1
|
Lefebvre C, Pellizzari S, Bhat V, Jurcic K, Litchfield DW, Allan AL. Involvement of the AKT Pathway in Resistance to Erlotinib and Cabozantinib in Triple-Negative Breast Cancer Cell Lines. Biomedicines 2023; 11:2406. [PMID: 37760847 PMCID: PMC10525382 DOI: 10.3390/biomedicines11092406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Resistance to protein tyrosine kinase inhibitors (TKIs) presents a significant challenge in therapeutic target development for cancers such as triple-negative breast cancer (TNBC), where conventional therapies are ineffective at combatting systemic disease. Due to increased expression, the receptor tyrosine kinases EGFR (epidermal growth factor receptor) and c-Met are potential targets for treatment. However, targeted anti-EGFR and anti-c-Met therapies have faced mixed results in clinical trials due to acquired resistance. We hypothesize that adaptive responses in regulatory kinase networks within the EGFR and c-Met signaling axes contribute to the development of acquired erlotinib and cabozantinib resistance. To test this, we developed two separate models for cabozantinib and erlotinib resistance using the MDA-MB-231 and MDA-MB-468 cell lines, respectively. We observed that erlotinib- or cabozantinib-resistant cell lines demonstrate enhanced cell proliferation, migration, invasion, and activation of EGFR or c-Met downstream signaling (respectively). Using a SILAC (Stable Isotope Labeling of Amino acids in Cell Culture)-labeled quantitative mass spectrometry proteomics approach, we assessed the effects of erlotinib or cabozantinib resistance on the phosphoproteome, proteome, and kinome. Using this integrated proteomics approach, we identified several potential kinase mediators of cabozantinib resistance and confirmed the contribution of AKT1 to erlotinib resistance in TNBC-resistant cell lines.
Collapse
Affiliation(s)
- Cory Lefebvre
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Sierra Pellizzari
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Vasudeva Bhat
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Kristina Jurcic
- Department of Biochemistry, Western University, London, ON N6A 3K7, Canada; (K.J.); (D.W.L.)
| | - David W. Litchfield
- Department of Biochemistry, Western University, London, ON N6A 3K7, Canada; (K.J.); (D.W.L.)
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
| | - Alison L. Allan
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada; (C.L.); (S.P.); (V.B.)
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 5W9, Canada
| |
Collapse
|
2
|
Ji Z, Shen J, Lan Y, Yi Q, Liu H. Targeting signaling pathways in osteosarcoma: Mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e308. [PMID: 37441462 PMCID: PMC10333890 DOI: 10.1002/mco2.308] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
Osteosarcoma (OS) is a highly prevalent bone malignancy among adolescents, accounting for 40% of all primary malignant bone tumors. Neoadjuvant chemotherapy combined with limb-preserving surgery has effectively reduced patient disability and mortality, but pulmonary metastases and OS cells' resistance to chemotherapeutic agents are pressing challenges in the clinical management of OS. There has been an urgent need to identify new biomarkers for OS to develop specific targeted therapies. Recently, the continued advancements in genomic analysis have contributed to the identification of clinically significant molecular biomarkers for diagnosing OS, acting as therapeutic targets, and predicting prognosis. Additionally, the contemporary molecular classifications have revealed that the signaling pathways, including Wnt/β-catenin, PI3K/AKT/mTOR, JAK/STAT3, Hippo, Notch, PD-1/PD-L1, MAPK, and NF-κB, have an integral role in OS onset, progression, metastasis, and treatment response. These molecular classifications and biological markers have created new avenues for more accurate OS diagnosis and relevant treatment. We herein present a review of the recent findings for the modulatory role of signaling pathways as possible biological markers and treatment targets for OS. This review also discusses current OS therapeutic approaches, including signaling pathway-based therapies developed over the past decade. Additionally, the review covers the signaling targets involved in the curative effects of traditional Chinese medicines in the context of expression regulation of relevant genes and proteins through the signaling pathways to inhibit OS cell growth. These findings are expected to provide directions for integrating genomic, molecular, and clinical profiles to enhance OS diagnosis and treatment.
Collapse
Affiliation(s)
- Ziyu Ji
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Jianlin Shen
- Department of OrthopaedicsAffiliated Hospital of Putian UniversityPutianFujianChina
| | - Yujian Lan
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Qian Yi
- Department of PhysiologySchool of Basic Medical ScienceSouthwest Medical UniversityLuzhouSichuanChina
| | - Huan Liu
- Department of OrthopaedicsThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
3
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
4
|
Toson B, Fortes IS, Roesler R, Andrade SF. Targeting Akt/PKB in pediatric tumors: A review from preclinical to clinical trials. Pharmacol Res 2022; 183:106403. [PMID: 35987481 DOI: 10.1016/j.phrs.2022.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The serine/threonine kinase Akt is a major player in the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and its modulation impacts multiple cellular processes such as growth, proliferation, and survival. Several abnormalities in this pathway have been documented over the years, and these alterations were shown to have great implications in tumorigenesis and resistance to chemotherapy. Thus, multiple Akt inhibitors have been developed and tested in adult tumors, and some of them are currently undergoing phase I, II, and III clinical trials for distinct cancers that arise during adulthood. Despite that, the impact of these inhibitors is still not fully understood in pediatric tumors, and Akt-specific targeting seems to be a promising approach to treat children affected by cancers. This review summarizes recent available evidence of Akt inhibitors in pediatric cancers, from both preclinical and clinical studies. In short, we demonstrate the impact that Akt inhibition provides in tumorigenesis, and we suggest targeting the PI3K/Akt/mTOR signaling pathway, alone or in combination with other inhibitors, is a feasible tool to achieve better outcomes in pediatric tumors.
Collapse
Affiliation(s)
- Bruno Toson
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
5
|
Feng Z, Ou Y, Hao L. The roles of glycolysis in osteosarcoma. Front Pharmacol 2022; 13:950886. [PMID: 36059961 PMCID: PMC9428632 DOI: 10.3389/fphar.2022.950886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic reprogramming is of great significance in the progression of various cancers and is critical for cancer progression, diagnosis, and treatment. Cellular metabolic pathways mainly include glycolysis, fat metabolism, glutamine decomposition, and oxidative phosphorylation. In cancer cells, reprogramming metabolic pathways is used to meet the massive energy requirement for tumorigenesis and development. Metabolisms are also altered in malignant osteosarcoma (OS) cells. Among reprogrammed metabolisms, alterations in aerobic glycolysis are key to the massive biosynthesis and energy demands of OS cells to sustain their growth and metastasis. Numerous studies have demonstrated that compared to normal cells, glycolysis in OS cells under aerobic conditions is substantially enhanced to promote malignant behaviors such as proliferation, invasion, metastasis, and drug resistance of OS. Glycolysis in OS is closely related to various oncogenes and tumor suppressor genes, and numerous signaling pathways have been reported to be involved in the regulation of glycolysis. In recent years, a vast number of inhibitors and natural products have been discovered to inhibit OS progression by targeting glycolysis-related proteins. These potential inhibitors and natural products may be ideal candidates for the treatment of osteosarcoma following hundreds of preclinical and clinical trials. In this article, we explore key pathways, glycolysis enzymes, non-coding RNAs, inhibitors, and natural products regulating aerobic glycolysis in OS cells to gain a deeper understanding of the relationship between glycolysis and the progression of OS and discover novel therapeutic approaches targeting glycolytic metabolism in OS.
Collapse
|
6
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Ji D, Fleig A, Horgen FD, Feng ZP, Sun HS. Modulators of TRPM7 and its potential as a drug target for brain tumours. Cell Calcium 2021; 101:102521. [PMID: 34953296 DOI: 10.1016/j.ceca.2021.102521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
TRPM7 is a non-selective divalent cation channel with an alpha-kinase domain. Corresponding with its broad expression, TRPM7 has a role in a wide range of cell functions, including proliferation, migration, and survival. Growing evidence shows that TRPM7 is also aberrantly expressed in various cancers, including brain cancers. Because ion channels have widespread tissue distribution and result in extensive physiological consequences when dysfunctional, these proteins can be compelling drug targets. In fact, ion channels comprise the third-largest drug target type, following enzymes and receptors. Literature has shown that suppression of TRPM7 results in inhibition of migration, invasion, and proliferation in several human brain tumours. Therefore, TRPM7 presents a potential target for therapeutic brain tumour interventions. This article reviews current literature on TRPM7 as a potential drug target in the context of brain tumours and provides an overview of various selective and non-selective modulators of the channel relevant to pharmacology, oncology, and ion channel function.
Collapse
Affiliation(s)
- Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, Hawaii 96813, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2.
| |
Collapse
|
8
|
Anti-Cancer Properties of Coix Seed Oil against HT-29 Colon Cells through Regulation of the PI3K/AKT Signaling Pathway. Foods 2021; 10:foods10112833. [PMID: 34829119 PMCID: PMC8621869 DOI: 10.3390/foods10112833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
This study aims to observe the effects of coix seed oil (CSO) on HT-29 cells and investigate its possible regulation mechanism of the PI3K/Akt signaling pathway. Fatty acid analysis showed that coix seed oil mainly contains oleic acid (50.54%), linoleic acid (33.76%), palmitic acid (11.74%), and stearic acid (2.45%). Fourier transform infrared results found that the fatty acid functional groups present in the oil matched well with the vegetable oil band. The results from CCK-8 assays showed that CSO dose-dependently and time-dependently inhibited the viability of HT-29 cells in vitro. CSO inhibited cell viability, with IC50 values of 5.30 mg/mL for HT-29 obtained after 24 h treatment. Morphological changes were observed by apoptotic body/cell nucleus DNA (Hoechst 33258) staining using inverted and fluorescence microscopy. Moreover, flow cytometry analysis was used to evaluate the cell cycle and cell apoptosis. It showed that CSO induced cell apoptosis and cycle arrest in the G2 phase. Quantitative real-time PCR and Western blotting revealed that CSO induced cell apoptosis by downregulating the PI3K/AKT signaling pathway. Additionally, CSO can cause apoptosis in cancer cells by activating caspase-3, up-regulating Bax, and down-regulating Bcl-2. In conclusion, the results revealed that CSO induced G2 arrest and apoptosis of HT-29 cells by regulating the PI3K/AKT signaling pathway.
Collapse
|