1
|
Bollin P, Kuś PM, Okińczyc P, Van Dijck P, Szweda P. Identification of potential markers of elevated anticandidal activity of propolis extracts. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119799. [PMID: 40220937 DOI: 10.1016/j.jep.2025.119799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For centuries, propolis has been one of the most important and popular antimicrobial (antibacterial and antifungal) agents used in traditional medicine worldwide, including Central and Eastern Europe. Despite centuries of use of this product, the molecular mechanisms of its activity remain not fully recognized, and the components that determine its biological activity have not been identified. AIM OF THE STUDY Hence, the main goal of the present study was to identify propolis ingredients that are crucial for the antifungal activity of this product. MATERIALS AND METHODS A serial two-fold microdilution method was applied to evaluate the activity of 83 ethanolic extracts of propolis (EEP) samples collected in different regions of Poland. The chemical composition of all EEPs was determined using UHPLC-DAD and UHPLC-QqTOF-MS methods. Advanced chemometric analysis of the correlation between antifungal activity and chemical composition was performed to identify the components related to the increased antifungal potential of propolis. Subsequently, the antifungal activities of pure "active ingredients" and their combinations were determined. RESULTS Only seven extracts (8.4 %) exhibited high anticandidal potential with MIC (Minimum Inhibitory Concentration) values between 32 and 256 μg/mL. The identified most important potential markers related to increased antifungal activity of propolis collected in East Europe are: pinocembrin, pinobanksin-3-acetate, chrysin, galangin, pinobanksin, techtochrysin, genkwanin, pinostrobin and sakuranetin isomer. However, the pure compounds did not inhibit the growth of Candida spp. up to a concentration of 256 μg/mL (MIC >256 μg/mL). Much better activity was observed for combinations of these ingredients. The highest activity was observed for a mixture of five compounds: chrysin, galangin, pinocembrin, pinobanksin, and pinobanksin-3-acetate, with MIC and MFC (Minimal Fungicidal Concentration) values 64 and 128 μg/mL (summary concentration of all compounds - 12.8 or 25.6 of each μg/mL), respectively. CONCLUSIONS The relatively low number of propolis samples collected in Poland exhibit considerable activity against Candida spp. Markers of elevated antifungal potential have been identified. Moreover, it has been proved, that only the composition of these compounds (not pure ingredients alone) is effective in the treatment of Candida spp. Mixtures of these ingredients can be considered as potential antifungal agents (artificial propolis). Moreover, UHPLC-DAD and UHPLC-QqTOF-MS methods of determining the chemical composition of EEPs have been optimized.
Collapse
Affiliation(s)
- Piotr Bollin
- Gdansk University of Technology, Faculty of Chemistry, Department of Pharmaceutical Technology and Biochemistry, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Piotr Marek Kuś
- Wroclaw Medical University, Faculty of Pharmacy, Department of Pharmacognosy and Herbal Medicines, Borowska 211a, 50-556 Wroclaw, Poland.
| | - Piotr Okińczyc
- Wroclaw Medical University, Faculty of Pharmacy, Department of Pharmacognosy and Herbal Medicines, Borowska 211a, 50-556 Wroclaw, Poland.
| | - Patrick Van Dijck
- KU Leuven, Department of Biology, Laboratory of Molecular Cell Biology, Kasteelpark Arenberg 31, 3001 Leuven, Belgium; KU Leuven One Health Institute, Leuven, Belgium.
| | - Piotr Szweda
- Gdansk University of Technology, Faculty of Chemistry, Department of Pharmaceutical Technology and Biochemistry, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
2
|
Bava R, Puteo C, Lombardi R, Garcea G, Lupia C, Spano A, Liguori G, Palma E, Britti D, Castagna F. Antimicrobial Properties of Hive Products and Their Potential Applications in Human and Veterinary Medicine. Antibiotics (Basel) 2025; 14:172. [PMID: 40001416 PMCID: PMC11851452 DOI: 10.3390/antibiotics14020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Hive products, encompassing honey, propolis, bee venom, royal jelly, and pollen, are recognized for their antimicrobial and therapeutic properties. This review examines their chemical composition, explores their mechanisms of action, and discusses their potential applications in both human and veterinary medicine, particularly in addressing the challenge of antimicrobial resistance. This study utilized a comprehensive literature search strategy, gathering data from Google Scholar, MEDLINE PubMed, SciELO, and SCOPUS databases. Relevant search terms were employed to ensure a thorough retrieval of the pertinent literature. Honey, rich in bioactive compounds such as hydrogen peroxide and methylglyoxal, effectively disrupts biofilms and combats multi-drug-resistant pathogens, showing promise in treating a range of infections. Propolis, with its flavonoids and phenolic acids, demonstrates synergistic effects when used in conjunction with antibiotics. Bee venom, particularly its component melittin, exhibits antibacterial and immunomodulatory properties, although further research is needed to address toxicity concerns. Pollen and royal jelly demonstrate broad-spectrum antimicrobial activity, which is particularly relevant to animal health. Existing pre-clinical and clinical data support the therapeutic potential of these hive products. Hive products represent a vast and largely untapped natural resource for combating antimicrobial resistance and developing sustainable therapies, particularly in the field of veterinary medicine. However, challenges remain due to the inherent variability in their composition and the lack of standardized protocols for their preparation and application. Further research is essential to fully elucidate their mechanisms of action, optimize formulations for enhanced efficacy, and establish standardized protocols to ensure their safe and effective clinical use.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88054 Catanzaro, Italy; (R.B.); (E.P.); (D.B.)
| | - Claudio Puteo
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Renato Lombardi
- Local Health Autorithy (ASL), 71121 Foggia, Italy; (R.L.); (G.L.)
| | - Giuseppe Garcea
- Catanzaro Veterinary Centre (CeVeCa), 88100 Catanzaro, Italy;
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Angelica Spano
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70121 Bari, Italy;
| | - Giovanna Liguori
- Local Health Autorithy (ASL), 71121 Foggia, Italy; (R.L.); (G.L.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88054 Catanzaro, Italy; (R.B.); (E.P.); (D.B.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88054 Catanzaro, Italy; (R.B.); (E.P.); (D.B.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88054 Catanzaro, Italy; (R.B.); (E.P.); (D.B.)
| |
Collapse
|
3
|
Emil AB, Hassan NH, Ibrahim S, Hassanen EI, Eldin ZE, Ali SE. Propolis extract nanoparticles alleviate diabetes-induced reproductive dysfunction in male rats: antidiabetic, antioxidant, and steroidogenesis modulatory role. Sci Rep 2024; 14:30607. [PMID: 39715797 DOI: 10.1038/s41598-024-81949-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
Diabetes can affect male fertility via oxidative stress and endocrine system disruption. Nanomedicine based on natural products is employed to address diabetes complications. The current study aims to investigate the potential beneficial effect of propolis extract nanoparticles against diabetes-induced testicular damage in male rats. Sixty male rats were randomly allocated to six groups (n = 10). The first group served as a control group. The second and third received propolis extract (Pr) and propolis extract nanoparticles (PrNPs). The fourth group is the diabetic group that received streptozotocin (STZ) (55 mg kg/bwt) single-dose i/p. The fifth and sixth groups are diabetic rats treated with Pr and PrNPs. Both Pr and PrNPs were received at a dose (100 mg/kg bwt) orally. After 60 days, animals were euthanized, then pancreatic and testicular tissues were collected for redox status evaluation, gene expression analysis, and histopathological examination. Also, hormonal analysis (Insulin, total testosterone, and luteinizing hormone (LH) ) along with semen quality evaluation were done. Results showed that the induction of diabetes led to testicular and pancreatic redox status deterioration showing a reduction in reduced glutathione (GSH) as well as elevation of malondialdehyde (MDA), and nitric oxide (NO) levels. Also, relative transcript levels of testicular cytochrome P450 family 11 subfamily A member 1 (CYP11A1), 3β-Hydroxysteroid dehydrogenase (HSD-3β), and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) were significantly down-regulated, While the advanced glycation end-product receptor (AGER) relative gene expression was significantly upregulated. Furthermore, hormonal and semen analysis disturbances were observed. Upon treatment with Pr and PrNPs, a marked upregulation of testicular gene expression of CYP11A1, HSD-3β, and NFE2L2 as well as a downregulation of AGER, was observed. Hormones and semen analysis were improved. In addition, the testicular and pancreatic redox status was enhanced. Results were confirmed via histopathological investigations. PrNPs outperformed Pr in terms of steroidogenesis pathway improvement, testicular antioxidant defense mechanism augmentation, and prospective antidiabetic activity.
Collapse
Affiliation(s)
- Abram B Emil
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Sally Ibrahim
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Zienab E Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef, 62511, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
4
|
Svetikiene D, Zamokas G, Jokubaite M, Marksa M, Ivanauskas L, Babickaite L, Ramanauskiene K. The Comparative Study of the Antioxidant and Antibacterial Effects of Propolis Extracts in Veterinary Medicine. Vet Sci 2024; 11:375. [PMID: 39195829 PMCID: PMC11360084 DOI: 10.3390/vetsci11080375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to human and animal health. Efforts to combat AMR include the introduction of antimicrobial drugs as alternative treatment options. To contribute to an effective plan for the treatment of infectious diseases caused by bacteria, the development of new antimicrobial agents is increasingly being explored. Propolis has garnered significant attention from both scientists and industry due to its extensive spectrum of biological activity. The growing interest in polyphenols of natural origin and their plant sources further encourages the investigation of their chemical composition and biological effects. Propolis serves as a rich source of phenolic compounds. Baltic region propolis, classified as poplar-type propolis, was selected for this study, and extracts were prepared using raw propolis materials from various Baltic countries. The production of liquid extracts utilized a combination of 70 percent ethanol, a mixture of water and poloxamer P407, and DES (deep eutectic solvent). The research aims to produce liquid propolis extracts using different solvents and to assess their chemical composition, antioxidant, and antimicrobial activity against different veterinary pathogens. Antioxidant activity was evaluated using DPPH (2,2-diphenyl-1-picrylhydrazyl), revealing antioxidant activity in all extracts, with results correlating with the total phenolic compound content. It was found that p-coumaric acid predominated in the studied propolis extracts (in ethanol extracts 1155.90-1506.65 mg/g, in DES extracts 321.13-954.76 mg/g, and in polymeric extracts 5.34-30.80 mg/g), with smaller amounts of ferulic acid and vanillin detected. Clinical and reference bacterial strains were collected from the Lithuanian University of Health Sciences, the Academy of Veterinary Medicine, and the Institute of Microbiology and Virology. To effectively treat bacterial infections, the antimicrobial activity of propolis extracts was tested against six pathogenic bacterial species and one pathogenic fungus (S. aureus, S. agalactiae, B. cereus, E. faecalis, E. coli, P. aeruginosa, and C. albicans). Antimicrobial activity studies demonstrated that DES propolis extracts exhibited stronger antimicrobial activity compared to ethanolic propolis extracts. The minimum inhibitory concentration (MIC) values of DES propolis extracts against the tested strains ranged between 50 and 1000 μg/mL. Considering the study results, it can be concluded that propolis from the Baltic region is abundant in phenolic compounds exhibiting antioxidant and antibacterial activities.
Collapse
Affiliation(s)
- Dovile Svetikiene
- Department of Dr. L. Kriauceliunas Small Animal Clinic, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (G.Z.); (L.B.)
| | - Gintaras Zamokas
- Department of Dr. L. Kriauceliunas Small Animal Clinic, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (G.Z.); (L.B.)
| | - Monika Jokubaite
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania;
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania; (M.M.); (L.I.)
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania; (M.M.); (L.I.)
| | - Lina Babickaite
- Department of Dr. L. Kriauceliunas Small Animal Clinic, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (G.Z.); (L.B.)
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
5
|
Islam S, Hussain EA, Shujaat S, Khan MU, Ali Q, Malook SU, Ali D. Antibacterial potential of Propolis: molecular docking, simulation and toxicity analysis. AMB Express 2024; 14:81. [PMID: 39014110 PMCID: PMC11252112 DOI: 10.1186/s13568-024-01741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
The issue of antibiotic resistance in pathogenic microbes is a global concern. This study was aimed to explore in silico and in vitro analysis of the antibacterial efficacy of different natural ligands against bacterial activity. The ligands included in the study were Propolis Neoflavanoide 1, Carvacrol, Cinnamaldehyde, Thymol, p-benzoquinone, and Ciprofloxacin (standard drug S*). The outcomes of molecular docking revealed that Propolis Neoflavaniode-1 showed a highly significant binding energy of - 7.1 and - 7.2 kcal/mol for the two gram-positive bacteria, as compared to the gram-negative bacteria. All ligands demonstrated acute toxicity (oral, dermal), except for Propolis Neoflavanoide 1 and S* drugs, with a confidence score range of 50-60%. Using a molecular dynamic simulation approach, we investigated Propolis Neoflavaniode-1's potential for therapeutic use in more detail. An MD simulation lasting 100 ns was performed using the Desmond Simulation software to examine the conformational stability and steady state of Propolis Neoflavaniode-1 in protein molecule complexes. Additionally, in vitro studies confirmed the antimicrobial activity of Propolis Neoflavaniode 1 by increasing the zone of inhibition against Gram-positive bacteria, p < 0.005 as compared to gram-negative bacteria. This study revealed the promising antibacterial efficacy of Propolis Neoflavaniode 1, demonstrated through robust in silico analyses, minimal toxicity, and confirmed in vitro antimicrobial activity, suggesting its potential as a viable alternative to combat antibiotic resistance.
Collapse
Affiliation(s)
- Shabana Islam
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Erum Akbar Hussain
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Shahida Shujaat
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Saif Ul Malook
- Department of Entomology and Nematology, University of Florida, Gainesville, USA
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Gomes KO, Messias da Silva LCF, dos Santos RD, Prado BA, da Silva Montes P, Silva Rodrigues LF, de Araújo MO, Bilac CA, Freire DO, Gris EF, Rodrigues da Silva IC, de Sá Barreto LCL, Orsi DC. Chemical characterization and antibacterial activities of Brazilian propolis extracts from Apis mellifera bees and stingless bees (Meliponini). PLoS One 2024; 19:e0307289. [PMID: 39012879 PMCID: PMC11251613 DOI: 10.1371/journal.pone.0307289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
The aim of this study was to evaluate the physicochemical composition and antibacterial activity of Brazilian propolis extracts from different types, concentrations, and extraction solvents and from different regions in Brazil. A total of 21 samples were analyzed, comprising 14 samples from Apis mellifera (12 green, 1 brown, and 1 red) and 7 samples from stingless bees (3 mandaçaia, 2 jataí, 1 hebora, and 1 tubuna). The analyses performed were dry extract, total phenolic content (TPC) and antioxidant activity (DPPH and ABTS). The antibacterial activity was performed by Determination of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC). The results showed that very low levels of phenolic compounds and antioxidant activity decreased the antimicrobial activity of the propolis extracts from tubuna and jataí. However, there was no correlation between the increase in propolis concentration in the extract, and the increase in antimicrobial activity. The highest TPC and antioxidant activity was obtained for green propolis extract made with 70% raw propolis that presented similar antibacterial activity to the samples formulated with 30% or less raw propolis. The aqueous propolis extract showed lower antimicrobial activity compared to the alcoholic extracts, indicating that ethanol is a better solvent for extracting the active compounds from propolis. It was observed that the MIC (0.06 to 0.2 mg/mL) and MBC (0.2 to 0.5 mg/mL) values for Gram-negative bacteria were higher compared to Gram-positive bacteria (MIC 0.001-0.2 mg/mL, and the MBC 0.02-0.5 mg/mL). The propolis extracts that exhibited the highest antimicrobial activities were from stingless bees hebora from the Distrito Federal (DF) and mandaçaia from Santa Catarina, showing comparable efficacy to samples 5, 6, and 7, which were the green propolis from the DF. Hence, these products can be considered an excellent source of bioactive compounds with the potential for utilization in both the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Karolina Oliveira Gomes
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Rebeca Dias dos Santos
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Bruno Alcântara Prado
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Letícia Fernandes Silva Rodrigues
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Marta Oliveira de Araújo
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Carla Azevedo Bilac
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Eliana Fortes Gris
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Izabel Cristina Rodrigues da Silva
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Daniela Castilho Orsi
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
7
|
Paluch E, Bortkiewicz O, Widelski J, Duda-Madej A, Gleńsk M, Nawrot U, Lamch Ł, Długowska D, Sobieszczańska B, Wilk KA. A Combination of β-Aescin and Newly Synthesized Alkylamidobetaines as Modern Components Eradicating the Biofilms of Multidrug-Resistant Clinical Strains of Candida glabrata. Int J Mol Sci 2024; 25:2541. [PMID: 38473787 DOI: 10.3390/ijms25052541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The current trend in microbiological research aimed at limiting the development of biofilms of multidrug-resistant microorganisms is increasingly towards the search for possible synergistic effects between various compounds. This work presents a combination of a naturally occurring compound, β-aescin, newly synthesized alkylamidobetaines (AABs) with a general structure-CnTMDAB, and antifungal drugs. The research we conducted consists of several stages. The first stage concerns determining biological activity (antifungal) against selected multidrug-resistant strains of Candida glabrata (C. glabrata) with the highest ability to form biofilms. The second stage of this study determined the activity of β-aescin combinations with antifungal compounds and alkylamidobetaines. In the next stage of this study, the ability to eradicate a biofilm on the polystyrene surface of the combination of β-aescin with alkylamidobetaines was examined. It has been shown that the combination of β-aescin and alkylamidobetaine can firmly remove biofilms and reduce their viability. The last stage of this research was to determine the safety regarding the cytotoxicity of both β-aescin and alkylamidobetaines. Previous studies on the fibroblast cell line have shown that C9 alkylamidobetaine can be safely used as a component of anti-biofilm compounds. This research increases the level of knowledge about the practical possibilities of using anti-biofilm compounds in combined therapies against C. glabrata.
Collapse
Affiliation(s)
- Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Olga Bortkiewicz
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Michał Gleńsk
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Urszula Nawrot
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Daria Długowska
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Beata Sobieszczańska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
8
|
Silva AM, Rocha B, Moreira MM, Delerue-Matos C, das Neves J, Rodrigues F. Biological Activity and Chemical Composition of Propolis Extracts with Potential Use in Vulvovaginal Candidiasis Management. Int J Mol Sci 2024; 25:2478. [PMID: 38473725 DOI: 10.3390/ijms25052478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Environmental sustainability is an increasing challenge in the pharmaceutical field, leading to the search for eco-friendly active ingredients. Among natural ingredients, propolis arises as an excellent alternative, being a complex substance with pharmacological properties. This work aims to explore the potential of propolis as a new pharmaceutical ingredient for the replacement of conventional vulvovaginal antifungals. Propolis extracts were obtained by Ultrasound-Assisted Extraction using different solvents (water, water/ethanol (50:50, v/v), and ethanol). Afterwards, the extracts were characterized regarding total phenolic content (TPC), antioxidant/antiradical activities, radical scavenging capacity, antifungal activity against strains of Candida species, and viability effect on two female genital cell lines. The aqueous extract achieved the best TPC result as well as the highest antioxidant/antiradical activities and ability to capture reactive oxygen species. A total of 38 phenolic compounds were identified and quantified by HPLC, among which ferulic acid, phloridzin and myricetin predominated. Regarding the anti-Candida spp. activity, the aqueous and the hydroalcoholic extracts achieved the best outcomes (with MIC values ranging between 128 and 512 μg/mL). The cell viability assays confirmed that the aqueous extract presented mild selectivity, while the hydroalcoholic and alcoholic extracts showed higher toxicities. These results attest that propolis has a deep potential for vulvovaginal candidiasis management, supporting its economic valorization.
Collapse
Affiliation(s)
- Ana Margarida Silva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Beatriz Rocha
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Manuela M Moreira
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - José das Neves
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- CESPU-Institute for Research and Advanced Training in Health Sciences and Technologies, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| |
Collapse
|
9
|
Aburayyan WS, Seder N, Al-fawares O, Fararjeh A, Majali IS, Al-Hajaya Y. Characterization of Antibiofilm and Antimicrobial Effects of Trigona Stingless Bee Honey Compared to Stinging Bee Centaurea hyalolepis and Citrus Honeys. J Evid Based Integr Med 2024; 29:2515690X241271978. [PMID: 39118572 PMCID: PMC11311187 DOI: 10.1177/2515690x241271978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 05/15/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
The antibiofilm and antimicrobial properties of tropical honey types including Malaysian stingless bee honey remain explicitly unexplored when compared with Apies honey. The antibiofilm and antimicrobial activities of the Malaysian Trigona honey were characterized with two stinging bee honey types (Centaurea hyalolepis and Citrus honeys) from Jordan. The antibiofilm and antimicrobial investigations were conducted on a set of seven microbial strains; five bacterial species of Pseudomonas aeruginosa ATCC 10145, Streptococcus pyogenes ATCC 19615, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, and two fungal strains Candida albicans ATCC 10231 and Candida krusei ATCC 14243. The antimicrobial investigations revealed a broad spectrum activity for Trigona honey against Gram-positive, Gram-negative, and fungal strains over the two honey types. One-way ANOVA showed a significant difference (p < 0.001) in the zone of inhibition ranging from 9 to 25 mm and minimum inhibition activity (MIC) ranged from 9.4-29.6% (w/v) against the microbial strains. Moreover, the addition of honey to established biofilms has induced a degradation activity in the biofilm mass. Two-way ANOVA showed a significant biofilm degradation proportion (p < 0.001) ranging from 1.3% to 91.3% following treatment with Trigona honey and the other honey types in relevance to the concentration ranging from 10% to 50% (w/v). Moreover, the antibiofilm activity was highly consistent with MIC affecting bacterial growth inhibition. In conclusion, a robust antimicrobial and antibiofilm activity for Trigona stingless bee honey over the stinging bee Centaurea hyalolepis and Citrus honeys is noticed which endows the usage of Trigona honey in the antimicrobial industry.
Collapse
Affiliation(s)
- Walid Salem Aburayyan
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Nesrin Seder
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - O’la Al-fawares
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - AbdulFattah Fararjeh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ibrahim S. Majali
- Department of Medical Laboratory Sciences, Mutah University, Karak, Jordan
| | - Yousef Al-Hajaya
- Department of Biological Sciences, Mutah University, Karak, Jordan
| |
Collapse
|
10
|
Chuttong B, Lim K, Praphawilai P, Danmek K, Maitip J, Vit P, Wu MC, Ghosh S, Jung C, Burgett M, Hongsibsong S. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects. Foods 2023; 12:3909. [PMID: 37959028 PMCID: PMC10648409 DOI: 10.3390/foods12213909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Bee propolis has been touted as a natural antimicrobial agent with the potential to replace antibiotics. Numerous reports and reviews have highlighted the functionalities and applications of the natural compound. Despite much clamor for the downstream application of propolis, there remain many grounds to cover, especially in the upstream production, and factors affecting the quality of the propolis. Moreover, geopropolis and cerumen, akin to propolis, hold promise for diverse human applications, yet their benefits and intricate manufacturing processes remain subjects of intensive research. Specialized cement bees are pivotal in gathering and transporting plant resins from suitable sources to their nests. Contrary to common belief, these resins are directly applied within the hive, smoothed out by cement bees, and blended with beeswax and trace components to create raw propolis. Beekeepers subsequently harvest and perform the extraction of the raw propolis to form the final propolis extract that is sold on the market. As a result of the production process, intrinsic and extrinsic factors, such as botanical origins, bee species, and the extraction process, have a direct impact on the quality of the final propolis extract. Towards the end of this paper, a section is dedicated to highlighting the antimicrobial potency of propolis extract.
Collapse
Affiliation(s)
- Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
| | - Kaiyang Lim
- ES-TA Technology Pte Ltd., Singapore 368819, Singapore;
| | - Pichet Praphawilai
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khanchai Danmek
- School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Jakkrawut Maitip
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong Campus, Bankhai, Rayong 21120, Thailand;
| | - Patricia Vit
- Apitherapy and Bioactivity, Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Merida 5001, Venezuela;
| | - Ming-Cheng Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Sampat Ghosh
- Agriculture Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea;
| | - Chuleui Jung
- Department of Plant Medical, Andong National University, Andong 36729, Republic of Korea;
| | - Michael Burgett
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
11
|
Widelski J, Okińczyc P, Suśniak K, Malm A, Paluch E, Sakipov A, Zhumashova G, Ibadullayeva G, Sakipova Z, Korona-Glowniak I. Phytochemical Profile and Antimicrobial Potential of Propolis Samples from Kazakhstan. Molecules 2023; 28:molecules28072984. [PMID: 37049747 PMCID: PMC10095981 DOI: 10.3390/molecules28072984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In the current paper, we present the results of Kazakh propolis investigations. Due to limited data about propolis from this country, research was focused mainly on phytochemical analysis and evaluation of propolis antimicrobial activity. uHPLC-DAD (ultra-high-pressure-liquid chromatography coupled with diode array detection, UV/VIS) and uHPLC-MS/MS (ultra-high-pressure-liquid chromatography coupled with tandem mass spectrometry) were used to phytochemical characteristics while antimicrobial activity was evaluated in the serial dilution method (MIC, minimal inhibitory concentration, and MBC/MFC, minimal bactericidal/fungicidal concentration measurements). In the study, Kazakh propolis exhibited a strong presence of markers characteristic of poplar-type propolis—flavonoid aglycones (pinocembrin, galangin, pinobanksin and pinobanskin-3-O-acetate) and hydroxycinnamic acid monoesters (mainly caffeic acid phenethyl ester and different isomers of caffeic acid prenyl ester). The second plant precursor of Kazakh propolis was aspen–poplar with 2-acetyl-1,3-di-p-coumaroyl glycerol as the main marker. Regarding antimicrobial activity, Kazakh propolis revealed stronger activity against reference Gram-positive strains (MIC from 31.3 to above 4000 mg/L) and yeasts (MIC from 62.5 to 1000 mg/L) than against reference Gram-negative strains (MIC ≥ 4000 mg/L). Moreover, Kazakh propolis showed good anti-Helicobacter pylori activity (MIC and MBC were from 31.3 to 62.5 mg/L). All propolis samples were also tested for H. pylori urease inhibitory activity (IC50, half-maximal inhibitory concentration, ranged from 440.73 to 11,177.24 µg/mL). In summary Kazakh propolis are potent antimicrobial agents and may be considered as a medicament in the future.
Collapse
|
12
|
T. M. C, P. I. SJ, G. N, R. M. N, R. Z. M. Antimicrobial activity of flavonoids glycosides and pyrrolizidine alkaloids from propolis of Scaptotrigona aff. postica. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2150647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Cantero T. M.
- Laboratory of Parasitology, Butantan Institute, Sao Paulo, Brazil
| | - Silva Junior P. I.
- Laboratory for Applied Toxinology (LETA), Center of Toxins, Immuneresponse and cell signaling (CeTICS/CEPID), Butantan Institute, Sao Paulo, Brazil
| | - Negri G.
- Laboratory of Phytochemistry, Department of Botany, Institute of Biosciences, University of São Paulo, Sao Paulo, Brazil
| | - Nascimento R. M.
- Laboratory of Parasitology, Butantan Institute, Sao Paulo, Brazil
| | - Mendonça R. Z.
- Laboratory of Parasitology, Butantan Institute, Sao Paulo, Brazil
| |
Collapse
|
13
|
Abd Rashid N, Mohammed SNF, Syed Abd Halim SA, Ghafar NA, Abdul Jalil NA. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals (Basel) 2022; 15:1419. [PMID: 36422549 PMCID: PMC9696375 DOI: 10.3390/ph15111419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 09/01/2023] Open
Abstract
Honey and propolis have recently become the key target of attention for treating certain diseases and promoting overall health and well-being. A high content of flavonoids and phenolic acids found in both honey and propolis contributes to the antioxidant properties to scavenge free radicals. Honey and propolis also exhibited antibacterial effects where they act in two ways, namely the production of hydrogen peroxide (H2O2) and gluconic acids following the enzymatic activities of glucose oxidase, which exerts oxidative damage on the bacteria. Additionally, the anti-inflammatory effects of honey and propolis are mainly by reducing proinflammatory factors such as interleukins and tumor necrosis factor alpha (TNF-α). Their effects on pain were discovered through modulation at a peripheral nociceptive neuron or binding to an opioid receptor in the higher center. The aforementioned properties of honey have been reported to possess potential therapeutic topical application on the exterior parts of the eyes, particularly in treating conjunctivitis, keratitis, blepharitis, and corneal injury. In contrast, most of the medicinal values of propolis are beneficial in the internal ocular area, such as the retina, optic nerve, and uvea. This review aims to update the current discoveries of honey and propolis in treating various ocular diseases, including their antioxidant, anti-inflammatory, antibacterial, and anti-nociceptive properties. In conclusion, research has shown that propolis and honey have considerable therapeutic promise for treating various eye illnesses, although the present study designs are primarily animal and in vitro studies. Therefore, there is an urgent need to translate this finding into a clinical setting.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Malaysia
| | - Siti Nur Farhana Mohammed
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
14
|
Janani D, Lad SS, Rawson A, Sivanandham V, Rajamani M. Effect of microwave and ultrasound‐assisted extraction methods on phytochemical extraction of bee propolis of Indian origin and its antibacterial activity. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dhanapathi Janani
- National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur (NIFTEM‐T, Formerly Indian Institute of Food Processing Technology) Affiliated to Bharathidasan University Thanjavur 613005 Tamil Nadu India
| | - Sunaina Sunil Lad
- Food Safety and Quality Assurance National Institute of Food Technology, Entrepreneurship and Management – Thanjavur (NIFTEM – T, Formerly Indian Institute of Food Processing Technology) Thanjavur 613005 Tamil Nadu India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship and Management – Thanjavur (NIFTEM – T, Formerly Indian Institute of Food Processing Technology) Thanjavur 613005 Tamil Nadu India
| | - Vignesh Sivanandham
- Department of Academics & Human Resource Development National Institute of Food Technology, Entrepreneurship and Management – Thanjavur (NIFTEM – T, Formerly Indian Institute of Food Processing Technology) Thanjavur 613005 Tamil Nadu India
| | - Meenatchi Rajamani
- Department of Primary Processing Storage and Handling National Institute of Food Technology, Entrepreneurship and Management – Thanjavur (NIFTEM – T, Formerly Indian Institute of Food Processing Technology) Thanjavur 613005 Tamil Nadu India
| |
Collapse
|
15
|
Rivera-Yañez CR, Ruiz-Hurtado PA, Reyes-Reali J, Mendoza-Ramos MI, Vargas-Díaz ME, Hernández-Sánchez KM, Pozo-Molina G, Méndez-Catalá CF, García-Romo GS, Pedroza-González A, Méndez-Cruz AR, Nieto-Yañez O, Rivera-Yañez N. Antifungal Activity of Mexican Propolis on Clinical Isolates of Candida Species. Molecules 2022; 27:molecules27175651. [PMID: 36080417 PMCID: PMC9457601 DOI: 10.3390/molecules27175651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Infections caused by micro-organisms of the genus Candida are becoming a growing health problem worldwide. These fungi are opportunistic commensals that can produce infections—clinically known as candidiasis—in immunocompromised individuals. The indiscriminate use of different anti-fungal treatments has triggered the resistance of Candida species to currently used therapies. In this sense, propolis has been shown to have potent antimicrobial properties and thus can be used as an approach for the inhibition of Candida species. Therefore, this work aims to evaluate the anti-Candida effects of a propolis extract obtained from the north of Mexico on clinical isolates of Candida species. Candida species were specifically identified from oral lesions, and both the qualitative and quantitative anti-Candida effects of the Mexican propolis were evaluated, as well as its inhibitory effect on C. albicans isolate’s germ tube growth and chemical composition. Three Candida species were identified, and our results indicated that the inhibition halos of the propolis ranged from 7.6 to 21.43 mm, while that of the MFC and FC50 ranged from 0.312 to 1.25 and 0.014 to 0.244 mg/mL, respectively. Moreover, the propolis was found to inhibit germ tube formation (IC50 ranging from 0.030 to 1.291 mg/mL). Chemical composition analysis indicated the presence of flavonoids, including pinocembrin, baicalein, pinobanksin chalcone, rhamnetin, and biochanin A, in the Mexican propolis extract. In summary, our work shows that Mexican propolis presents significant anti-Candida effects related to its chemical composition, and also inhibits germ tube growth. Other Candida species virulence factors should be investigated in future research in order to determine the mechanisms associated with antifungal effects against them.
Collapse
Affiliation(s)
- Claudia Rebeca Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero 07738, Mexico
| | - Julia Reyes-Reali
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - María Isabel Mendoza-Ramos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - María Elena Vargas-Díaz
- Laboratorio de Química de Productos Naturales, Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Ciudad de México 11340, Mexico
| | - Karla Mariela Hernández-Sánchez
- Laboratorio de Química de Productos Naturales, Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Ciudad de México 11340, Mexico
| | - Glustein Pozo-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Gina Stella García-Romo
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Alexander Pedroza-González
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Adolfo René Méndez-Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (O.N.-Y.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| | - Nelly Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (O.N.-Y.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| |
Collapse
|
16
|
Belmehdi O, El Menyiy N, Bouyahya A, El Baaboua A, El Omari N, Gallo M, Montesano D, Naviglio D, Zengin G, Skali Senhaji N, Goh BH, Abrini J. Recent Advances in the Chemical Composition and Biological Activities of Propolis. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2089164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Omar Belmehdi
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Nadia Skali Senhaji
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jamal Abrini
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
17
|
Sawicki R, Widelski J, Okińczyc P, Truszkiewicz W, Glous J, Sieniawska E. Exposure to Nepalese Propolis Alters the Metabolic State of Mycobacterium tuberculosis. Front Microbiol 2022; 13:929476. [PMID: 35814697 PMCID: PMC9260414 DOI: 10.3389/fmicb.2022.929476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Propolis is a natural product proved to be efficient against Mycobacterium tuberculosis. Although it is produced by bees, its active alcoholic-aqueous fraction contains plant-derived molecules. To gain some insight into its mechanism of antimycobacterial activity, we studied the metabolic changes in bacterial cells treated with extract of Trigona sp. propolis from Nepal. The detailed metabolomic and transcriptomic analysis performed in this study indicated target points in bacterial cells under propolis extract influence. The profile of lipids forming the outer and middle layer of the mycobacterial cell envelope was not changed by propolis treatment, however, fluctuations in the profiles of amphipathic glycerophospholipids were observed. The enrichment analysis revealed bacterial metabolic pathways affected by Trigona sp. propolis treatment. The early metabolic response involved much more pathways than observed after 48 h of incubation, however, the highest enrichment ratio was observed after 48 h, indicating the long-lasting influence of propolis. The early bacterial response was related to the increased demand for energy and upregulation of molecules involved in the formation of the cell membrane. The transcriptomic analysis confirmed that bacteria also suffered from oxidative stress, which was more pronounced on the second day of exposure. This was the first attempt to explain the action of Nepalese propolis extract against mycobacteria.
Collapse
Affiliation(s)
- Rafał Sawicki
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland
| | - Jarosław Widelski
- Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Wrocław, Poland
| | - Wiesław Truszkiewicz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland
| | - Joanna Glous
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, Poland
- *Correspondence: Elwira Sieniawska
| |
Collapse
|
18
|
Computational Study of Asian Propolis Compounds as Potential Anti-Type 2 Diabetes Mellitus Agents by Using Inverse Virtual Screening with the DIA-DB Web Server, Tanimoto Similarity Analysis, and Molecular Dynamic Simulation. Molecules 2022; 27:molecules27133972. [PMID: 35807241 PMCID: PMC9268573 DOI: 10.3390/molecules27133972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4′-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1.
Collapse
|
19
|
Andre, Arief II, Apriantini A, Jayanegara A, Budiman C. Antimicrobial Activity of Propolis Extract and Their Application as a Natural Preservative in Livestock Products: A Meta-Analysis. Food Sci Anim Resour 2022; 42:280-294. [PMID: 35310561 PMCID: PMC8907792 DOI: 10.5851/kosfa.2022.e4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the effectiveness of propolis extract as a natural preservative for livestock products in term of chemical and microbiological characteristics by meta-analysis. The stages carried out in this study were identification, selection, checking suitability, and the resulting selected articles were used in the meta-analysis. The selection results obtained a total of 22 selected journal articles consisting of 9 articles for analysis of the antimicrobial activity of propolis extract and 13 articles for analysis of the chemical and mirobiological characteristics of livestock products. The articles were obtained from electronic databases, namely Science Direct and Google Scholar. The model used in this study is the random-effect model involving two groups, control and experimental. Heterogeneity and effect size values were carried out in this study using Hedge's obtained through openMEE software. Forest plot tests and data validation on publication bias was obtained using Kendall's test throught JASP 0.14.1 software. The results showed that there is a significant relationship between propolis extract with the results of the antimicrobial activity (p<0.05). In addition, the results of the application of propolis extract on the livestock products for the test microbes and the value of thiobarbituric acid reactive substances (TBARs) showed significant results (p<0.05). Conclusion based on the random-effect model on the effectiveness of antimicrobial activity of propolis extract and their apllication as a natural preservative of the chemical and microbiological characteristics of livestock products is valid by Kendall's test (p>0.05). Propolis in this case effectively used as natural preservatives in livestock products.
Collapse
Affiliation(s)
- Andre
- Department of Animal Production Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| | - Irma Isnafia Arief
- Department of Animal Production Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| | - Astari Apriantini
- Department of Animal Production Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| | - Cahyo Budiman
- Department of Animal Production Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| |
Collapse
|
20
|
Ożarowski M, Karpiński TM, Alam R, Łochyńska M. Antifungal Properties of Chemically Defined Propolis from Various Geographical Regions. Microorganisms 2022; 10:364. [PMID: 35208818 PMCID: PMC8880174 DOI: 10.3390/microorganisms10020364] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Long-term fungal infections that are difficult to treat require new substances for their prevention, treatment, or as adjuvants during antibiotic therapy. Propolis is a very promising source of natural substances that show a wide range of pharmacological properties, including antifungal activity against various fungal strains. The purpose of the literature review was to summarize recent studies (PubMed, Scopus) on progress in evaluating the antifungal activity of chemically defined propolis extracts. During the selection of studies, only those with results of antifungal activity expressed as minimal inhibitory concentration (MIC) and/or minimal fungicidal concentration (MFC) were analyzed. Moreover, plant, animal and environmental factors influencing the chemical composition of propolis are discussed. Mechanisms of antifungal activity of propolis extracts and research trends in the aspect of developing new therapies and the assessment of drug interactions are indicated. The review of the research results shows that there is great progress in the definition of propolis extracts. After comparing the MIC/MFC values, it was assessed that propolis extracts offer a wide range of activity not only against pathogenic Candida strains but also against risky molds; however, the strength of this activity is varied.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Rahat Alam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore 7408, Bangladesh
| | - Małgorzata Łochyńska
- Department of Bioeconomy, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| |
Collapse
|
21
|
Widelski J, Okińczyc P, Paluch E, Mroczek T, Szperlik J, Żuk M, Sroka Z, Sakipova Z, Chinou I, Skalicka-Woźniak K, Malm A, Korona-Głowniak I. The Antimicrobial Properties of Poplar and Aspen–Poplar Propolises and Their Active Components against Selected Microorganisms, Including Helicobacter pylori. Pathogens 2022; 11:pathogens11020191. [PMID: 35215134 PMCID: PMC8875431 DOI: 10.3390/pathogens11020191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
There is a noticeable interest in alternative therapies where the outcome is the eradication of the Gram-negative bacterium, Helicobacter pylori (H. pylori), for the purpose of treating many stomach diseases (chronic gastritis and peptic ulcers) and preventing stomach cancer. It is especially urgent because the mentioned pathogen infects over 50% of the world’s population. Recent studies have shown the potential of natural products, such as medicinal plant and bee products, on the inhibition of H. pylori growth. Propolis is such a bee product, with known antimicrobial activities. The main scope of the study is the determination of the antimicrobial activity of ethanolic extracts from 11 propolis samples (mostly from Poland, Ukraine, Kazakhstan, and Greece) against H. pylori, as well as selected bacterial and yeast species. The most effective against H. pylori was the propolis from Ukraine, with an MIC = 0.02 mg/mL while the rest of samples (except one) had an MIC = 0.03 mg/mL. Moreover, significant antimicrobial activity against Gram+ bacteria (with an MIC of 0.02–2.50 mg/mL) and three yeasts (with an MIC of 0.04–0.63 mg/mL) was also observed. A phytochemical analysis (polyphenolic profile) of the propolis samples, by ultra-high-performance liquid chromatography-diode array detector-mass spectrometry (UPLC-DAD-MS), was performed. An evaluation of the impact of the propolis components on antimicrobial activity, consisting of statistical analyses (principal component analysis (PCA) and hierarchical fuzzy clustering), was then performed. It was observed that the chemical composition characteristics of the poplar propolis correlated with higher antibacterial activity, while that of the poplar and aspen propolis correlated with weaker antibacterial activity. To summarize the activity in vitro, all tested propolis samples indicate that they can be regarded as useful and potent factors in antimicrobial therapies, especially against H. pylori.
Collapse
Affiliation(s)
- Jarosław Widelski
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (J.W.); (P.O.); Tel.: +48-81-448-70-86 (J.W.); +48-71-448-70-86 (P.O.)
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, 50-556 Wroclaw, Poland;
- Correspondence: (J.W.); (P.O.); Tel.: +48-81-448-70-86 (J.W.); +48-71-448-70-86 (P.O.)
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 50-376 Wroclaw, Poland;
| | - Tomasz Mroczek
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland; (T.M.); (K.S.-W.)
| | - Jakub Szperlik
- Faculty of Biological Sciences, Botanical Garden, Laboratory of Tissue Culture, University of Wrocław, 50-525 Wroclaw, Poland;
| | - Magdalena Żuk
- Faculty of Biotechnology, Wrocław University, 51-148 Wroclaw, Poland;
| | - Zbigniew Sroka
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, 50-556 Wroclaw, Poland;
| | - Zuriyadda Sakipova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Ioanna Chinou
- Division of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Krystyna Skalicka-Woźniak
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland; (T.M.); (K.S.-W.)
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (I.K.-G.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (I.K.-G.)
| |
Collapse
|
22
|
Freitas AS, Cunha A, Oliveira R, Almeida‐Aguiar C. Propolis antibacterial and antioxidant synergisms with gentamicin and honey. J Appl Microbiol 2022; 132:2733-2745. [DOI: 10.1111/jam.15440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Ana Sofia Freitas
- CITAB ‐ Centre for the Research and Technology of Agro‐Environmental and Biological Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- Department of Biology School of Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
| | - Ana Cunha
- CITAB ‐ Centre for the Research and Technology of Agro‐Environmental and Biological Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- Department of Biology School of Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- CBMA ‐ Centre of Molecular and Environmental Biology University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- CEB ‐ Centre of Biological Engineering University of Minho Campus de Gualtar 4710‐057 Braga Portugal
| | - Rui Oliveira
- CITAB ‐ Centre for the Research and Technology of Agro‐Environmental and Biological Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- Department of Biology School of Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- CBMA ‐ Centre of Molecular and Environmental Biology University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- CEB ‐ Centre of Biological Engineering University of Minho Campus de Gualtar 4710‐057 Braga Portugal
| | - Cristina Almeida‐Aguiar
- CITAB ‐ Centre for the Research and Technology of Agro‐Environmental and Biological Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- Department of Biology School of Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- CBMA ‐ Centre of Molecular and Environmental Biology University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- CEB ‐ Centre of Biological Engineering University of Minho Campus de Gualtar 4710‐057 Braga Portugal
| |
Collapse
|
23
|
Millones Gómez PA, Tay Chu Jon LY, Maurtua Torres DJ, Bacilio Amaranto RE, Collantes Díaz IE, Minchón Medina CA, Calla Choque JS. Antibacterial, antibiofilm, and cytotoxic activities and chemical compositions of Peruvian propolis in an in vitro oral biofilm. F1000Res 2022; 10:1093. [PMID: 34853678 PMCID: PMC8613507 DOI: 10.12688/f1000research.73602.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Natural products with antibacterial potential have begun to be tested on biofilm models, bringing us closer to understanding the response generated by the complex microbial ecosystems of the oral cavity. The objective of this study was to evaluate the antibacterial, antibiofilm, and cytotoxic activities and chemical compositions of Peruvian propolis in an
in vitro biofilm of
Streptococcus gordonii and
Fusobacterium nucleatum. Methods: The experimental work involved a consecutive,
in vitro, longitudinal, and double-blinded study design. Propolis samples were collected from 13 different regions of the Peruvian Andes. The disk diffusion method was used for the antimicrobial susceptibility test. The cytotoxic effect of propolis on human gingival fibroblasts was determined by cell viability method using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and the effect of propolis on the biofilm was evaluated by confocal microscopy and polymerase chain reaction (PCR). Results: The 0.78 mg/mL and 1.563 mg/mL concentrations of the methanolic fraction of the chloroform residue of Oxapampa propolis showed effects on biofilm thickness and the copy numbers of the
srtA gene of
S. gordonii and the
radD gene of
F. nucleatum at 48 and 120 hours, and chromatography (UV, λ 280 nm) identified rhamnocitrin, isorhamnetin, apigenin, kaempferol, diosmetin, acacetin, glycerol, and chrysoeriol. Conclusions: Of the 13 propolis evaluated, it was found that only the methanolic fraction of Oxapampa propolis showed antibacterial and antibiofilm effects without causing damage to human gingival fibroblasts. Likewise, when evaluating the chemical composition of this fraction, eight flavonoids were identified.
Collapse
Affiliation(s)
- Pablo Alejandro Millones Gómez
- Facultad de Medicina, Universidad Señor de Sipán, Chiclayo, 14000, Peru.,Faculty of Dentistry, Universidad Peruana Cayetano Heredia, Lima, 07001, Peru
| | | | | | | | | | - Carlos Alberto Minchón Medina
- Department of Statistics, Faculty of Physical Sciences and Mathematics, Universidad Nacional de Trujillo, Trujillo, 13001, Peru
| | - Jaeson Santos Calla Choque
- Department of Pediatrics, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, 92093, USA
| |
Collapse
|
24
|
|
25
|
Sousa C, Ferreira R, Azevedo NF, Oleastro M, Azeredo J, Figueiredo C, Melo LDR. Helicobacter pylori infection: from standard to alternative treatment strategies. Crit Rev Microbiol 2021; 48:376-396. [PMID: 34569892 DOI: 10.1080/1040841x.2021.1975643] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is the major component of the gastric microbiome of infected individuals and one of the aetiological factors of chronic gastritis, peptic ulcer disease and gastric cancer. The increasing resistance to antibiotics worldwide has made the treatment of H. pylori infection a challenge. As a way to overhaul the efficacy of currently used H. pylori antibiotic-based eradication therapies, alternative treatment strategies are being devised. These include probiotics and prebiotics as adjuvants in H. pylori treatment, antimicrobial peptides as alternatives to antibiotics, photodynamic therapy ingestible devices, microparticles and nanoparticles applied as drug delivery systems, vaccines, natural products, and phage therapy. This review provides an updated synopsis of these emerging H. pylori control strategies and discusses the advantages, hurdles, and challenges associated with their development and implementation. An effective human vaccine would be a major achievement although, until now, projects regarding vaccine development have failed or were discontinued. Numerous natural products have demonstrated anti-H. pylori activity, mostly in vitro, but further clinical studies are needed to fully disclose their role in H. pylori eradication. Finally, phage therapy has the potential to emerge as a valid alternative, but major challenges remain, namely the isolation of more H. pylori strictly virulent bacterio(phages).
Collapse
Affiliation(s)
- Cláudia Sousa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Rute Ferreira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno F Azevedo
- Faculty of Engineering, LEPABE - Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, Department of Pathology, University of Porto, Porto, Portugal
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
26
|
Promising Antimicrobial Properties of Bioactive Compounds from Different Honeybee Products. Molecules 2021; 26:molecules26134007. [PMID: 34209107 PMCID: PMC8272120 DOI: 10.3390/molecules26134007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 01/18/2023] Open
Abstract
Bee products have been known for centuries for their versatile healing properties. In recent decades they have become the subject of documented scientific research. This review aims to present and compare the impact of bee products and their components as antimicrobial agents. Honey, propolis, royal jelly and bee venom are bee products that have antibacterial properties. Sensitivity of bacteria to these products varies considerably between products and varieties of the same product depending on their origin. According to the type of bee product, different degrees of activity were observed against Gram-positive and Gram-negative bacteria, yeasts, molds and dermatophytes, as well as biofilm-forming microorganisms. Pseudomonas aeruginosa turned out to be the most resistant to bee products. An analysis of average minimum inhibitory concentration values for bee products showed that bee venom has the strongest bacterial effectiveness, while royal jelly showed the weakest antibacterial activity. The most challenging problems associated with using bee products for medical purposes are dosage and safety. The complexity and variability in composition of these products raise the need for their standardization before safe and predictable clinical uses can be achieved.
Collapse
|
27
|
Williams D, Perry D, Carraway J, Simpson S, Uwamariya P, Christian OE. Antigonococcal Activity of (+)-Medicarpin. ACS OMEGA 2021; 6:15274-15278. [PMID: 34151106 PMCID: PMC8210425 DOI: 10.1021/acsomega.1c01590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are the primary drugs for combating Neisseria gonorrhoeae infections, but with evolving antibiotic resistance of this bacterium, new druggable molecules are needed to stem the tide of this impending public health crisis. Propolis has long been recognized for its antimicrobial properties, being composed of secondary metabolites with antibacterial potential. We herein describe the evaluation of a Jamaican multifloral propolis for antibacterial activity against N. gonorrhoeae. The bioassay-guided evaluation of the ethyl acetate extract yielded (+)-medicarpin (1), whose final structure was elucidated based on spectral analysis and comparison with the known metabolites. Compound (1) selectively inhibited N. gonorrhoeae with a minimum inhibitory concentration value of 0.25 mg/mL, showing an additive effect against N. gonorrhoeae when combined with vancomycin.
Collapse
Affiliation(s)
- Daniel Williams
- Department
of Biological and Biomedical Science, North
Carolina Central University, 1801 Fayetteville Street, Durham, North Carolina 27707, United States
| | - Dreyona Perry
- Department
of Biological and Biomedical Science, North
Carolina Central University, 1801 Fayetteville Street, Durham, North Carolina 27707, United States
| | - James Carraway
- Department
of Biological and Biomedical Science, North
Carolina Central University, 1801 Fayetteville Street, Durham, North Carolina 27707, United States
| | - Shaquwana Simpson
- Department
of Chemistry and Biochemistry, North Carolina
Central University, 1801 Fayetteville Street, Durham, North Carolina 27707, United States
| | - Pascaline Uwamariya
- Department
of Biology, University of North Carolina
at Chapel Hill, 120 South
Road Chapel Hill, North Carolina 27599, United States
| | - Omar E. Christian
- Department
of Chemistry and Biochemistry, North Carolina
Central University, 1801 Fayetteville Street, Durham, North Carolina 27707, United States
| |
Collapse
|
28
|
Nader RA, Mackieh R, Wehbe R, El Obeid D, Sabatier JM, Fajloun Z. Beehive Products as Antibacterial Agents: A Review. Antibiotics (Basel) 2021; 10:717. [PMID: 34203716 PMCID: PMC8232087 DOI: 10.3390/antibiotics10060717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 12/31/2022] Open
Abstract
Honeybees are one of the most marvelous and economically beneficial insects. As pollinators, they play a vital role in every aspect of the ecosystem. Beehive products have been used for thousands of years in many cultures for the treatment of various diseases. Their healing properties have been documented in many religious texts like the Noble Quran and the Holy Bible. Honey, bee venom, propolis, pollen and royal jelly all demonstrated a richness in their bioactive compounds which make them effective against a variety of bacterial strains. Furthermore, many studies showed that honey and bee venom work as powerful antibacterial agents against a wide range of bacteria including life-threatening bacteria. Several reports documented the biological activities of honeybee products but none of them emphasized on the antibacterial activity of all beehive products. Therefore, this review aims to highlight the antibacterial activity of honey, bee venom, propolis, pollen and royal jelly, that are produced by honeybees.
Collapse
Affiliation(s)
- Rita Abou Nader
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon; (R.A.N.); (R.M.)
| | - Rawan Mackieh
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon; (R.A.N.); (R.M.)
| | - Rim Wehbe
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Dany El Obeid
- Faculty of Agriculture & Veterinary Sciences, Lebanese University, Dekwaneh, Beirut 2832, Lebanon;
| | - Jean Marc Sabatier
- Faculté de Médecine Secteur Nord, 51, Université Aix-Marseille, Institut de Neuro-Physiopathologie, UMR 7051, Boulevard Pierre Dramard-CS80011, CEDEX 15, 13344 Marseille, France
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon; (R.A.N.); (R.M.)
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| |
Collapse
|
29
|
Antifungal and anti-biofilm activity of a new Spanish extract of propolis against Candida glabrata. BMC Complement Med Ther 2021; 21:147. [PMID: 34020643 PMCID: PMC8140450 DOI: 10.1186/s12906-021-03323-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/13/2021] [Indexed: 11/11/2022] Open
Abstract
Background Resistance to traditional antifungal agents is a considerable health problem nowadays, aggravated by infectious processes related to biofilm formation, usually on implantable devices. Therefore, it is necessary to identify new antimicrobial molecules, such as natural products, to develop new therapeutic strategies to prevent and eradicate these infections. One promising product is propolis, a natural resin produced by honeybees with substances from various botanical sources, beeswax and salivary enzymes. The aim of this work was to study the effect of a new Spanish ethanolic extract of propolis (SEEP) on growth, cell surface hydrophobicity, adherence and biofilm formation of Candida glabrata, a yeast capable of achieving high levels of resistance to available anti-fungal agents. Methods The antifungal activity of SEEP was evaluated in the planktonic cells of 12 clinical isolates of C. glabrata. The minimum inhibitory concentration (MIC) of propolis was determined by quantifying visible growth inhibition by serial plate dilutions. The minimum fungicide concentration (MFC) was evaluated as the lowest concentration of propolis that produced a 95% decrease in cfu/mL, and is presented as MFC50 and MFC90, which corresponds to the minimum concentrations at which 50 and 90% of the C. glabrata isolates were inhibited, respectively. Influence on cell surface hydrophobicity (CSH) was determined by the method of microbial adhesion to hydrocarbons (MATH). The propolis effect on adhesion and biofilm formation was determined in microtiter plates by measurement of optical density (OD) and metabolic activity (XTT-assay) in the presence of sub-MIC concentrations of SEEP. Results SEEP had antifungal capacity against C. glabrata isolates, with a MIC50 of 0.2% (v/v) and an MFC50 of 0.4%, even in azole-resistant strains. SEEP did not have a clear effect on surface hydrophobicity and adhesion, but an inhibitory effect on biofilm formation was observed at subinhibitory concentrations (0.1 and 0.05%) with a significant decrease in biofilm metabolism. Conclusions The novel Spanish ethanolic extract of propolis shows antifungal activity against C. glabrata, and decreases biofilm formation. These results suggest its possible use in the control of fungal infections associated with biofilms.
Collapse
|
30
|
Paluch E, Szperlik J, Lamch Ł, Wilk KA, Obłąk E. Biofilm eradication and antifungal mechanism of action against Candida albicans of cationic dicephalic surfactants with a labile linker. Sci Rep 2021; 11:8896. [PMID: 33903615 PMCID: PMC8076202 DOI: 10.1038/s41598-021-88244-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/07/2021] [Indexed: 12/01/2022] Open
Abstract
Our research aims to expand the knowledge on relationships between the structure of cationic dicephalic surfactants—N,N-bis[3,3_-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3_-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9H19, n-C11H23, n-C13H27, n-C15H31)—and their antifungal mechanism of action on Candida albicans. The mentioned groups of amphiphilic substances are characterized by the presence of a weak, hydrochloride cationic center readily undergoing deprotonation, as well as a stable, strong quaternary ammonium group and alkyl chains capable of strong interactions with fungal cells. Strong fungicidal properties and the role in creation and eradication of biofilm of those compounds were discussed in our earlier works, yet their mechanism of action remained unclear. It was shown that investigated surfactants induce strong oxidative stress and cause increase in cell membrane permeability without compromising its continuity, as indicated by increased potassium ion (K+) leakage. Thus experiments carried out on the investigated opportunistic pathogen indicate that the mechanism of action of the researched surfactants is different than in the case of the majority of known surfactants. Results presented in this paper significantly broaden the understanding on multifunctional cationic surfactants and their mechanism of action, as well as suggest their possible future applications as surface coating antiadhesives, fungicides and antibiofilm agents in medicine or industry.
Collapse
Affiliation(s)
- Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376, Wrocław, Poland.
| | - Jakub Szperlik
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Ewa Obłąk
- Department Physicochemistry of Microorganisms, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| |
Collapse
|
31
|
Multifunctional cationic surfactants with a labile amide linker as efficient antifungal agents-mechanisms of action. Appl Microbiol Biotechnol 2021; 105:1237-1251. [PMID: 33427932 DOI: 10.1007/s00253-020-11027-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/11/2020] [Accepted: 11/22/2020] [Indexed: 01/01/2023]
Abstract
Our research aimed to expand the knowledge of relationships between the structure of multifunctional cationic dicephalic surfactants with a labile linker-N,N-bis[3,3-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9H19, n-C11H23, n-C13H27, n-C15H31)-and their possible mechanism of action on fungal cells using the model organism Saccharomyces cerevisiae. General studies performed on surfactants suggest that in most cases, their main mechanism of action is based on perforation of the cell membranes and cell disruption. Experiments carried out in this work with cationic dicephalic surfactants seem to modify our understanding of this issue. It was found that the investigated compounds did not cause perforation of the cell membrane and could only interact with it, increasing its permeability. The surfactants tested can probably penetrate inside the cells, causing numerous morphological changes, and contribute to disorders in the lipid metabolism of the cell resulting in the formation of lipid droplet aggregates. This research also showed that the compounds cause severe oxidative stress within the cells studied, including increased production of superoxide anion radicals and mitochondrial oxidative stress. Dicephalic cationic surfactants due to their biodegradability do not accumulate in the environment and in the future may be used as effective antifungal compounds in industry as well as medicine, which will be environmentally friendly. KEY POINTS: • Dicephalic cationic surfactants do not induce disruption of the cell membrane. • Surfactants could infiltrate into the cells and cause accumulation of lipids. • Surfactants could cause acute oxidative stress in yeast cells. • Compounds present multimodal mechanism of action. Graphical abstract.
Collapse
|