored. Ang II (400 ng/kg−1min−1) was chronically infused for 14 days via osmotic minipumps in C57Bl/6 mice. TMAO (1%) or antibiotics were given via drinking water. Vasoconstriction of renal afferent arterioles and mesenteric arteries were assessed by microperfusion and wire myograph, respectively. In Ang II-induced hypertensive mice, TMAO elevated systolic blood pressure and caused vasoconstriction, which was alleviated by antibiotics. TMAO enhanced the Ang II-induced acute pressor responses (12.2 ± 1.9 versus 20.6 ± 1.4 mmHg; P < 0.05) and vasoconstriction (32.3 ± 2.6 versus 55.9 ± 7.0%, P < 0.001). Ang II-induced intracellular Ca2+ release in afferent arterioles (147 ± 7 versus 234 ± 26%; P < 0.001) and mouse vascular smooth muscle cells (VSMC, 123 ± 3 versus 157 ± 9%; P < 0.001) increased by TMAO treatment. Preincubation of VSMC with TMAO activated the PERK/ROS/CaMKII/PLCβ3 pathway. Pharmacological inhibition of PERK, ROS, CaMKII and PLCβ3 impaired the effect of TMAO on Ca2+ release. Thus, TMAO facilitates Ang II-induced vasoconstriction, thereby promoting Ang II-induced hypertension, which involves the PERK/ROS/CaMKII/PLCβ3 axis. Orally administered TMAO aggravates Ang II-induced hypertension. Antibiotics alleviate Ang II-induced hypertension by reducing TMAO generation. High concentrations of TMAO constrict afferent arterioles and mesenteric arteries and increase blood pressure. Low concentrations of TMAO enhance Ang II-induced vasoconstriction and acute pressor response via activating PERK/ROS/CaMKII/PLCβ3/Ca2+ pathway.
Collapse
|
13
|
Ma X, Liu Z, Ilyas I, Little PJ, Kamato D, Sahebka A, Chen Z, Luo S, Zheng X, Weng J, Xu S. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci 2021; 17:2050-2068. [PMID: 34131405 PMCID: PMC8193264 DOI: 10.7150/ijbs.59965] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is closely associated with cardiovascular diseases (CVD), including atherosclerosis, hypertension and heart failure. Some anti-diabetic medications are linked with an increased risk of weight gain or hypoglycemia which may reduce the efficacy of the intended anti-hyperglycemic effects of these therapies. The recently developed receptor agonists for glucagon-like peptide-1 (GLP-1RAs), stimulate insulin secretion and reduce glycated hemoglobin levels without having side effects such as weight gain and hypoglycemia. In addition, GLP1-RAs demonstrate numerous cardiovascular protective effects in subjects with or without diabetes. There have been several cardiovascular outcomes trials (CVOTs) involving GLP-1RAs, which have supported the overall cardiovascular benefits of these drugs. GLP1-RAs lower plasma lipid levels and lower blood pressure (BP), both of which contribute to a reduction of atherosclerosis and reduced CVD. GLP-1R is expressed in multiple cardiovascular cell types such as monocyte/macrophages, smooth muscle cells, endothelial cells, and cardiomyocytes. Recent studies have indicated that the protective properties against endothelial dysfunction, anti-inflammatory effects on macrophages and the anti-proliferative action on smooth muscle cells may contribute to atheroprotection through GLP-1R signaling. In the present review, we describe the cardiovascular effects and underlying molecular mechanisms of action of GLP-1RAs in CVOTs, animal models and cultured cells, and address how these findings have transformed our understanding of the pharmacotherapy of T2DM and the prevention of CVD.
Collapse
Affiliation(s)
- Xiaoxuan Ma
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zhenghong Liu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Iqra Ilyas
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Peter J Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia.,School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Amirhossein Sahebka
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad, Iran
| | - Zhengfang Chen
- Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, Jiangsu Province, China
| | - Sihui Luo
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xueying Zheng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jianping Weng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
14
|
da Silva Rosa SC, Liu M, Sweeney G. Adiponectin Synthesis, Secretion and Extravasation from Circulation to Interstitial Space. Physiology (Bethesda) 2021; 36:134-149. [PMID: 33904786 PMCID: PMC8461789 DOI: 10.1152/physiol.00031.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adiponectin, an adipokine that circulates as multiple multimeric complexes at high levels in serum, has antidiabetic, anti-inflammatory, antiatherogenic, and cardioprotective properties. Understanding the mechanisms regulating adiponectin's physiological effects is likely to provide critical insight into the development of adiponectin-based therapeutics to treat various metabolic-related diseases. In this review, we summarize our current understanding on adiponectin action in its various target tissues and in cellular models. We also focus on recent advances in two particular regulatory aspects; namely, the regulation of adiponectin gene expression, multimerization, and secretion, as well as extravasation of circulating adiponectin to the interstitial space and its degradation. Finally, we discuss some potential therapeutic approaches using adiponectin as a target and the current challenges facing adiponectin-based therapeutic interventions.
Collapse
Affiliation(s)
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Benchoula K, Parhar IS, Madhavan P, Hwa WE. CREB nuclear transcription activity as a targeting factor in the treatment of diabetes and diabetes complications. Biochem Pharmacol 2021; 188:114531. [PMID: 33773975 DOI: 10.1016/j.bcp.2021.114531] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a metabolic disorder diagnosed by elevated blood glucose levels and a defect in insulin production. Blood glucose, an energy source in the body, is regenerated by two fundamental processes: glycolysis and gluconeogenesis. These two processes are the main mechanisms used by humans and many other animals to maintain blood glucose levels, thereby avoiding hypoglycaemia. The released insulin from pancreatic β-cells activates glycolysis. However, the glucagon released from the pancreatic α-cells activates gluconeogenesis in the liver, leading to pyruvate conversion to glucose-6-phosphate by different enzymes such as fructose 1,6-bisphosphatase and glucose 6-phosphatase. These enzymes' expression is controlled by the glucagon/ cyclic adenosine 3',5'-monophosphate (cAMP)/ proteinkinase A (PKA) pathway. This pathway phosphorylates cAMP-response element-binding protein (CREB) in the nucleus to bind it to these enzyme promoters and activate their expression. During fasting, this process is activated to supply the body with glucose; however, it is overactivated in diabetes. Thus, the inhibition of this process by blocking the expression of the enzymes via CREB is an alternative strategy for the treatment of diabetes. This review was designed to investigate the association between CREB activity and the treatment of diabetes and diabetes complications. The phosphorylation of CREB is a crucial step in regulating the gene expression of the enzymes of gluconeogenesis. Many studies have proven that CREB is over-activated by glucagon and many other factors contributing to the elevation of fasting glucose levels in people with diabetes. The physiological function of CREB should be regarded in developing a therapeutic strategy for the treatment of diabetes mellitus and its complications. However, the accessible laboratory findings for CREB activity of the previous research still not strong enough for continuing to the clinical trial yet.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine & Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|