1
|
Chiang CH, Yang JD, Liu WL, Chang FY, Yang CJ, Hsu KW, Chiang IT, Hsu FT. Mechanistic insights of lenvatinib: enhancing cisplatin sensitivity, inducing apoptosis, and suppressing metastasis in bladder cancer cells through EGFR/ERK/P38/NF-κB signaling inactivation. Cancer Cell Int 2025; 25:47. [PMID: 39955573 PMCID: PMC11829490 DOI: 10.1186/s12935-024-03597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/03/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND The persistent activation of the epidermal growth factor receptor (EGFR) leads to the activation of downstream oncogenic kinases and transcription factors, resulting in tumor progression and an increased resistance to cisplatin in bladder cancer (BC) cells. Lenvatinib, an oral multikinase inhibitor, has the potential to offer therapeutic benefits as an adjuvant treatment for BC patients. The investigation into its application in bladder cancer treatment is a valuable endeavor. The primary goal of this study is to confirm the effectiveness and mechanism of lenvatinib in inhibiting the progression of BC and enhancing the anticancer efficacy of cisplatin. MATERIALS Three BC cell lines, namely, TSGH-8301, T24, and MB49, along with an MB49-bearing animal model, were utilized in this study. RESULTS In vitro experiments utilizing MTT assays demonstrated that lenvatinib sensitized BC cells to cisplatin, exhibiting a synergistic effect. Flow cytometry indicated apoptotic events and signaling, presenting that lenvatinib effectively induced apoptosis and triggered extrinsic/intrinsic apoptotic pathways. In vivo studies using a mouse model of BC confirmed the antitumor efficacy of lenvatinib, demonstrating significant tumor growth suppression without inducing toxicity in normal tissues. Western blotting analysis and immunohistochemistry stain revealed EGF-phosphorylated EGFR and EGFR-mediated ERK/P38/NF-κB signaling were suppressed by treatment with lenvatinib. In addition, lenvatinib also suppressed anti-apoptotic (MCL1, c-FLIP, and XIAP) and metastasis-related factors (Twist, Snail-1, ZEB-1, ZEB-2, and MMP9) and promoted epithelial markers (E-cadherin) while reducing mesenchymal markers (N-cadherin). CONCLUSION In conclusion, the induction of apoptosis and the inhibition of EGFR/ERK/P38/NF-κB signaling are correlated with lenvatinib's ability to hinder tumor progression and enhance the cytotoxic effects of cisplatin in bladder cancer. These findings underscore the potential of lenvatinib as a therapeutic option for bladder cancer, either as a standalone treatment or in combination with cisplatin.
Collapse
Grants
- YSVH111-04 Taipei Veterans General Hospital, Yuan-Shan Branch, Taiwan
- RD2021-007 National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
- SRD-108008 Show-Chwan Memorial Hospital, Changhua, Taiwan
- BRD-108027 Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
- MOST 109-2314-B-039-021-MY3 Ministry of Science and Technology (MOST), Taipei, Taiwan
Collapse
Affiliation(s)
- Chih-Hung Chiang
- Division of Urology, Department of Surgery and Department of Research and Development, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan, R.O.C
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Jr-Di Yang
- Division of Urology, Department of Surgery, National Yang-Ming Chiao Tung University Hospital, Yilan, Taiwan, R.O.C
| | - Wei-Lin Liu
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| | - Fang-Yu Chang
- Department of Biological Science and Technology, China Medical University, Office: 7F, Research building, No. 100, Jingmao 1st Rd., Beitun Dist, Taichung City, 406040, Taiwan, R.O.C
| | - Che-Jui Yang
- Division of Urology, Department of Surgery, Chang Bing Show-Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| | - Kai-Wen Hsu
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C..
- Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan, R.O.C..
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan, R.O.C..
| | - I-Tsang Chiang
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Taiwan, R.O.C
- Department of Medical Imaging and Radiologic Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
- Medical Administrative Center, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Office: 7F, Research building, No. 100, Jingmao 1st Rd., Beitun Dist, Taichung City, 406040, Taiwan, R.O.C..
- Department of Life Sciences, National Central University, Taoyuan, Taiwan, R.O.C..
| |
Collapse
|
2
|
Vartak R, Patel K. Targeted nanoliposomes of oncogenic protein degraders: Significant inhibition of tumor in lung-cancer bearing mice. J Control Release 2024; 376:502-517. [PMID: 39406280 DOI: 10.1016/j.jconrel.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
With 60 % of non-small cell lung cancer (NSCLC) expressing epidermal growth factor receptor (EGFR), it has been explored as an important therapeutic target for lung tumors. However, even the well-established EGFR inhibitors tend to promptly develop resistance over time. Moreover, strategies that could impede resistance development and be advantageous for both EGFR-Tyrosine kinase inhibitor (TKI)-sensitive and mutant NSCLC patients are constrained. Based on the critical relationship between EGFR, c-MYC, and Kirsten rat sarcoma virus (K-Ras), simultaneous degradation of EGFR and Bromodomain-containing protein 4 (BRD4) using "Proteolysis Targeting Chimeras (PROTACs)" could be a promising approach. PROTACs are emerging class of oncoprotein degraders but very challanging to deliver in vivo. Compared to individual IC50s, strong synergism was observed at 1:1 ratio of BPRO and EPRO in NSCLC cell lines with diverse mutation. Significant inhibition of cell growth with higher cellular apoptosis was observed in 2D and 3D-based cell assays in nanomolar concentrations. EGFR activation assay revealed 47.60 % EGFR non-expressing cells confirming EGFR-degrading potential of EPRO. A lung cancer specific nanoliposomal formulation of EGFR and BRD4-degrading PROTACs (EPRO and BPRO) was prepared and characetrized. Successful encapsulation of the two highly lipophilic molecules was achieved in EGFR-targeting nanoliposomal carriers (T-BEPRO) using a modified hydration technique. T-BEPRO revealed a particle size of 109.22 ± 0.266 nm with enhanced cellular uptake and activity. Remarkably, parenterally delivered T-BEPRO in tumor-bearing mice showed a substantially higher % tumor growth inhibition (TGI) of 77.6 % with long-lasting tumor inhibitory potential as opposed to individual drugs.
Collapse
Affiliation(s)
- Richa Vartak
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
3
|
Vartak R, Deore B, Sanhueza CA, Patel K. Cetuximab-based PROteolysis targeting chimera for effectual downregulation of NSCLC with varied EGFR mutations. Int J Biol Macromol 2023; 252:126413. [PMID: 37598823 PMCID: PMC12045033 DOI: 10.1016/j.ijbiomac.2023.126413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
PROteolysis Targeting Chimeras (PROTACs) showed tremendous therapeutic potential in degrading several oncoproteins including undruggable proteins. PROTACs are bifunctional molecules where one-part binds to target protein while the other end recruits protein degradation machinery. With the unveiling advancements in the field of PROTACs, we explored a combinatorial approach by developing antibody-based PROTAC (ABTAC) which may effectively degrade one of the key oncoprotein driving proliferation and progression of cancer - Epidermal growth factor receptor (EGFR). The objective of current research was to synthesize and characterize an EGFR degrading ABTAC for the treatment of non-small cell lung cancer (NSCLC). Cetuximab and pomalidomide (E3 ligase recruiting ligand) were conjugated using lysine conjugation and copper free azide-alkyne cycloaddition (CuAAC) click chemistry. Analytical characterization using reverse-phase liquid chromatography and mass spectrometry suggested conjugation of five E3-ligase inhibitor molecules/antibody. Nearly 10-30 folds reduction in IC50 was observed with ABTAC in HCC827 (EGFR sensitive) and H1650 (EGFR resistant) cells compared to cetuximab. Multicellular 3D spheroid assay strongly suggested that ABTAC induced significant apoptosis and also inhibited cell proliferation compared to control and antibody alone. Circular dichroism and surface plasmon resonance (SPR) confirmed minor alterations in the structure and receptor binding efficacy of the antibody post-conjugation.
Collapse
Affiliation(s)
- Richa Vartak
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States of America
| | - Bhavesh Deore
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States of America
| | - Carlos A Sanhueza
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States of America
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States of America.
| |
Collapse
|
4
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
5
|
Lin CH, Lin KH, Ku HJ, Lee KC, Lin SS, Hsu FT. Amentoflavone induces caspase-dependent/-independent apoptosis and dysregulates cyclin-dependent kinase-mediated cell cycle in colorectal cancer in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2023; 38:1078-1089. [PMID: 36727907 DOI: 10.1002/tox.23749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/27/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Colorectal cancer (CRC) is recognized as the third most common malignancy and the second most deadly in highly developed countries. Although the treatment of CRC has improved in the past decade, the mortality rate of CRC is still increasing. Amentoflavone, one of the flavonoids detected in medical plants, is reported to possess potential anticancer properties in various cancers. However, its role in CRC has not been studied. This study aimed to investigate the role and underlying mechanism of amentoflavone on CRC in vitro and in vivo. We identified the cytotoxicity, apoptosis effect, cell cycle alteration, DNA damage induction and tumor progression inhibition of amentoflavone in HT-29 model by using MTT assay, flow cytometry, immunofluorescence (IF) staining, Western blotting and animal experiments. Amentoflavone induced cytotoxicity is caused by triggering G1 arrest, DNA damage and apoptosis in HT-29 cells. The expression of cyclin D1, CDK4 and CDK6 was decreased by amentoflavone; in contrast, the phosphorylation of ATM and CHK2 and the expression of p21 and p27 were increased. The apoptosis induction of amentoflavone in CRC is not only caspase-dependent but also increases EndoG and AIF nuclear translocation in a caspase-independent manner. Importantly, the apoptosis induction of amentoflavone is not affected by the activity of p53 in CRC. Amentoflavone suppressed the progression of CRC by initiating G1 arrest and ATM/CHK2-mediated DNA damage-responsive, caspase-dependent/independent apoptotic effects. We uncovered a novel tumor-inhibitory role of amentoflavone in CRC that is not associated with p53 activity, which may serve as a potential treatment for CRC.
Collapse
Affiliation(s)
- Cheng-Hsun Lin
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Kuang-Hsuan Lin
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Hsiang-Ju Ku
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Kun-Ching Lee
- Department of Radiation Oncology, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Song-Shei Lin
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Weng YS, Chiang IT, Tsai JJ, Liu YC, Hsu FT. Lenvatinib Synergistically Promotes Radiation Therapy in Hepatocellular Carcinoma by Inhibiting Src/STAT3/NF-κB-Mediated Epithelial-Mesenchymal Transition and Metastasis. Int J Radiat Oncol Biol Phys 2023; 115:719-732. [PMID: 36245124 DOI: 10.1016/j.ijrobp.2022.09.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE This study suggested that lenvatinib may incapacitate hepatocellular carcinoma (HCC) to radiation treatment by abrogating radiation-induced Src/signal transducer and the activator of transcription 3 signaling (STAT3)/nuclear factor-κB (NF-κB) to escalate radiation-induced extrinsic and intrinsic apoptosis. These findings uncover the role of targeting Src and its arbitrating epithelial-mesenchymal transition (EMT), which could increase the anti-HCC efficacy of radiation therapy (RT). Lenvatinib and sorafenib are multikinase inhibitors used to treat HCC. Lenvatinib is noninferior to sorafenib in the therapeutic response in HCC. However, whether lenvatinib intensifies the anti-HCC efficacy of RT is ambiguous. Several oncogenic kinases and transcription factors, such as Src, STAT3, and NF-κB, enhance the radiosensitivity of cancers. Therefore, we aimed to investigate the roles of the Src/STAT3/NF-κB axis in HCC after RT treatment and assessed whether targeting Src by lenvatinib may enhance the effectiveness of RT. METHODS AND MATERIALS Hep3B, Huh7, HepG2, and SK-Hep1 HCC cells and 2 types of animal models were used to identify the efficacy of RT combined with lenvatinib. Cellular toxicity, apoptosis, DNA damage, EMT/metastasis regulation, and treatment efficacy were validated by colony formation, flow cytometry, Western blotting, and in vivo experiments, respectively. Knockdown of Src by siRNA was also used to validate the role of Src in RT treatment. RESULTS Silencing Src reduced STAT3/NF-κB signaling and sensitized HCC to radiation. Lenvatinib reversed radiation-elicited Src/STAT3/NF-κB signaling while enhancing the anti-HCC efficacy of radiation. Both lenvatinib and siSrc promoted the radiation effect of cell proliferation on suppression, inhibition of the invasion ability, and induction of apoptosis in HCC. Lenvatinib also alleviated radiation-triggered oncogenic and EMT-related protein expression. CONCLUSIONS Our findings uncovered the role of the Src/STAT3/NF-κB regulatory axis in response to radiation-induced toxicity and confirmed Src as the key regulatory molecule for radiosensitization of HCC evoked by lenvatinib.
Collapse
Affiliation(s)
- Yueh-Shan Weng
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan
| | - I-Tsang Chiang
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan; Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan; Department of Medical Imaging and Radiologic Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan; Medical administrative center, Show Chwan Memorial Hospital, Changhua 500, Taiwan, ROC
| | - Jai-Jen Tsai
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yi-Lan 260, Taiwan; Department of Medicine/Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yi-Lan 260, Taiwan; Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei City 231, Taiwan
| | - Yu-Chang Liu
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan; Department of Medical Imaging and Radiologic Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan; Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan.
| |
Collapse
|
7
|
Shahidi S, Rostamizadeh K, Fathi M, Nedaei K, Ramazani A. Combination of Quercetin or/and siRNA-loaded DDAB-mPEG-PCL hybrid nanoparticles reverse resistance to Regorafenib in colon cancer cells. BMC Complement Med Ther 2022; 22:340. [PMID: 36575448 PMCID: PMC9793538 DOI: 10.1186/s12906-022-03787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/10/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer death. Although Regorafenib showed survival benefits in patients with CRC, reports imply the recurrence of malignant phenotype resulting from chemotherapy. Evidence demonstrated that a5β1 integrin plays an important role in the Regorafenib treatment, which, may be led to resistance. In this study, the effects of /siRNA or/ and Quercetin loaded DDAB-mPEG-PCLnanoparticles could reverse this resistance phenotype in colon cancer cells in vitro. METHODS Regorafenib-resistant Ls-180 colon cancer cell line was developed by long-term exposure to Regorafenib. Quercetin and Regorafenib were separately encapsulated into mPEG-PCL micelles through the nano-precipitation method and characterized by DLS. Optimized doses of Quercetin and Regorafenib were used for combination therapy of resistant cells followed cytotoxicity study using MTT. Gene expression levels of the β1 subunit of integrin were determined by the real-time method of RT-PCR. RESULTS Developed Regorafenib resistant LS-180 showed to have Regorafenib IC50 of 38.96 ± 1.72 µM whereas IC50 in non-resistant cells were 8.51 ± 0.29 µM, which meaningful was lower statistically compared to that of a resistant one. The β1 mRNA level of whole α5β1 integrin was significantly higher in the resistant cells compared to those of non-resistant ones. Gene expression levels in each siRNA-loaded nanoparticle and Quercetin-loaded one were lower than that in mock experiments. Finally, when these two types of nanoparticles were used to treat resistant cells, gene expression decrease of integrin indicated a greater effect that could be capable of reverse resistancy. CONCLUSION Results of this study demonstrated another confirmation of involving integrins in cancer resistance following chemotherapy using Regorafenib. Also, it indicated how using siRNA targeting integrin could enhance the plant derivatives like Quercetin effects to reverse resistance in vitro.
Collapse
Affiliation(s)
- Shabnam Shahidi
- grid.469309.10000 0004 0612 8427Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kobra Rostamizadeh
- grid.469309.10000 0004 0612 8427Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran ,grid.469309.10000 0004 0612 8427Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mojtaba Fathi
- grid.469309.10000 0004 0612 8427Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran ,grid.412606.70000 0004 0405 433XDepartment of Biochemistry and Genetics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Keivan Nedaei
- grid.469309.10000 0004 0612 8427Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ramazani
- grid.469309.10000 0004 0612 8427Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran ,grid.469309.10000 0004 0612 8427Department of Pharmaceutical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Iyer KK, van Erp NP, Tauriello DV, Verheul HM, Poel D. Lost in translation: Revisiting the use of tyrosine kinase inhibitors in colorectal cancer. Cancer Treat Rev 2022; 110:102466. [DOI: 10.1016/j.ctrv.2022.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
|
9
|
Kim J, Kim SJ, Jeong HR, Park JH, Moon M, Hoe HS. Inhibiting EGFR/HER-2 ameliorates neuroinflammatory responses and the early stage of tau pathology through DYRK1A. Front Immunol 2022; 13:903309. [PMID: 36341365 PMCID: PMC9632417 DOI: 10.3389/fimmu.2022.903309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
The FDA-approved EGFR/HER2 inhibitor varlitinib inhibits tumor growth and is used in cancer treatment. However, the neuroinflammatory response associated with EGFR/HER2 and its underlying mechanism have not been elucidated. This study evaluates the impact of varlitinib on LPS- and tau-mediated neuroinflammatory responses for the first time. In BV2 microglial cells, varlitinib reduced LPS-stimulated il-1β and/or inos mRNA levels and downstream AKT/FAK/NF-kB signaling. Importantly, varlitinib significantly diminished LPS-mediated microglial nlrp3 inflammasome activation in BV2 microglial cells. In primary astrocytes, varlitinib downregulated LPS-evoked astroglial il-1β mRNA levels, AKT signaling, and nlrp3 inflammasome activation. In LPS-treated wild-type mice, varlitinib significantly reduced LPS-stimulated glial activation and IL-1β/NLRP3 inflammasome formation. Moreover, varlitinib significantly reduced micro- and astroglial activation and tau hyperphosphorylation in 3-month-old tau-overexpressing PS19 mice by downregulating tau kinase DYRK1A levels. However, in 6-month-old tau-overexpressing PS19 mice, varlitinib only significantly diminished astroglial activation and tau phosphorylation at Thr212/Ser214. Taken together, our findings suggest that varlitinib has therapeutic potential for LPS- and tau-induced neuroinflammatory responses and the early stages of tau pathology.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Su-Jin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Ha-Ram Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- *Correspondence: Hyang-Sook Hoe, ; Minho Moon,
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
- *Correspondence: Hyang-Sook Hoe, ; Minho Moon,
| |
Collapse
|
10
|
Allyl Isothiocyanate (AITC) Induces Apoptotic Cell Death In Vitro and Exhibits Anti-Tumor Activity in a Human Glioblastoma GBM8401/luc2 Model. Int J Mol Sci 2022; 23:ijms231810411. [PMID: 36142326 PMCID: PMC9499574 DOI: 10.3390/ijms231810411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Some clinically used anti-cancer drugs are obtained from natural products. Allyl isothiocyanate (AITC), a plant-derived compound abundant in cruciferous vegetables, has been shown to possess an anti-cancer ability in human cancer cell lines in vitro, including human brain glioma cells. However, the anti-cancer effects of AITC in human glioblastoma (GBM) cells in vivo have not yet been examined. In the present study, we used GBM8401/luc2 human glioblastoma cells and a GBM8401/luc2-cell-bearing animal model to identify the treatment efficacy of AITC. Here, we confirm that AITC reduced total cell viability and induced cell apoptosis in GBM8401/luc2 cells in vitro. Furthermore, Western blotting also showed that AITC induced apoptotic cell death through decreased the anti-apoptotic protein BCL-2, MCL-1 expression, increased the pro-apoptotic protein BAX expression, and promoted the activities of caspase-3, -8, and -9. Therefore, we further investigated the anti-tumor effects of AITC on human GBM8401/luc2 cell xenograft mice. The human glioblastoma GBM8401/luc2 cancer cells were subcutaneously injected into the right flank of BALB/c nude mice to generate glioblastoma xenograft mice. The animals were randomly divided into three groups: group I was treated without AITC (control); group II with 0.1 mg/day of AITC; and group III with 0.2 mg/day of AITC every 3 days for 27 days. Bodyweight, and tumor volume (size) were recorded every 3 days. Tumors exhibiting Luc2 intensity were measured, and we quantified intensity using Living Image software on days 0, 12, and 24. After treatment, tumor weight from each mouse was recorded. Tumor tissues were examined for histopathological changes using H&E staining, and we analyzed the protein levels via immunohistochemical analysis. Our results indicate that AITC significantly inhibited tumor growth at both doses of AITC due to the reduction in tumor size and weight. H&E histopathology analysis of heart, liver, spleen, and kidney samples revealed that AITC did not significantly induce toxicity. Body weight did not show significant changes in any experiment group. AITC significantly downregulated the protein expression levels of MCL-1, XIAP, MMP-9, and VEGF; however, it increased apoptosis-associated proteins, such as cleaved caspase-3, -8, and -9, in the tumor tissues compared with the control group. Based on these observations, AITC exhibits potent anti-cancer activity in the human glioblastoma cell xenograft model via inhibiting tumor cell proliferation and the induction of cell apoptosis. AITC may be a potential anti-GBM cancer drug that could be used in the future.
Collapse
|
11
|
Feng Z, Ou Y, Hao L. The roles of glycolysis in osteosarcoma. Front Pharmacol 2022; 13:950886. [PMID: 36059961 PMCID: PMC9428632 DOI: 10.3389/fphar.2022.950886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic reprogramming is of great significance in the progression of various cancers and is critical for cancer progression, diagnosis, and treatment. Cellular metabolic pathways mainly include glycolysis, fat metabolism, glutamine decomposition, and oxidative phosphorylation. In cancer cells, reprogramming metabolic pathways is used to meet the massive energy requirement for tumorigenesis and development. Metabolisms are also altered in malignant osteosarcoma (OS) cells. Among reprogrammed metabolisms, alterations in aerobic glycolysis are key to the massive biosynthesis and energy demands of OS cells to sustain their growth and metastasis. Numerous studies have demonstrated that compared to normal cells, glycolysis in OS cells under aerobic conditions is substantially enhanced to promote malignant behaviors such as proliferation, invasion, metastasis, and drug resistance of OS. Glycolysis in OS is closely related to various oncogenes and tumor suppressor genes, and numerous signaling pathways have been reported to be involved in the regulation of glycolysis. In recent years, a vast number of inhibitors and natural products have been discovered to inhibit OS progression by targeting glycolysis-related proteins. These potential inhibitors and natural products may be ideal candidates for the treatment of osteosarcoma following hundreds of preclinical and clinical trials. In this article, we explore key pathways, glycolysis enzymes, non-coding RNAs, inhibitors, and natural products regulating aerobic glycolysis in OS cells to gain a deeper understanding of the relationship between glycolysis and the progression of OS and discover novel therapeutic approaches targeting glycolytic metabolism in OS.
Collapse
|
12
|
Zou X, Tang XY, Qu ZY, Sun ZW, Ji CF, Li YJ, Guo SD. Targeting the PDGF/PDGFR signaling pathway for cancer therapy: A review. Int J Biol Macromol 2022; 202:539-557. [PMID: 35074329 DOI: 10.1016/j.ijbiomac.2022.01.113] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs) are expressed in a variety of tumors. Activation of the PDGF/PDGFR signaling pathway is associated with cancer proliferation, metastasis, invasion, and angiogenesis through modulating multiple downstream pathways, including phosphatidylinositol 3 kinase/protein kinase B pathway and mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Therefore, targeting PDGF/PDGFR signaling pathway has been demonstrated to be an effective strategy for cancer therapy, and accordingly, some great progress has been made in this field in the past few decades. This review will focus on the PDGF isoforms and their binding with the related PDGFRs, the PDGF/PDGFR signaling and regulation, and especially present strategies and inhibitors developed for cancer therapy, and the related clinical benefits and side effects.
Collapse
Affiliation(s)
- Xiang Zou
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China
| | - Xi-Yu Tang
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China
| | - Zhong-Yuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China.
| | - Zhi-Wei Sun
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Chen-Feng Ji
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China
| | - Yan-Jie Li
- Institute of lipid metabolism and Atherosclerosis, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Shou-Dong Guo
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China; School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; Institute of lipid metabolism and Atherosclerosis, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
13
|
Chiang IT, Lee YH, Tan ZL, Hsu FT, Tu HF. Regorafenib enhances antitumor immune efficacy of anti-PD-L1 immunotherapy on oral squamous cell carcinoma. Biomed Pharmacother 2022; 147:112661. [DOI: 10.1016/j.biopha.2022.112661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
|
14
|
Otsuka H, Fukumoto T, Kiyota N, Takemori C, Jimbo H, Nishigori C. Severe and delayed-onset acneiform eruptions as an adverse reaction to regorafenib. Dermatol Reports 2022; 14:9303. [PMID: 35795830 PMCID: PMC9251528 DOI: 10.4081/dr.2022.9303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022] Open
Abstract
Regorafenib is an oral multikinase inhibitor targeting several tyrosine kinase receptors including BRAF and epidermal growth factor receptor (EGFR) and is approved as a third-line treatment for metastatic gastrointestinal stromal tumor (GIST). While acneiform eruptions have been observed in patients receiving other BRAF and EGFR inhibitors, the commonly reported adverse reactions to regorafenib are fatigue and palmar-plantar erythrodysesthesia. Herein, we report, to the best of our knowledge, the first case who presented with a severe acneiform eruption 24 months after beginning regorafenib for the treatment of GIST. A 61-year-old woman developed GIST with multiple liver metastases, and she was treated with imatinib and sunitinib. However, these therapies were discontinued, and regorafenib was administered. Twenty-four months after beginning regorafenib, she developed an acneiform eruption on her back. Histopathologic analysis of a skin biopsy from the back revealed neutrophilic suppurative folliculitis. Therefore, she postponed regorafenib administration for 2 months and was treated with topical application of clindamycin phosphate hydrate, which was effective. Consistent with reported evidence that the presence of acneiform eruption and the efficacy of EGFR inhibitors are positively associated, regorafenib had good anticancer activity in our patient. Ultimately, we found that although regorafenib- associated skin toxicities usually appear within 1 month of treatment, patients potentially can present with delayed-onset acneiform eruptions even 24 months later.
Collapse
|
15
|
Su C, Lin S, Wang H, Hsu F, Chung JG, Hsu L. The inhibitory effect and mechanism of quetiapine on tumor progression in hepatocellular carcinoma in vivo. ENVIRONMENTAL TOXICOLOGY 2022; 37:92-100. [PMID: 34626444 PMCID: PMC9293313 DOI: 10.1002/tox.23380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 05/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the primary tumor of the liver and the fourth leading cause of cancer-related death. Recently, several studies indicated the anti-tumor potential of antipsychotic medicine. Quetiapine, an atypical antipsychotic, is used to treat schizophrenia, bipolar disorder, and major depressive disorder since 1997. However, whether quetiapine may show potential to suppress HCC progression and its underlying mechanism is persisting unclear. Quetiapine has been shown to induce apoptosis and inhibit invasion ability in HCC in vitro. Here, we established two different HCC (Hep3B, SK-Hep1) bearing animals to identify the treatment efficacy of quetiapine. Tumor growth, signaling transduction, and normal tissue pathology after quetiapine treatment were validated by caliper, bioluminescence image, immunohistochemistry (IHC), and hematoxylin and eosin staining, respectively. Quetiapine suppressed HCC progression in a dose-dependent manner. Extracellular signal-regulated kinases (ERKs) and Nuclear factor-κB (NF-κB) mediated downstream proteins, such as myeloid leukemia cell differentiation protein (MCL-1), cellular FLICE-inhibitory protein (C-FLIP), X-linked inhibitor of apoptosis protein (XIAP), Cyclin-D1, matrix metallopeptidase 9 (MMP-9), vascular endothelial growth factor-A (VEGF-A) and indoleamine 2,3-dioxygenase (IDO) which involved in proliferation, survival, angiogenesis, invasion and anti-tumor immunity were all decreased by quetiapine. In addition, extrinsic/intrinsic caspase-dependent and caspase-independent pathways, including cleaved caspase-3, -8, and - 9 were increased by quetiapine. In sum, the tumor inhibition that results from quetiapine may associate with ERK and NF-κB inactivation.
Collapse
Affiliation(s)
- Chun‐Min Su
- Department of SurgeryShow Chwan Memorial HospitalChanghuaTaiwan, ROC
| | - Song‐Shei Lin
- Department of Medical Imaging and Radiological SciencesCentral Taiwan University of Science and TechnologyTaichungTaiwan, ROC
| | - Hsiao‐Chia Wang
- Emergency DepartmentCathay General HospitalTaipeiTaiwan, ROC
- School of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan, ROC
| | - Fei‐Ting Hsu
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan, ROC
| | - Jing Gung Chung
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan, ROC
| | - Li‐Cho Hsu
- School of MedicineNational Yang‐Ming Chiao‐Tung University HospitalTaipeiTaiwan, ROC
| |
Collapse
|
16
|
Effect of Regorafenib on P2X7 Receptor Expression and Different Oncogenic Signaling Pathways in a Human Breast Cancer Cell Line: A Potential of New Insight of the Antitumor Effects of Regorafenib. Curr Issues Mol Biol 2021; 43:2199-2209. [PMID: 34940128 PMCID: PMC8929109 DOI: 10.3390/cimb43030154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women worldwide. P2X7 is a transmembrane receptor expressed in breast cancer and activated by the ATP tumor microenvironment, driving cell proliferation, angiogenesis, and metastasis via different signaling pathways. The role of the P2X7 receptor, hypoxia, and autophagy in regulating tumor progression is controversial. The multikinase inhibitor regorafenib prevents the activation of numerous kinases involved in angiogenesis, proliferation, and metastasis. The present study aimed to evaluate the modulatory effect of regorafenib on the hypoxia/angiogenesis/P2X7R/autophagy axis on the MCF7 breast cancer cell line and its impact on different signaling pathways involved in breast cancer pathogenesis. METHODS The levels of VEGF, VEGFR, PI3K, NF-κB, HIF-1α, and LC3-II were analyzed using ELISA, and caspase-3 activity was also assessed colorimetrically. Phosphorylated (p)-p38 MAPK and purinergic ligand-gated ion channel 7 (P2X7) receptor protein expression levels were analyzed via Western blotting. Reverse transcription-quantitative PCR was used to determine the mRNA expression levels of Beclin 1 (BECN1), LC3-II, and sequestosome 1 (p62). RESULTS Regorafenib reduced MCF7 cell viability in a dose-dependent manner. Furthermore, regorafenib significantly reduced levels of PI3K, NF-κB, VEGF, VEGFR, P2X7 receptor, and p-p38 MAPK protein expression, and markedly reduced p62 mRNA expression levels. However, regorafenib significantly increased caspase-3 activity, as well as BECN1 and LC3-II mRNA expression levels. CONCLUSIONS Regorafenib was demonstrated to possibly exhibit antitumor activity on the breast cancer cell line via modulation of the P2X7/HIF-1α/VEGF, P2X7/P38, P2X7/ERK/NF-κB, and P2X7/beclin 1 pathways.
Collapse
|
17
|
Yueh PF, Lee YH, Chiang IT, Chen WT, Lan KL, Chen CH, Hsu FT. Suppression of EGFR/PKC-δ/NF-κB Signaling Associated With Imipramine-Inhibited Progression of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:735183. [PMID: 34765548 PMCID: PMC8576332 DOI: 10.3389/fonc.2021.735183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background Anti-depressants have been reported to own anti-tumor potential types of cancers; however, the role of imipramine in non-small cell lung cancer (NSCLC) has not been elucidated. Epidermal growth factor receptor (EGFR) was known to be one of the key regulators that control NSCLC progression. Whether EGFR would be the target of imipramine for suppressing tumor signaling transduction and results in anti-tumor potential is remaining unclear. Methods We used CL-1-5-F4 cells and animal models to identify the underlying mechanism and therapeutic efficacy of imipramine. Cytotoxicity, apoptosis, invasion/migration, DNA damage, nuclear translocation of NF-κB, activation of NF-κB, phosphorylation of EGFR/PKC-δ/NF-κB was assayed by MTT, flow cytometry, transwell, wound healing assay, comet assay, immunofluorescence staining, NF-κB reporter gene assay and Western blotting, respectively. Tumor growth was validated by CL-1-5-F4/NF-κB-luc2 bearing animal model. Results Imipramine effectively induces apoptosis of NSCLC cells via both intrinsic and extrinsic apoptosis signaling. DNA damage was increased, while, invasion and migration potential of NSCLC cells was suppressed by imipramine. The phosphorylation of EGFR/PKC-δ/NF-κB and their downstream proteins were all decreased by imipramine. Similar tumor growth inhibition was found in imipramine with standard therapy erlotinib (EGFR inhibitor). Non-obvious body weight loss and liver pathology change were found in imipramine treatment mice. Conclusion Imipramine-triggered anti-NSCLC effects in both in vitro and in vivo model are at least partially attributed to its suppression of EGFR/PKC-δ/NF-κB pathway.
Collapse
Affiliation(s)
- Po-Fu Yueh
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-Hao Lee
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - I-Tsang Chiang
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Wei-Ting Chen
- Department of Psychiatry, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Keng-Li Lan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hsien Chen
- Surgical Department of Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
18
|
Analysis of Efficacy, Safety, and Prognostic Factors of mFOLFOX6 Regimen Combined with Cetuximab and Simvastatin in the Treatment of K-RAS Mutant Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2280440. [PMID: 34557254 PMCID: PMC8455186 DOI: 10.1155/2021/2280440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors with high morbidity and mortality. The early symptoms are latent, and most patients are in the middle or late stage when they are diagnosed. The best opportunity for surgery has been lost, and surgical resection has failed to achieve good results. In clinical practice, targeted therapy or chemotherapy is usually the main treatment. The mFOLFOX6 regimen is a standardized regimen for the treatment of advanced CRC. The main drugs in this regimen are oxaliplatin and 5-fluorouracil (5-FU). Patients with advanced CRC combined with standard chemotherapy regimens can achieve a higher resection rate of liver metastases in unresectable patients, which can achieve significant survival improvement. Therefore, in this study, oxaliplatin + calcium folinate + 5-Fu + mFOLFOX6 regimen was combined with cetuximab and simvastatin to treat CRC patients, and the clinical efficacy and prognosis were analyzed, as well as the prognostic factors. The results showed that the addition of simvastatin on the basis of conventional mFOLFOX6 regimen combined with cetuximab chemotherapy could effectively improve the efficacy, reduce the total incidence of adverse reactions, improve the overall survival rate, and prolong the overall survival time of patients. Pathological grade and peritoneal metastasis were the factors affecting the mean survival time of CRC patients.
Collapse
|
19
|
Liu YC, Chiang IT, Chung JG, Hsieh JH, Chiang CH, Weng MC, Hsu FT, Lee YH, Chang CS, Lin SS. Therapeutic Efficacy and Inhibitory Mechanism of Regorafenib Combined With Radiation in Colorectal Cancer. In Vivo 2021; 34:3217-3224. [PMID: 33144426 DOI: 10.21873/invivo.12157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Although both chemotherapy and radiotherapy (RT) can sufficiently maintain tumor suppression of colorectal cancer (CRC), these treatments may trigger the expression of nuclear factor kappa B (NF-κB) and compromise patients' survival. Regorafenib suppresses NF-κB activity in various tumor types. However, whether regorafenib may act as a suitable radiosensitizer to enhance therapeutic efficacy of RT remains unknown. MATERIALS AND METHODS Here, we established a CRC-bearing animal model to investigate the therapeutic efficacy of regorafenib in combination with RT, through measurement of tumor growth, body weight, whole-body computed tomography (CT) scan and immunohisto-chemistry staining. RESULTS Smallest tumor size and weight were found in the combination treatment group. In addition, RT-induced up-regulation of NF-κB and downstream proteins were diminished by regorafenib. Moreover, the body weight and liver pathology in the treated group were similar to those of the non-treated control group. CONCLUSION Regorafenib may enhance the anti-CRC efficacy of RT.
Collapse
Affiliation(s)
- Yu-Chang Liu
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.,Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.,Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - I-Tsang Chiang
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.,Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.,Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Jung-Hung Hsieh
- Department of Urology, Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yilan, Taiwan, R.O.C
| | - Chih-Hung Chiang
- Department of Urology, Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yilan, Taiwan, R.O.C.,Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei, Taiwan, R.O.C.,Department of Urology, National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Mao-Chi Weng
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan, R.O.C
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.
| | - Yuan-Hao Lee
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, U.S.A.
| | - Cheng-Shyong Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.
| | - Song-Shei Lin
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C.
| |
Collapse
|
20
|
Lee H, Jeon SG, Kim J, Kang RJ, Kim S, Han K, Park H, Kim K, Sung YM, Nam HY, Koh YH, Song M, Suk K, Hoe H. Ibrutinib modulates Aβ/tau pathology, neuroinflammation, and cognitive function in mouse models of Alzheimer's disease. Aging Cell 2021; 20:e13332. [PMID: 33709472 PMCID: PMC7963331 DOI: 10.1111/acel.13332] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/23/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that ibrutinib modulates LPS‐induced neuroinflammation in vitro and in vivo, but its effects on the pathology of Alzheimer's disease (AD) and cognitive function have not been investigated. Here, we investigated the effects of ibrutinib in two mouse models of AD. In 5xFAD mice, ibrutinib injection significantly reduced Aβ plaque levels by promoting the non‐amyloidogenic pathway of APP cleavage, decreased Aβ‐induced neuroinflammatory responses, and significantly downregulated phosphorylation of tau by reducing levels of phosphorylated cyclin‐dependent kinase‐5 (p‐CDK5). Importantly, tau‐mediated neuroinflammation and tau phosphorylation were also alleviated by ibrutinib injection in PS19 mice. In 5xFAD mice, ibrutinib improved long‐term memory and dendritic spine number, whereas in PS19 mice, ibrutinib did not alter short‐ and long‐term memory but promoted dendritic spinogenesis. Interestingly, the induction of dendritic spinogenesis by ibrutinib was dependent on the phosphorylation of phosphoinositide 3‐kinase (PI3K). Overall, our results suggest that ibrutinib modulates AD‐associated pathology and cognitive function and may be a potential therapy for AD.
Collapse
Affiliation(s)
- Hyun‐ju Lee
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Seong Gak Jeon
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Jieun Kim
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Ri Jin Kang
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Seong‐Min Kim
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
- Medical Device Development Center Daegu‐Gyeongbuk Medical Innovation Foundation (DGMIF) Daegu Korea
| | - Kyung‐Min Han
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - HyunHee Park
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Ki‐taek Kim
- Department of Life Sciences Yeungnam University Gyeongsan Korea
| | - You Me Sung
- Korea Mouse Phenotyping Center (KMPC) Seoul National University Seoul Korea
| | - Hye Yeon Nam
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Young Ho Koh
- Center for Biomedical Sciences Center for Infectious Diseases Division of Brain Disease Korea National Institute of Health Heungdeok‐gu Korea
| | - Minseok Song
- Department of Life Sciences Yeungnam University Gyeongsan Korea
| | - Kyoungho Suk
- Department of Pharmacology Brain Science & Engineering Institute School of Medicine Kyungpook National University Daegu Korea
| | - Hyang‐Sook Hoe
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
- Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science & Technology Daegu Korea
| |
Collapse
|