1
|
He J, Wei L, Tan S, Liang B, Liu J, Lu L, Wang T, Wang J, Huang Y, Chen Z, Li H, Zhang L, Zhou Z, Cao Y, Ye X, Yang Z, Xian S, Wang L. Macrophage RAGE deficiency prevents myocardial fibrosis by repressing autophagy-mediated macrophage alternative activation. FASEB J 2023; 37:e23259. [PMID: 37855749 DOI: 10.1096/fj.202300173rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
Myocardial fibrosis (MF) is the characteristic pathological feature of various cardiovascular diseases that lead to heart failure (HF) or even fatal outcomes. Alternatively, activated macrophages are involved in the development of fibrosis and tissue remodeling. Although the receptor for advanced glycation end products (RAGE) is involved in MF, its potential role in regulating macrophage function in cardiac fibrosis has not been fully investigated. We aimed to determine the role of macrophage RAGE in transverse aortic constriction (TAC)-induced MF. In this study, we found that RAGE expression was markedly increased in the infiltrated alternatively activated macrophages within mice hearts after TAC. RAGE knockout mice showed less infiltration of alternatively activated macrophages and attenuated cardiac hypertrophy and fibrosis compared to the wild-type mice. Our data suggest that mice with macrophage-specific genetic deletion of RAGE were protected from interstitial fibrosis and cardiac dysfunction when subjected to pressure overload, which led to a decreased proportion of alternatively activated macrophages in heart tissues. Our in vitro experiments demonstrated that RAGE deficiency inhibited the differentiation into alternatively activated macrophages by suppressing autophagy activation. In the co-culture system, in vitro polarization of RAW264.7 macrophages toward an alternatively activated phenotype stimulated the expression of α-smooth muscle actin and collagen in cardiac fibroblasts. However, the knockdown of RAGE and inhibition of autophagy in macrophages showed reduced fibroblast-to-myofibroblast transition (FMT). Collectively, our results suggest that RAGE plays an important role in the recruitment and activation of alternatively activated macrophages by regulating autophagy, which contributes to MF. Thus, blockage of RAGE signaling may be an attractive therapeutic target for the treatment of hypertensive heart disease.
Collapse
Affiliation(s)
- Jiaqi He
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Lan Wei
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Shengan Tan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Birong Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Jing Liu
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Lu Lu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Ting Wang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Yusheng Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Zixin Chen
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Huan Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Lu Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Zheng Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong Cao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xiaohan Ye
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqi Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Shaoxiang Xian
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Lingjun Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Zhu W, Xu M, Zhu M, Song Y, Zhang J, Zheng C. Cuyun Recipe ameliorates pregnancy loss by regulating macrophage polarization and hypercoagulable state during the peri-implantation period in an ovarian hyperstimulation mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154974. [PMID: 37523838 DOI: 10.1016/j.phymed.2023.154974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/09/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND The Chinese herbal prescription Cuyun Recipe (CYR) has been widely used to treat clinical infertility and has shown good efficacy. Animal experiments have shown that CYR can promote implantation in mice, however, the exact mechanism underlying the implantation has not been elucidated. PURPOSE To investigate the effect and mechanism of CYR on regulating macrophage polarization and hypercoagulability during the peri-implantation period in mice with ovarian hyperstimulation. METHODS An ovarian hyperstimulation mouse model was developed, followed by treatment with CYR. Mice were sacrificed on day (D)4.5, D6, or D8 of gestation. The number of implantation sites, the pathological changes of the uterus and ovaries were assessed. The polarization of monocytes/macrophages in the spleen and endometrium, the expression and localization of cytokines were further detected. Furthermore, analyses of hypercoagulable state of the blood were also performed. RESULTS Treatment with CYR increased the average number of implantation sites, promoted angiogenesis in endometrial, and regulated monocytes/macrophages and the cytokine levels. Moreover, CYR downregulated the overexpression of D-dimer and fgl2 after ovarian hyperstimulation. CONCLUSION CYR facilitates embryo implantation by alleviating ovarian hyperstimulation, promoting endometrial decidualization and angiogenesis, regulating macrophage polarization, and reversing the hypercoagulable state of the blood.
Collapse
Affiliation(s)
- Wenxin Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Menghao Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Mengdi Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jinmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Cuihong Zheng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
3
|
Liu N, Li D, Liu D, Liu Y, Lei J. FOSL2 participates in renal fibrosis via SGK1-mediated epithelial-mesenchymal transition of proximal tubular epithelial cells. J Transl Int Med 2023; 11:294-308. [PMID: 37662889 PMCID: PMC10474887 DOI: 10.2478/jtim-2023-0105] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Background Fos-related antigen 2 (FOSL2) plays a facilitative role in fibrotic disease; however, its role in renal fibrosis remains unclear. This study aimed to clarify the role and underlying mechanisms of FOSL2 in renal fibrosis. Methods Upregulated genes in unilateral ureteral obstruction (UUO)-injured kidneys were screened in Gene Expression Omnibus (GEO) databases, and overlapping genes were identified using Venn diagram software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for these genes. The UUO-induced mouse model and transforming growth factor-β1 (TGF-β1)-induced cell model were used for the in vivo and in vitro studies. Results A total of 43 commonly upregulated genes were identified. GO and KEGG pathway analyses indicated that FOSL2 may be involved in fibrosis. Furthermore, FOSL2 was confirmed to be upregulated in UUO-injured kidneys and TGF-β1-induced cells. Knockdown of FOSL2 ameliorated interstitial fibrosis, extracellular matrix deposition, and epithelial-mesenchymal transition via the downregulation of fibronectin, α-smooth muscle actin (α-SMA), collagen type I (Col1a1 and Col1a2), and Col5a1 and upregulation of E-cadherin. Bioinformatics analysis revealed that serum/glucocorticoid regulated kinase 1 (SGK1) may be regulated by FOSL2 and involved in renal fibrosis. Further experiments confirmed that TGF-β1 enhanced SGK1 expression and transcription, which were reversed by FOSL2 silencing. Moreover, FOSL2 was bound to the SGK1 promoter, and SGK1 overexpression reversed the effects of FOSL2 silencing in TGF-β1-induced cells. Conclusion FOSL2 plays an essential role in promoting renal fibrosis in an SGK1-dependent manner, and targeting the FOSL2/SGK1 signaling axis may offer a potential strategy for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Naiquan Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang110022, Liaoning Province, China
| | - Dongyang Li
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang110022, Liaoning Province, China
| | - Dajun Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang110022, Liaoning Province, China
| | - Ying Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang110022, Liaoning Province, China
| | - Jing Lei
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang110022, Liaoning Province, China
| |
Collapse
|
4
|
Hu X, Yang M, Li X, Gong Z, Duan J. Myo-Inositol Attenuates Renal Interstitial Fibrosis in Obstructive Nephropathy by Inhibiting PI3K/AKT Activation. J Med Food 2023. [PMID: 37192490 DOI: 10.1089/jmf.2022.k.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Emerging evidence suggests that myo-inositol (MI) has a critical role in reducing renal inflammatory processes and improving podocyte function and preventing diabetes-related renal damage. We aimed to explore the function and underlying workings of MI in renal interstitial fibrosis (RIF). Based on a mouse model, we explored the effect of MI in unilateral ureteral obstruction (UUO) and in transforming growth factor-β1 (TGF-β1)-treated HK-2 cells. Pathological changes of the kidney tissues were examined following staining of the tissues with hematoxylin, eosin, and Masson's trichrome. The mRNA quantities of fibrosis markers, fibronectin, α-smooth muscle actin (α-SMA), and collagen I, were analyzed by means of real-time polymerase chain reaction, whereas those of protein levels were assessed with Western blotting. We also determined the expression of collagen I by immunofluorescence, and the levels of phosphorylated phosphotidylinositol-3-kinase and protein kinase B (PI3K/AKT) by Western blot. In vivo, histopathological examination in the UUO mice revealed renal tubular epithelial cell necrosis, inflammatory cell infiltration, and RIF. UUO mice showed higher expression levels of collagen I, fibronectin, α-SMA, pPI3K, and pAKT compared with sham-operated mice. However, MI treatment diminished the pathological alterations of RIF in UUO mice and downregulated the expression of fibrosis markers and phosphorylated PI3K/AKT. In vitro, TGF-β1 positively influenced the propagation and differentiation of HK-2 cells and upregulated the levels of α-SMA, fibronectin, collagen I, pPI3K, and pAKT, but these became significantly reversed by MI treatment. In conclusion, MI ameliorates RIF, possibly by negatively regulating TGF-β1-induced epithelial transdifferentiation and PI3K/AKT activation.
Collapse
Affiliation(s)
- Xiaofang Hu
- Department of Clinical Medicine, School of Medicine, Hunan Normal University, Changsha, China
| | - Ming Yang
- Department of Nephrology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Xiangyi Li
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jianxiu Duan
- Department of Clinical Trial Research Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, China
| |
Collapse
|
5
|
Tao R, Han M, Yuan W, Xiao F, Huang J, Wang X, Luo X, Yan W, Wan X, Ning Q. Fibrinogen-like protein 2 promotes proinflammatory macrophage polarization and mitochondrial dysfunction in liver fibrosis. Int Immunopharmacol 2023; 117:109631. [PMID: 36878044 DOI: 10.1016/j.intimp.2022.109631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 03/07/2023]
Abstract
Fibrinogen-like protein 2 (Fgl2) robustly activates macrophages in response to infection or inflammatory cytokine challenge and is markedly increased in the liver tissues of liver cirrhosis patientswithhepatitisCvirus(HCV) infection. However, the molecular mechanism underlying the involvement of Fgl2 in macrophage function in the pathogenesis of liver fibrosis remains unclear. In this study, we demonstrated that increased hepatic Fgl2 expression was associated with hepatic inflammation and high-grade liver fibrosis in patients with hepatitis B virus (HBV) infection and experimental models. Genetic ablation of Fgl2 alleviated hepatic inflammation and fibrosis progression. Fgl2 promoted M1 macrophage polarization and increased the production of proinflammatory cytokines that contribute to inflammatory damage and fibrosis development. In addition, Fgl2 augmented mitochondrial reactive oxygen species (ROS) production and modulated mitochondrial functions. Fgl2-mediated mtROS were involved in macrophage activation and polarization. We further demonstrated that in macrophages, Fgl2 localized to not only the cytosol but also mitochondria, where it bound to cytosolic and mitochondrial heat shock protein 90 (HSP90). Mechanistically, Fgl2 interacted with HSP90, hindering the interaction of HSP90 with its target protein Akt, significantly inhibiting Akt phosphorylation and downstream FoxO1 phosphorylation. These results reveal different layers of regulation of Fgl2 that are necessary for inflammatory damage and mitochondrial dysfunction in M1-polarized macrophages. Therefore, Fgl2 may be a potent target in liver fibrosis treatment.
Collapse
Affiliation(s)
- Ran Tao
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiwen Han
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Yuan
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang Xiao
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiaquan Huang
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaojing Wang
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiming Yan
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiaoyang Wan
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qin Ning
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Denicolò S, Nair V, Leierer J, Rudnicki M, Kretzler M, Mayer G, Ju W, Perco P. Assessment of Fibrinogen-like 2 (FGL2) in Human Chronic Kidney Disease through Transcriptomics Data Analysis. Biomolecules 2022; 13:89. [PMID: 36671474 PMCID: PMC9855364 DOI: 10.3390/biom13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Fibrinogen-like 2 (FGL2) was recently found to be associated with fibrosis in a mouse model of kidney damage and was proposed as a potential therapeutic target in chronic kidney disease (CKD). We assessed the association of renal FGL2 mRNA expression with the disease outcome in two independent CKD cohorts (NEPTUNE and Innsbruck CKD cohort) using Kaplan Meier survival analysis. The regulation of FGL2 in kidney biopsies of CKD patients as compared to healthy controls was further assessed in 13 human CKD transcriptomics datasets. The FGL2 protein expression in human renal tissue sections was determined via immunohistochemistry. The regulators of FGL2 mRNA expression in renal tissue were identified in the co-expression and upstream regulator analysis of FGL2-positive renal cells via the use of single-cell RNA sequencing data from the kidney precision medicine project (KPMP). Higher renal FGL2 mRNA expression was positively associated with kidney fibrosis and negatively associated with eGFR. Renal FGL2 mRNA expression was upregulated in CKD as compared with healthy controls and associated with CKD progression in the Innsbruck CKD cohort (p-value = 0.0036) and NEPTUNE cohort (p-value = 0.0048). The highest abundance of FGL2 protein in renal tissue was detected in the thick ascending limb of the loop of Henle and macula densa, proximal tubular cells, as well as in glomerular endothelial cells. The upstream regulator analysis identified TNF, IL1B, IFNG, NFKB1, and SP1 as factors potentially inducing FGL2-co-expressed genes, whereas factors counterbalancing FGL2-co-expressed genes included GLI1, HNF1B, or PPARGC1A. In conclusion, renal FGL2 mRNA expression is elevated in human CKD, and higher FGL2 levels are associated with fibrosis and worse outcomes.
Collapse
Affiliation(s)
- Sara Denicolò
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Viji Nair
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Johannes Leierer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Michael Rudnicki
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Wenjun Ju
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul Perco
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Lim SH, Snider J, Birimberg‐Schwartz L, Ip W, Serralha JC, Botelho HM, Lopes‐Pacheco M, Pinto MC, Moutaoufik MT, Zilocchi M, Laselva O, Esmaeili M, Kotlyar M, Lyakisheva A, Tang P, López Vázquez L, Akula I, Aboualizadeh F, Wong V, Grozavu I, Opacak‐Bernardi T, Yao Z, Mendoza M, Babu M, Jurisica I, Gonska T, Bear CE, Amaral MD, Stagljar I. CFTR interactome mapping using the mammalian membrane two-hybrid high-throughput screening system. Mol Syst Biol 2022; 18:e10629. [PMID: 35156780 PMCID: PMC8842165 DOI: 10.15252/msb.202110629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride and bicarbonate channel in secretory epithelia with a critical role in maintaining fluid homeostasis. Mutations in CFTR are associated with Cystic Fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasians. While remarkable treatment advances have been made recently in the form of modulator drugs directly rescuing CFTR dysfunction, there is still considerable scope for improvement of therapeutic effectiveness. Here, we report the application of a high-throughput screening variant of the Mammalian Membrane Two-Hybrid (MaMTH-HTS) to map the protein-protein interactions of wild-type (wt) and mutant CFTR (F508del), in an effort to better understand CF cellular effects and identify new drug targets for patient-specific treatments. Combined with functional validation in multiple disease models, we have uncovered candidate proteins with potential roles in CFTR function/CF pathophysiology, including Fibrinogen Like 2 (FGL2), which we demonstrate in patient-derived intestinal organoids has a significant effect on CFTR functional expression.
Collapse
Affiliation(s)
- Sang Hyun Lim
- Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of BiochemistryUniversity of TorontoTorontoONCanada
| | - Jamie Snider
- Donnelly CentreUniversity of TorontoTorontoONCanada
| | - Liron Birimberg‐Schwartz
- Programme in Translational MedicineThe Hospital for Sick ChildrenTorontoONCanada
- Division of Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of TorontoTorontoONCanada
| | - Wan Ip
- Programme in Translational MedicineThe Hospital for Sick ChildrenTorontoONCanada
| | - Joana C Serralha
- Faculty of SciencesBioISI‐Biosystems and Integrative Sciences InstituteUniversity of LisboaLisboaPortugal
- Faculty of Life Sciences and MedicineSchool of Bioscience EducationKing’s College LondonLondonUK
| | - Hugo M Botelho
- Faculty of SciencesBioISI‐Biosystems and Integrative Sciences InstituteUniversity of LisboaLisboaPortugal
| | - Miquéias Lopes‐Pacheco
- Faculty of SciencesBioISI‐Biosystems and Integrative Sciences InstituteUniversity of LisboaLisboaPortugal
| | - Madalena C Pinto
- Faculty of SciencesBioISI‐Biosystems and Integrative Sciences InstituteUniversity of LisboaLisboaPortugal
| | - Mohamed Taha Moutaoufik
- Department of Biochemistry, Research and Innovation CentreUniversity of ReginaReginaSKCanada
| | - Mara Zilocchi
- Department of Biochemistry, Research and Innovation CentreUniversity of ReginaReginaSKCanada
| | - Onofrio Laselva
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| | - Mohsen Esmaeili
- Program in Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoONCanada
| | - Max Kotlyar
- Osteoarthritis Research ProgramDivision of Orthopedic SurgerySchroeder Arthritis InstituteUniversity Health NetworkTorontoONCanada
- Data Science Discovery Centre for Chronic DiseasesKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | | | | | | | - Indira Akula
- Donnelly CentreUniversity of TorontoTorontoONCanada
| | | | | | - Ingrid Grozavu
- Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of BiochemistryUniversity of TorontoTorontoONCanada
| | | | - Zhong Yao
- Donnelly CentreUniversity of TorontoTorontoONCanada
| | - Meg Mendoza
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation CentreUniversity of ReginaReginaSKCanada
| | - Igor Jurisica
- Osteoarthritis Research ProgramDivision of Orthopedic SurgerySchroeder Arthritis InstituteUniversity Health NetworkTorontoONCanada
- Data Science Discovery Centre for Chronic DiseasesKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Departments of Medical Biophysics and Computer ScienceUniversity of TorontoTorontoONCanada
- Institute of NeuroimmunologySlovak Academy of SciencesBratislavaSlovakia
| | - Tanja Gonska
- Programme in Translational MedicineThe Hospital for Sick ChildrenTorontoONCanada
- Division of Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of TorontoTorontoONCanada
| | - Christine E Bear
- Department of BiochemistryUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| | - Margarida D Amaral
- Faculty of SciencesBioISI‐Biosystems and Integrative Sciences InstituteUniversity of LisboaLisboaPortugal
| | - Igor Stagljar
- Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of BiochemistryUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- Mediterranean Institute for Life SciencesSplitCroatia
- School of MedicineUniversity of SplitSplitCroatia
| |
Collapse
|
8
|
Wang X, Chen J, Xu J, Xie J, Harris DCH, Zheng G. The Role of Macrophages in Kidney Fibrosis. Front Physiol 2021; 12:705838. [PMID: 34421643 PMCID: PMC8378534 DOI: 10.3389/fphys.2021.705838] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases. After kidney injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and tubulointerstitium. They are activated and differentiated on site into pro-inflammatory M1 macrophages, which initiate Th1-type adaptive immune responses and damage normal tissues. In contrast, anti-inflammatory M2 macrophages induce Th2-type immune responses, secrete large amounts of TGF-β and anti-inflammatory cytokines, transform into αSMA+ myofibroblasts in injured kidney, inhibit immune responses, and promote wound healing and tissue fibrosis. Previous studies on the role of macrophages in kidney fibrosis were mainly focused on inflammation-associated injury and injury repair. Apart from macrophage-secreted profibrotic cytokines, such as TGF-β, evidence for a direct contribution of macrophages to kidney fibrosis is lacking. However, under inflammatory conditions, Wnt ligands are derived mainly from macrophages and Wnt signaling is central in the network of multiple profibrotic pathways. Largely underinvestigated are the direct contribution of macrophages to profibrotic signaling pathways, macrophage phenotypic heterogeneity and functional diversity in relation to kidney fibrosis, and on their cross-talk with other cells in profibrotic signaling networks that cause fibrosis. Here we aim to provide an overview on the roles of macrophage phenotypic and functional diversity in their contribution to pro-fibrotic signaling pathways, and on the therapeutic potential of targeting macrophages for the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Xiaoling Wang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
- Clinical Laboratory, Shanxi Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Jianwei Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Jun Xu
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - David C. H. Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Guoping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Yu J, Li J, Shen J, Du F, Wu X, Li M, Chen Y, Cho CH, Li X, Xiao Z, Zhao Y. The role of Fibrinogen-like proteins in Cancer. Int J Biol Sci 2021; 17:1079-1087. [PMID: 33867830 PMCID: PMC8040309 DOI: 10.7150/ijbs.56748] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrinogen-associated protein (FREP) family is a family of proteins with a fibrin domain at the carboxyl terminus. Recent investigations illustrated that two members of FREP family, fibrinogen-like protein-1 (FGL1) and fibrinogen-like protein-2 (FGL2), play crucial roles in cancer by regulating the proliferation, invasion, and migration of tumor cells, or regulating the functions of immune cells in tumor microenvironment. Meanwhile, they are potential targets for medical intervention of tumor development. In this review, we discussed the structure, and the roles of FGL1 and FGL2 in tumors, especially the roles in regulating immune cell functions.
Collapse
Affiliation(s)
- Jing Yu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|