1
|
Araújo DC, Simões R, Sabino ADP, Oliveira AND, Oliveira CMD, Veloso AA, Gomes KB. Predicting doxorubicin-induced cardiotoxicity in breast cancer: leveraging machine learning with synthetic data. Med Biol Eng Comput 2025; 63:1535-1550. [PMID: 39828884 DOI: 10.1007/s11517-025-03289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025]
Abstract
Doxorubicin (DOXO) is a primary treatment for breast cancer but can cause cardiotoxicity in over 25% of patients within the first year post-chemotherapy. Recognizing at-risk patients before DOXO initiation offers pathways for alternative treatments or early protective actions. We analyzed data from 78 Brazilian breast cancer patients, with 34.6% developing cardiotoxicity within a year of their final DOXO dose. To address the limited sample size, we utilized the DAS (Data Augmentation and Smoothing) method, creating 4892 synthetic samples that exhibited high statistics fidelity to the original data. By integrating routine blood biomarkers (C-Reactive protein, total cholesterol, LDL-c, HDL-c, hematocrit, and hemoglobin) and two clinical measures (weighted smoking status and body mass index), our model achieved an AUROC of 0.85±0.10, a sensitivity of 0.89, and a specificity of 0.69, positioning it as a potential screening instrument. Notably, DAS outperformed the established methods, Adaptive Synthetic Sampling (ADASYN), Synthetic Minority Over-Sampling Technique (SMOTE), and Synthetic Data Vault (SDV), underscoring its promise for medical synthetic data generation and pioneering a cardiotoxicity prediction model specifically for DOXO.
Collapse
Affiliation(s)
- Daniella Castro Araújo
- Huna, São Paulo, SP, Brazil.
- Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Ricardo Simões
- Faculdade de Farmàcia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Faculdade Ciências Médicas de Minas Gerais, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Adriano Alonso Veloso
- Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karina Braga Gomes
- Faculdade de Farmàcia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Poovorawan N, Susiriwatananont T, Teerapakpinyo C, Chariyavilaskul P, Sitthideatphaiboon P, Jarutasnangkul L, Tumkosit M, Chattranukulchai P, Theerasuwipakorn N, Aporntewan C, Shuangshoti S, Manasnayakorn S, Vinayanuwattikun C, Vorasettakarnkij Y, Sriuranpong V. Long-term impact of anthracycline in early-stage breast cancer, bridging of MiRNAs profiler for early cardiotoxicity. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2025; 11:39. [PMID: 40270054 PMCID: PMC12016148 DOI: 10.1186/s40959-025-00337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Anthracyclines are essential in early breast cancer chemotherapy but pose long-term cardiotoxicity risks. OBJECTIVES This study aims to investigate the long-term incidence of cancer therapy-related cardiac dysfunction (CTRCD), bridging with the miRNAs profiler representing acute cardiac injury. METHODS We conducted a prospective cohort including stage I-III breast cancer patients who received anthracycline between 2007 and 2012. Echocardiography was performed before and 12 weeks after anthracycline administration. The miRNAs profiler was conducted by NanoString and RT-PCR. Long-term cardiac magnetic resonance imaging (CMR) was evaluated in 24.2% of asymptomatic participants. RESULTS At a median follow-up of 11 [IQR 6-12] years, 194 patients who completed follow-up echocardiography after anthracycline were included in the analysis. The median age at diagnosis was 50 [26-72] years. An early LVEF decline of ≥ 10% was found in 32.9% of participants. The cumulative equivalent dose of doxorubicin was 223.2 ± 21.6 mg/m2. At the time of censoring, sixty-four participants (32.9%) died, 70% from breast cancer. Nine participants (4.6%) reported cardiovascular events compatible with the CTRCD definition. Forty-seven participants (24.2%) underwent long-term cardiac evaluation. The miRNAs profiler and RT-PCR at different time points, 3 weeks and 6 weeks, respectively, revealed significantly diverse expressions of miR-1-3p and miR-16-5p in participants with and without an early LVEF decline of ≥ 10%. Despite cardiac injury demonstrated by dynamic miR-1-3p and miR-16-5p, CMR parameters revealed no significant differences. CONCLUSIONS Our study demonstrates a very low incidence of long-term symptomatic CTRCD. The diverse expression patterns of miR-16-5p and miR-1-3p at different time points also provide valuable biological insights. Within-normal results of an exact and comprehensive CMR, in asymptomatic and any LVEF change participants, indicate the long-term safety of limited-dose anthracycline-containing use.
Collapse
Affiliation(s)
- Nattaya Poovorawan
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Thiti Susiriwatananont
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chinachote Teerapakpinyo
- Chula GenePRO Center, Research Affairs, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Pajaree Chariyavilaskul
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Chulalongkorn University, Bangkok, Thailand
| | - Piyada Sitthideatphaiboon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Luxica Jarutasnangkul
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Monravee Tumkosit
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Pairoj Chattranukulchai
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nonthikorn Theerasuwipakorn
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chatchawit Aporntewan
- Department of Mathematics and Computer Sciences & Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Shanop Shuangshoti
- Chula GenePRO Center, Research Affairs, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sopark Manasnayakorn
- Department of Surgery, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chanida Vinayanuwattikun
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| | - Yongkasem Vorasettakarnkij
- Division of Hospital and Ambulatory Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| | - Virote Sriuranpong
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
3
|
Mohsenizadeh SA, Rajaeinejad M, Khoshfetrat M, Arefizadeh R, Mousavi SH, Mosaed R, Kazemi-Galougahi MH, Jalaeikhoo H, Faridfar A, Nikandish M, Alavi-Moghadam S, Arjmand B. Anthracycline-Induced Cardiomyopathy in Cancer Survivors: Management and Long-Term Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:179-199. [PMID: 38842787 DOI: 10.1007/5584_2024_804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Recent advancements in personalized treatments, such as anthracycline chemotherapy, coupled with timely diagnoses, have contributed to a decrease in cancer-specific mortality rates and an improvement in cancer prognosis. Anthracyclines, a potent class of antibiotics, are extensively used as anticancer medications to treat a broad spectrum of tumors. Despite these advancements, a considerable number of cancer survivors face increased risks of treatment complications, particularly the cardiotoxic effects of chemotherapeutic drugs like anthracyclines. These effects can range from subclinical manifestations to severe consequences such as irreversible heart failure and death, highlighting the need for effective management of chemotherapy side effects for improved cancer care outcomes. Given the lack of specific treatments, early detection of subclinical cardiac events post-anthracycline therapy and the implementation of preventive strategies are vital. An interdisciplinary approach involving cardiovascular teams is crucial for the prevention and efficient management of anthracycline-induced cardiotoxicity. Various factors, such as age, gender, duration of treatment, and comorbidities, should be considered significant risk factors for developing chemotherapy-related cardiotoxicity. Tools such as electrocardiography, echocardiography, nuclear imaging, magnetic resonance imaging, histopathologic evaluations, and serum biomarkers should be appropriately used for the early detection of anthracycline-related cardiotoxicity. Furthermore, understanding the underlying biological mechanisms is key to developing preventive measures and personalized treatment strategies to mitigate anthracycline-induced cardiotoxicity. Exploring specific cardiotoxic mechanisms and identifying genetic variations can offer fresh perspectives on innovative, personalized treatments. This chapter aims to discuss cardiomyopathy following anthracycline therapy, with a focus on molecular mechanisms, preventive strategies, and emerging treatments.
Collapse
Affiliation(s)
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mehran Khoshfetrat
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Arefizadeh
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Mousavi
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Moscoso I, Rodríguez-Mañero M, Cebro-Márquez M, Vilar-Sánchez ME, Serrano-Cruz V, Vidal-Abeijón I, Martínez-Monzonís MA, Mazón-Ramos P, Pedreira M, González-Juanatey JR, Lage R. Transforming Cardiotoxicity Detection in Cancer Therapies: The Promise of MicroRNAs as Precision Biomarkers. Int J Mol Sci 2024; 25:11910. [PMID: 39595980 PMCID: PMC11593668 DOI: 10.3390/ijms252211910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiotoxicity (CDTX) is a critical side effect of many cancer therapies, leading to increased morbidity and mortality if not addressed. Early detection of CDTX is essential, and while echocardiographic measures like global longitudinal strain offer promise in identifying early myocardial dysfunction, the search for reliable biomarkers continues. MicroRNAs (miRNAs) are emerging as important non-coding RNA molecules that regulate gene expression post-transcriptionally, influencing key biological processes such as the cell cycle, apoptosis, and stress responses. In cardiovascular diseases, miRNAs have demonstrated potential as biomarkers due to their stability in circulation and specific expression patterns that reflect pathological changes. Certain miRNAs have been linked to CDTX and hold promise for early detection, prognosis, and therapeutic targeting. These miRNAs not only assist in identifying early cardiac injury, but also offer opportunities for personalized interventions by modulating their expression to influence disease progression. As research advances, integrating miRNA profiling with traditional diagnostic methods could enhance the management of CDTX in cancer patients, paving the way for improved patient outcomes and more tailored therapeutic strategies. Further clinical studies are essential to validate the clinical utility of miRNAs in managing CDTX.
Collapse
Affiliation(s)
- Isabel Moscoso
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (M.E.V.-S.); (V.S.-C.); (I.V.-A.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Moisés Rodríguez-Mañero
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - María Cebro-Márquez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (M.E.V.-S.); (V.S.-C.); (I.V.-A.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Marta E. Vilar-Sánchez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (M.E.V.-S.); (V.S.-C.); (I.V.-A.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
| | - Valentina Serrano-Cruz
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (M.E.V.-S.); (V.S.-C.); (I.V.-A.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
| | - Iria Vidal-Abeijón
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (M.E.V.-S.); (V.S.-C.); (I.V.-A.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
| | - María Amparo Martínez-Monzonís
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Pilar Mazón-Ramos
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Milagros Pedreira
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José Ramón González-Juanatey
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Ricardo Lage
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (M.E.V.-S.); (V.S.-C.); (I.V.-A.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Kuang Z, Ge Y, Cao L, Wang X, Liu K, Wang J, Zhu X, Wu M, Li J. Precision Treatment of Anthracycline-Induced Cardiotoxicity: An Updated Review. Curr Treat Options Oncol 2024; 25:1038-1054. [PMID: 39066853 PMCID: PMC11329674 DOI: 10.1007/s11864-024-01238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Anthracycline (ANT)-induced cardiotoxicity (AIC) is a particularly prominent form of cancer therapy-related cardiovascular toxicity leading to the limitations of ANTs in clinical practice. Even though AIC has drawn particular attention, the best way to treat it is remaining unclear. Updates to AIC therapy have been made possible by recent developments in research on the underlying processes of AIC. We review the current molecular pathways leading to AIC: 1) oxidative stress (OS) including enzymatic-induced and other mechanisms; 2) topoisomerase; 3) inflammatory response; 4) cardiac progenitor cell damage; 5) epigenetic changes; 6) renin-angiotensin-aldosterone system (RAAS) dysregulation. And we systematically discuss current prevention and treatment strategies and novel pathogenesis-based therapies for AIC: 1) dose reduction and change; 2) altering drug delivery methods; 3) antioxidants, dexrezosen, statina, RAAS inhibitors, and hypoglycemic drugs; 4) miRNA, natural phytochemicals, mesenchymal stem cells, and cardiac progenitor cells. We also offer a fresh perspective on the management of AIC by outlining the current dilemmas and challenges associated with its prevention and treatment.
Collapse
Affiliation(s)
- Ziyu Kuang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Yuansha Ge
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Luchang Cao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Xinmiao Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Kexin Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Jiaxi Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Xiaojuan Zhu
- The 3rd affiliated hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| | - Min Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China.
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China.
| |
Collapse
|
6
|
Pizzamiglio S, Ciniselli CM, de Azambuja E, Agbor-Tarh D, Moreno-Aspitia A, Suter TM, Trama A, De Santis MC, De Cecco L, Iorio MV, Silvestri M, Pruneri G, Verderio P, Di Cosimo S. Circulating microRNAs and therapy-associated cardiac events in HER2-positive breast cancer patients: an exploratory analysis from NeoALTTO. Breast Cancer Res Treat 2024; 206:285-294. [PMID: 38689174 PMCID: PMC11182852 DOI: 10.1007/s10549-024-07299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/19/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE The relevance of cardiotoxicity in the context of HER2-positive breast cancer is likely to increase with increasing patient treatment exposure, number of treatment lines, and prolonged survival. Circulating biomarkers to early identify patients at risk of cardiotoxicity could allow personalized treatment and follow-up measures. The aim of this study is to examine the relationship between circulating microRNAs and adverse cardiac events in HER2-positive breast cancer patients. METHODS We based our work on plasma samples from NeoALTTO trial obtained at baseline, after 2 weeks of anti-HER2 therapy, and immediately before surgery. Eleven patients experienced either a symptomatic or asymptomatic cardiac event. Circulating microRNAs were profiled in all patients presenting a cardiac event (case) and in an equal number of matched patients free of reported cardiac events (controls) using microRNA-Ready-to-Use PCR (Human panel I + II). Sensitivity analyses were performed by increasing the number of controls to 1:2 and 1:3. Normalized microRNA expression levels were compared between cases and controls using the non-parametric Kruskal-Wallis test. RESULTS Eight circulating microRNAs resulted differentially expressed after 2 weeks of anti-HER2 therapy between patients experiencing or not a cardiac event. Specifically, the expression of miR-125b-5p, miR-409-3p, miR-15a-5p, miR-423-5p, miR-148a-3p, miR-99a-5p, and miR-320b increased in plasma of cases as compared to controls, while the expression of miR-642a-5p decreases. Functional enrichment analysis revealed that all these microRNAs were involved in cardiomyocyte adrenergic signaling pathway. CONCLUSION This study provides proof of concept that circulating microRNAs tested soon after treatment start could serve as biomarkers of cardiotoxicity in a very early stage in breast cancer patients receiving anti-HER2 therapy.
Collapse
Affiliation(s)
- S Pizzamiglio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - C M Ciniselli
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - E de Azambuja
- Department of Medical Oncology, Institut Jules Bordet and L'Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | | | | | - T M Suter
- Swiss Cardiovascular Center, University Hospital Bern, Inselspital, Bern, Switzerland
| | - A Trama
- Unit of Evaluative Epidemiology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - M C De Santis
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - L De Cecco
- Unit of Molecular Mechanisms, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - M V Iorio
- Unit of Microenvironment and Biomarkers of Solid Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - M Silvestri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - G Pruneri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - P Verderio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - S Di Cosimo
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
7
|
de Miranda FS, Slaibi-Filho J, Calasans dos Santos G, Carmo NT, Kaneto CM, Borin TF, Luiz WB, Gastalho Campos LC. MicroRNA as a promising molecular biomarker in the diagnosis of breast cancer. Front Mol Biosci 2024; 11:1337706. [PMID: 38813102 PMCID: PMC11134088 DOI: 10.3389/fmolb.2024.1337706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction: Breast cancer represents the most prevalent malignancy among women. Recent advancements in translational research have focused on the identification of novel biomarkers capable of providing valuable insights into patient outcomes. Furthermore, comprehensive investigations aimed at discovering novel miRNAs, unraveling their biological functions, and deciphering their target genes have significantly contributed to our understanding of the roles miRNAs play in tumorigenesis. Consequently, these investigations have facilitated the way for the development of miRNA-based approaches for breast cancer prognosis, diagnosis, and treatment. However, conducting a more extensive array of studies, particularly among diverse ethnic groups, is imperative to expand the scope of research and validate the significance of miRNAs. This study aimed to assess the expression patterns of circulating miRNAs in plasma as a prospective biomarker for breast cancer patients within a population primarily consisting of individuals from Black, Indigenous, and People of Color (BIPOC) communities. Methods: We evaluated 49 patients with breast cancer compared to 44 healthy women. Results and discussion: All miRNAs analyzed in the plasma of patients with breast cancer were downregulated. ROC curve analysis of miR-21 (AUC = 0.798, 95% CI: 0.682-0.914, p <0.0001), miR-1 (AUC = 0.742, 95% CI: 0.576-0.909, p = 0.004), miR-16 (AUC = 0.721, 95% CI: 0.581-0.861, p = 0.002) and miR-195 (AUC = 0.672, 95% CI: 0.553-0.792, p = 0.004) showed better diagnostic accuracy in discrimination of breast cancer patients in comparison with healthy women. miR-210, miR-21 showed the highest specificities values (97.3%, 94.1%, respectively). Following, miR-10b and miR-195 showed the highest sensitivity values (89.3%, and 77.8%, respectively). The panel with a combination of four miRNAs (miR-195 + miR-210 + miR-21 + miR-16) had an AUC of 0.898 (0.765-0.970), a sensitivity of 71.4%, and a specificity of 100.0%. Collectively, our results highlight the miRNA combination in panels drastically improves the results and showed high accuracy for the diagnosis of breast cancer displaying good sensitivity and specificity.
Collapse
Affiliation(s)
- Felipe Silva de Miranda
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - José Slaibi-Filho
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Department of Health Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Gabriel Calasans dos Santos
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Department of Health Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Nathalia Teixeira Carmo
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Department of Health Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Carla Martins Kaneto
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Thaiz Ferraz Borin
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Wilson Barros Luiz
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Luciene Cristina Gastalho Campos
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Department of Health Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
8
|
Kuang Z, Kong M, Yan N, Ma X, Wu M, Li J. Precision Cardio-oncology: Update on Omics-Based Diagnostic Methods. Curr Treat Options Oncol 2024; 25:679-701. [PMID: 38676836 PMCID: PMC11082000 DOI: 10.1007/s11864-024-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
OPINION STATEMENT Cardio-oncology is an emerging interdisciplinary field dedicated to the early detection and treatment of adverse cardiovascular events associated with anticancer treatment, and current clinical management of anticancer-treatment-related cardiovascular toxicity (CTR-CVT) remains limited by a lack of detailed phenotypic data. However, the promise of diagnosing CTR-CVT using deep phenotyping has emerged with the development of precision medicine, particularly the use of omics-based methodologies to discover sensitive biomarkers of the disease. In the future, combining information produced by a variety of omics methodologies could expand the clinical practice of cardio-oncology. In this review, we demonstrate how omics approaches can improve our comprehension of CTR-CVT deep phenotyping, discuss the positive and negative aspects of available omics approaches for CTR-CVT diagnosis, and outline how to integrate multiple sets of omics data into individualized monitoring and treatment. This will offer a reliable technical route for lowering cardiovascular morbidity and mortality in cancer patients and survivors.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Miao Kong
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ningzhe Yan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Ma
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Silver BB, Kreutz A, Weick M, Gerrish K, Tokar EJ. Biomarkers of chemotherapy-induced cardiotoxicity: toward precision prevention using extracellular vesicles. Front Oncol 2024; 14:1393930. [PMID: 38706609 PMCID: PMC11066856 DOI: 10.3389/fonc.2024.1393930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Detrimental side effects of drugs like doxorubicin, which can cause cardiotoxicity, pose barriers for preventing cancer progression, or treating cancer early through molecular interception. Extracellular vesicles (EVs) are valued for their potential as biomarkers of human health, chemical and molecular carcinogenesis, and therapeutics to treat disease at the cellular level. EVs are released both during normal growth and in response to toxicity and cellular death, playing key roles in cellular communication. Consequently, EVs may hold promise as precision biomarkers and therapeutics to prevent or offset damaging off-target effects of chemotherapeutics. EVs have promise as biomarkers of impending cardiotoxicity induced by chemotherapies and as cardioprotective therapeutic agents. However, EVs can also mediate cardiotoxic cues, depending on the identity and past events of their parent cells. Understanding how EVs mediate signaling is critical toward implementing EVs as therapeutic agents to mitigate cardiotoxic effects of chemotherapies. For example, it remains unclear how mixtures of EV populations from cells exposed to toxins or undergoing different stages of cell death contribute to signaling across cardiac tissues. Here, we present our perspective on the outlook of EVs as future clinical tools to mitigate chemotherapy-induced cardiotoxicity, both as biomarkers of impending cardiotoxicity and as cardioprotective agents. Also, we discuss how heterogeneous mixtures of EVs and transient exposures to toxicants may add complexity to predicting outcomes of exogenously applied EVs. Elucidating how EV cargo and signaling properties change during dynamic cellular events may aid precision prevention of cardiotoxicity in anticancer treatments and development of safer chemotherapeutics.
Collapse
Affiliation(s)
- Brian B. Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Anna Kreutz
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Epigenetics & Stem Cell Biology Laboratory, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Inotiv, Durham, NC, United States
| | - Madeleine Weick
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Kevin Gerrish
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Erik J. Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| |
Collapse
|
10
|
Adamcova M, Parova H, Lencova-Popelova O, Kollarova-Brazdova P, Baranova I, Slavickova M, Stverakova T, Mikyskova PS, Mazurova Y, Sterba M. Cardiac miRNA expression during the development of chronic anthracycline-induced cardiomyopathy using an experimental rabbit model. Front Pharmacol 2024; 14:1298172. [PMID: 38235109 PMCID: PMC10791979 DOI: 10.3389/fphar.2023.1298172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Background: Anthracycline cardiotoxicity is a well-known complication of cancer treatment, and miRNAs have emerged as a key driver in the pathogenesis of cardiovascular diseases. This study aimed to investigate the expression of miRNAs in the myocardium in early and late stages of chronic anthracycline induced cardiotoxicity to determine whether this expression is associated with the severity of cardiac damage. Method: Cardiotoxicity was induced in rabbits via daunorubicin administration (daunorubicin, 3 mg/kg/week; for five and 10 weeks), while the control group received saline solution. Myocardial miRNA expression was first screened using TaqMan Advanced miRNA microfluidic card assays, after which 32 miRNAs were selected for targeted analysis using qRT-PCR. Results: The first subclinical signs of cardiotoxicity (significant increase in plasma cardiac troponin T) were observed after 5 weeks of daunorubicin treatment. At this time point, 10 miRNAs (including members of the miRNA-34 and 21 families) showed significant upregulation relative to the control group, with the most intense change observed for miRNA-1298-5p (29-fold change, p < 0.01). After 10 weeks of daunorubicin treatment, when a further rise in cTnT was accompanied by significant left ventricle systolic dysfunction, only miR-504-5p was significantly (p < 0.01) downregulated, whereas 10 miRNAs were significantly upregulated relative to the control group; at this time-point, the most intense change was observed for miR-34a-5p (76-fold change). Strong correlations were found between the expression of multiple miRNAs (including miR-34 and mir-21 family and miR-1298-5p) and quantitative indices of toxic damage in both the early and late phases of cardiotoxicity development. Furthermore, plasma levels of miR-34a-5p were strongly correlated with the myocardial expression of this miRNA. Conclusion: To the best of our knowledge, this is the first study that describes alterations in miRNA expression in the myocardium during the transition from subclinical, ANT-induced cardiotoxicity to an overt cardiotoxic phenotype; we also revealed how these changes in miRNA expression are strongly correlated with quantitative markers of cardiotoxicity.
Collapse
Affiliation(s)
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | | | | | - Ivana Baranova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Marcela Slavickova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Tereza Stverakova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Petra Sauer Mikyskova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Yvona Mazurova
- Department of Histology and Embryology, Charles University in Prague, Hradec Kralove, Czechia
| | | |
Collapse
|
11
|
Zhou C, Yang Y, Hu L, Meng X, Guo X, Lei M, Ren Z, Chen Q, Ouyang C, Yang X. Effects of miR-143 regulation on cardiomyocytes apoptosis in doxorubicin cardiotoxicity based on integrated bioinformatics analysis. Toxicol In Vitro 2023; 93:105662. [PMID: 37597758 DOI: 10.1016/j.tiv.2023.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/26/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
This study aimed to investigate the effect of miRNAs involving oxidative stress response in doxorubicin (DOX)-induced cardiotoxicity based on the data from Gene Expression Omnibus (GEO) database and experimental results via integrated bioinformatics analysis. MiRNA expression profiles of DOX-induced cardiotoxicity in rat myocardial tissues and adult rat cardiomyocytes (ARC) were extracted from GEO datasets (GSE36239). Differential expression miRNA (DEMs) were separately captured in rat myocardial tissues and in ARC, and intersected between rat myocardial tissues and ARC via Venny 2.1. Subsequently, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analyzed 46 target genes of miR-143, one of 6 DEMs, and HIF-1 and PI3K-Akt signaling pathway were significantly enriched. Further experimental results showed DOX-induced oxidative stress downregulated the expression of miR-143, and then promoted target gene Bbc3 expression and H9c2 apoptosis, the intervention of phosphocreatine (PCr) or N-acetyl-L-cystine (NAC) alleviated oxidative stress, apoptosis and Bbc3 expression, upregulated miR-143 in DOX-induced cardiotoxicity in vivo and in vitro. Our findings elucidated the regulatory network between miR-143 and oxidative stress in DOX-induced cardiotoxicity, and might unveiled a potential biomarker and molecular mechanisms, which could be helpful to the diagnosis and treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chi Zhou
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, PR China; Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Yayuan Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, PR China; Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Ling Hu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, PR China; Department of Pharmacy, University of South China Affiliated Changsha Central Hospital, Changsha 410004, PR China
| | - Xiangwen Meng
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, PR China; Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, PR China; Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, PR China; Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, PR China; Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, PR China; Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, PR China; Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, PR China; Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
12
|
Huang P, Zhang Y, Wang F, Qin M, Ma J, Ji J, Wei D, Ren L. MiR-494-3p aggravates pirarubicin-induced cardiomyocyte injury by regulating MDM4/p53 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2499-2508. [PMID: 37421283 DOI: 10.1002/tox.23888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/06/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVE Pirarubicin (THP) is a widely used antitumor drug in clinical practice, but its cardiotoxicity limits its use. There is an urgent need to find drugs to alleviate the cardiotoxicity of THP. This study aimed to investigate the effect and mechanism of miR-494-3p on THP-induced cardiomyocytes. METHODS THP induced immortalized mouse cardiomyocytes HL-1, silenced or overexpressed miR-494-3p. The effects of miR-494-3p on HL-1 contained in THP were investigated by CCK8, flow cytometry, ROS detection, JC-1 mitochondrial membrane potential detection, TUNEL cell apoptosis detection, RT-qPCR, and Western blot. RESULTS miR-494-3p could reduce cell viability, increase oxidative damage, and promote cell apoptosis; at the same time, it inhibited the expression of MDM4, promoted the activation of p53, and promoted the expression of apoptosis-related proteins. MiR-494-3p inhibitors have the opposite effect. CONCLUSION miR-494-3p can aggravate THP damage to HL-1, which may be achieved by downregulating MDM4 and promoting p53. miR-494-3p is one of the important miRNAs in THP-induced cardiotoxicity, which provides theoretical support for its possible use as a therapeutic target for THP-induced cardiovascular disease.
Collapse
Affiliation(s)
- Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Yibing Zhang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Fengjun Wang
- Department of Hepatobiliary Surgery, Songyuan Central Hospital, Songyuan, China
| | - Meng Qin
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Jiahua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Dexian Wei
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
13
|
Kuang Z, Wu J, Tan Y, Zhu G, Li J, Wu M. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules 2023; 13:biom13030568. [PMID: 36979503 PMCID: PMC10046787 DOI: 10.3390/biom13030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Doxorubicin (DOX), a broad-spectrum chemotherapy drug, is widely applied to the treatment of cancer; however, DOX-induced cardiotoxicity (DIC) limits its clinical therapeutic utility. However, it is difficult to monitor and detect DIC at an early stage using conventional detection methods. Thus, sensitive, accurate, and specific methods of diagnosis and treatment are important in clinical practice. MicroRNAs (miRNAs) belong to non-coding RNAs (ncRNAs) and are stable and easy to detect. Moreover, miRNAs are expected to become biomarkers and therapeutic targets for DIC; thus, there are currently many studies focusing on the role of miRNAs in DIC. In this review, we list the prominent studies on the diagnosis and treatment of miRNAs in DIC, explore the feasibility and difficulties of using miRNAs as diagnostic biomarkers and therapeutic targets, and provide recommendations for future research.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingyuan Wu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Tan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guanghui Zhu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
14
|
Rao Y, Wang Y, Lin Z, Zhang X, Ding X, Yang Y, Liu Z, Zhang B. Comparative efficacy and pharmacological mechanism of Chinese patent medicines against anthracycline-induced cardiotoxicity: An integrated study of network meta-analysis and network pharmacology approach. Front Cardiovasc Med 2023; 10:1126110. [PMID: 37168657 PMCID: PMC10164985 DOI: 10.3389/fcvm.2023.1126110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Background This study aimed to evaluate the efficacy of Chinese patent medicines (CPMs) combined with dexrazoxane (DEX) against anthracycline-induced cardiotoxicity (AIC) and further explore their pharmacological mechanism by integrating the network meta-analysis (NMA) and network pharmacology approach. Methods We searched for clinical trials on the efficacy of DEX + CPMs for AIC until March 10, 2023 (Database: PubMed, Embase, Cochrane Library, Chinese National Knowledge Infrastructure, China Science and Technology Journal and China Online Journals). The evaluating outcomes were cardiac troponin I (cTnI) level, creatine kinase MB (CK-MB) level, left ventricular ejection fraction (LVEF) value, and electrocardiogram (ECG) abnormal rate. Subsequently, the results of NMA were further analyzed in combination with network pharmacology. Results We included 14 randomized controlled trials (RCTs) and 1 retrospective cohort study (n = 1,214), containing six CPMs: Wenxinkeli (WXKL), Cinobufotalin injection (CI), Shenqifuzheng injection (SQFZ), Shenmai injection (SM), Astragalus injection (AI) and AI + CI. The NMA was implemented in Stata (16.0) using the mvmeta package. Compared with using DEX only, DEX + SM displayed the best effective for lowering cTnI level (MD = -0.44, 95%CI [-0.56, -0.33], SUCRA 93.4%) and improving LVEF value (MD = 14.64, 95%CI [9.36, 19.91], SUCRA 98.4%). DEX + SQFZ showed the most effectiveness for lowering CK-MB level (MD = -11.57, 95%CI [-15.79, -7.35], SUCRA 97.3%). And DEX + AI + CI has the highest effectiveness for alleviating ECG abnormalities (MD = -2.51, 95%CI [-4.06, -0.96], SUCRA 96.8%). So that we recommended SM + DEX, SQFZ + DEX, and DEX + AI + CI as the top three effective interventions against AIC. Then, we explored their pharmacological mechanism respectively. The CPMs' active components and AIC-related targets were screened to construct the component-target network. The potential pathways related to CPMs against AIC were determined by KEGG. For SM, we identified 118 co-targeted genes of active components and AIC, which were significantly enriched in pathways of cancer pathways, EGFR tyrosine kinase inhibitor resistance and AGE-RAGE signaling pathway in diabetic complications. For SQFZ, 41 co-targeted genes involving pathways of microRNAs in cancer, Rap1 signaling pathway, MAPK signaling pathway, and lipid and atherosclerosis. As for AI + CI, 224 co-targeted genes were obtained, and KEGG analysis showed that the calcium signaling pathway plays an important role except for the consistent pathways of SM and SQFZ in anti-AIC. Conclusions DEX + CPMs might be positive efficacious interventions from which patients with AIC will derive benefits. DEX + SM, DEX + SQFZ, and DEX + AI + CI might be the preferred intervention for improving LVEF value, CK-MB level, and ECG abnormalities, respectively. And these CPMs play different advantages in alleviating AIC by targeting multiple biological processes.
Collapse
Affiliation(s)
- Yifei Rao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijian Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Ding
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Bing Zhang
| |
Collapse
|
15
|
Kawano I, Adamcova M. MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response. Front Pharmacol 2022; 13:1055911. [PMID: 36479202 PMCID: PMC9720152 DOI: 10.3389/fphar.2022.1055911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 10/17/2023] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug widely used for cancer treatment, but its use is limited by cardiotoxicity. Although free radicals from redox cycling and free cellular iron have been predominant as the suggested primary pathogenic mechanism, novel evidence has pointed to topoisomerase II inhibition and resultant genotoxic stress as the more fundamental mechanism. Recently, a growing list of microRNAs (miRNAs) has been implicated in DOX-induced cardiotoxicity (DIC). This review summarizes miRNAs reported in the recent literature in the context of DIC. A particular focus is given to miRNAs that regulate cellular responses downstream to DOX-induced DNA damage, especially p53 activation, pro-survival signaling pathway inhibition (e.g., AMPK, AKT, GATA-4, and sirtuin pathways), mitochondrial dysfunction, and ferroptosis. Since these pathways are potential targets for cardioprotection against DOX, an understanding of how miRNAs participate is necessary for developing future therapies.
Collapse
Affiliation(s)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| |
Collapse
|
16
|
MicroRNA-4732-3p Is Dysregulated in Breast Cancer Patients with Cardiotoxicity, and Its Therapeutic Delivery Protects the Heart from Doxorubicin-Induced Oxidative Stress in Rats. Antioxidants (Basel) 2022; 11:antiox11101955. [PMID: 36290678 PMCID: PMC9599023 DOI: 10.3390/antiox11101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Anthracycline-induced cardiotoxicity is the most severe collateral effect of chemotherapy originated by an excess of oxidative stress in cardiomyocytes that leads to cardiac dysfunction. We assessed clinical data from patients with breast cancer receiving anthracyclines and searched for discriminating microRNAs between patients that developed cardiotoxicity (cases) and those that did not (controls), using RNA sequencing and regression analysis. Serum levels of 25 microRNAs were differentially expressed in cases versus controls within the first year after anthracycline treatment, as assessed by three different regression models (elastic net, Robinson and Smyth exact negative binomial test and random forest). MiR-4732-3p was the only microRNA identified in all regression models and was downregulated in patients that experienced cardiotoxicity. MiR-4732-3p was also present in neonatal rat cardiomyocytes and cardiac fibroblasts and was modulated by anthracycline treatment. A miR-4732-3p mimic was cardioprotective in cardiac and fibroblast cultures, following doxorubicin challenge, in terms of cell viability and ROS levels. Notably, administration of the miR-4732-3p mimic in doxorubicin-treated rats preserved cardiac function, normalized weight loss, induced angiogenesis, and decreased apoptosis, interstitial fibrosis and cardiac myofibroblasts. At the molecular level, miR-4732-3p regulated genes of TGFβ and Hippo signaling pathways. Overall, the results indicate that miR-4732-3p is a novel biomarker of cardiotoxicity that has therapeutic potential against anthracycline-induced heart damage.
Collapse
|
17
|
MiRNAs and circRNAs for the Diagnosis of Anthracycline-Induced Cardiotoxicity in Breast Cancer Patients: A Narrative Review. J Pers Med 2022; 12:jpm12071059. [PMID: 35887556 PMCID: PMC9315470 DOI: 10.3390/jpm12071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most frequent type of female cancer with increasing incidence in recent years. Doxorubicin (DOX) is an important backbone chemotherapy in BC, responsible for cardiotoxicity (CTX) in about 9% of treated women within the first year. Biomarkers of early CTX diagnosis are essential to avoid complicated DOX-related cardiac diseases. Traditional serum biomarkers are either poorly sensitive with transient elevation, and even absent if investigated outside their diagnostic window, or arise only in late-stage CTX. Emerging biomarkers such as non-coding RNA (ncRNA) have been recently investigated in DOX-related CTX. In our review, we revised the role of microRNAs, the most studied type of ncRNA, both in animal and human models, highlighting the interesting but often contrasting results. Moreover, we reviewed a novel class of ncRNA, circular RNA (circRNA), focusing on their modulatory mechanisms also involving microRNAs. MicroRNA and circRNA are players in a wide homeostatic balance with their perturbation representing a possible compensation for DOX damage. Further studies are required to assess the modalities of early detection of their variation in BC patients suffering from heart disease induced by DOX treatment.
Collapse
|
18
|
Kastora SL, Pana TA, Sarwar Y, Myint PK, Mamas MA. Biomarker Determinants of Early Anthracycline-Induced Left Ventricular Dysfunction in Breast Cancer: A Systematic Review and Meta-Analysis. Mol Diagn Ther 2022; 26:369-382. [PMID: 35708889 DOI: 10.1007/s40291-022-00597-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Breast cancer is the leading cause of cancer-related mortality amongst women. One of the most common chemotherapeutic agents used to treat breast cancer, anthracyclines, are associated with anthracycline-induced cardiotoxicity (ACIC). The aim of this meta-analysis was to quantify the predictive performance of biomarkers for early ACIC presentation in the breast cancer population. METHODS Five databases were searched from inception to 1 January, 2022. Studies reporting the association between worsening left ventricular ejection fraction and biomarker level change were included. Overall, study heterogeneity varied between I2 0 and 78%. The primary outcome was incident left ventricular dysfunction, defined as left ventricular ejection fraction < 50-55% or a 10%-point decrease, in patients with breast cancer with congruent ≥ doubling of biomarker serology levels (growth differentiation factor 15, Galectin-3, pro B-type natriuretic peptide, high-sensitivity cardiac troponin T, placental growth factor, myeloperoxidase, high-sensitivity C-reactive protein, Fms-Related Tyrosine Kinase 1), 3 months after anthracycline exposure, relative to pre-anthracycline exposure levels, expressed as random effects, hazard ratios. The STRING protein interaction database was explored for experimentally validated biomarker interactions. RESULTS Of 1458 records screened, four observational studies involving 1167 patients, with a low risk of bias, were included in this systematic review and meta-analysis. Doubling of growth differentiation factor 15 and Galectin-3 levels was associated with an increased risk of early ACIC, hazard ratio 3.74 (95% confidence interval 2.68-5.24) and hazard ratio 4.25 (95% confidence interval 3.1-5.18), respectively. Biomarker interactome analysis identified two putative ACIC biomarkers, neuropilin-1 and complement factor H. CONCLUSIONS This is the first meta-analysis quantifying the association of biomarkers and early ACIC presentation in the breast cancer population. This may be of clinical relevance in the timely identification of patients at high risk of ACIC, allowing for closer monitoring and chemotherapy adjustments.
Collapse
Affiliation(s)
- Stavroula L Kastora
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen Royal Infirmary, Breast Surgery, Clinic E, Cornhill Road, Aberdeen, AB25 2ZN, UK.
| | - Tiberiu A Pana
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen Royal Infirmary, Breast Surgery, Clinic E, Cornhill Road, Aberdeen, AB25 2ZN, UK
| | - Yusuf Sarwar
- College of Medicine and Health, University of Exeter, St Luke's Campus, Exeter, UK
| | - Phyo K Myint
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen Royal Infirmary, Breast Surgery, Clinic E, Cornhill Road, Aberdeen, AB25 2ZN, UK
| | - Mamas A Mamas
- Keele Cardiovascular Research Group, Centre for Prognosis Research, Institute for Primary Care and Health Sciences, Keele University, Stoke-on-Trent, UK
| |
Collapse
|
19
|
Si Z, Zhong Y, Lao S, Wu Y, Zhong G, Zeng W. The Role of miRNAs in the Resistance of Anthracyclines in Breast Cancer: A Systematic Review. Front Oncol 2022; 12:899145. [PMID: 35664800 PMCID: PMC9157424 DOI: 10.3389/fonc.2022.899145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has been reported as the most common cancer in women globally, with 2.26 million new cases in 2020. While anthracyclines are the first-line drug for breast cancer, they cause a variety of adverse reactions and drug resistance, especially for triple-negative breast cancer, which can lead to poor prognosis, high relapse, and mortality rate. MicroRNAs (miRNAs) have been shown to be important in the initiation, development and metastasis of malignancies and their abnormal transcription levels may influence the efficacy of anthracyclines by participating in the pathologic mechanisms of breast cancer. Therefore, it is essential to understand the exact role of miRNAs in the treatment of breast cancer with anthracyclines. In this review, we outline the mechanisms and signaling pathways involved in miRNAs in the treatment of breast cancer using anthracyclines. The role of miRNA in the diagnosis, prognosis and treatment of breast cancer patients is discussed, along with the involvement of miRNAs in chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Zihan Si
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Yan Zhong
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Sixian Lao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Yufeng Wu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Weiwei Zeng
- The Second People's Hospital of Longgang District, Shenzhen, China
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
20
|
Alves MT, da Conceição IMCA, de Oliveira AN, Oliveira HHM, Soares CE, de Paula Sabino A, Silva LM, Simões R, Luizon MR, Gomes KB. microRNA miR-133a as a Biomarker for Doxorubicin-Induced Cardiotoxicity in Women with Breast Cancer: A Signaling Pathway Investigation. Cardiovasc Toxicol 2022; 22:655-662. [PMID: 35524907 DOI: 10.1007/s12012-022-09748-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Cardiovascular toxicity is the main adverse effect of Doxorubicin (DOX) in cancer patients. microRNAs (miRNAs) are promising biomarkers to identify cardiac injury induced by DOX in breast cancer patients during the subclinical phase. Using RT-qPCR, we compared the expression of circulating miR-208a5p, miR-133a, miR-499a5p, miR-15a, miR-133b, and miR-49a3p in serum samples from DOX-induced cardiotoxicity (case) compared to the non-cardiotoxicity group (control). To further explore the potential roles of these circulating miRNA in cardiotoxicity, we searched the miRTarBase for experimentally validated miRNA-target interactions and performed a functional enrichment analysis based on those interactions. miR-133a was significantly upregulated in case compared to control group. The most relevant pathway regulated by miR-133a was ErbB2 signaling, whose main genes involved are EGFR, ERBB2, and RHOA, which are possibly downregulated by miR133a. The other miRNAs did not show significant differential expression when compared on both groups. The data suggest that miR-133a is associated with DOX-based cardiotoxicity during chemotherapy in breast cancer patients through ErbB2 signaling pathway. Moreover, miR-133a may be a future marker of DOX-induced cardiotoxicity in women with breast cancer.
Collapse
Affiliation(s)
- Michelle Teodoro Alves
- Departamento de Análises Clínicas eToxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Cintia Esteves Soares
- Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas eToxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | | - Ricardo Simões
- Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Departamento de Análises Clínicas eToxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil.
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Jiang Y, Ghias K, Gupta S, Gupta A. MicroRNAs as Potential Biomarkers for Exercise-Based Cancer Rehabilitation in Cancer Survivors. Life (Basel) 2021; 11:1439. [PMID: 34947970 PMCID: PMC8707107 DOI: 10.3390/life11121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Expression and functions of microRNAs (miRNAs) have been widely investigated in cancer treatment-induced complications and as a response to physical activity, respectively, but few studies focus on the application of miRNAs as biomarkers in exercise-based cancer rehabilitation. Research has shown that certain miRNA expression is altered substantially due to tissue damage caused by cancer treatment and chronic inflammation. MiRNAs are released from the damaged tissue and can be easily detected in blood plasma. Levels of the miRNA present in peripheral circulation can therefore be used to measure the extent of tissue damage. Moreover, damage to tissues such as cardiac and skeletal muscle significantly affects the individual's health-related fitness, which can be determined using physiologic functional assessments. These physiologic parameters are a measure of tissue health and function and can therefore be correlated with the levels of circulating miRNAs. In this paper, we reviewed miRNAs whose expression is altered during cancer treatment and may correlate to physiological, physical, and psychological changes that significantly impact the quality of life of cancer survivors and their role in response to physical activity. We aim to identify potential miRNAs that can not only be used for monitoring changes that occur in health-related fitness during cancer treatment but can also be used to evaluate response to exercise-based rehabilitation and monitor individual progress through the rehabilitation programme.
Collapse
Affiliation(s)
| | | | | | - Ananya Gupta
- Department of Physiology, National University of Ireland, H91 TK33 Galway, Ireland; (Y.J.); (K.G.); (S.G.)
| |
Collapse
|
22
|
Chen L, Xu Y. MicroRNAs as Biomarkers and Therapeutic Targets in Doxorubicin-Induced Cardiomyopathy: A Review. Front Cardiovasc Med 2021; 8:740515. [PMID: 34901206 PMCID: PMC8653425 DOI: 10.3389/fcvm.2021.740515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin is a broad-spectrum chemotherapy drug applied in antitumor therapy. However, its clinical utility is limited by its fatal cardiotoxicity. Doxorubicin (DOX)-induced cardiomyopathy (DIC) begins with the first DOX dose and is characterized by being cumulative dose-dependent, and its early diagnosis using common detection methods is very difficult. Therefore, it is urgent to determine the underlying mechanism of DIC to construct treatment strategies for the early intervention before irreversible damage to the myocardium occurs. Growing evidence suggests that microRNAs (miRNAs) play regulatory roles in the cardiovascular system. miRNAs may be involved in DIC by acting through multiple pathways to induce cardiomyocyte injury. Recent studies have shown that the dysregulation of miRNA expression can aggravate the pathological process of DIC, including the induction of oxidative stress, apoptosis, ion channel dysfunction and microvascular dysfunction. Current findings on the roles of miRNAs in DIC have led to a wide range of studies exploring candidate miRNAs to be utilized as diagnostic biomarkers and potential therapeutic targets for DIC. In this review, we discuss frontier studies on the roles of miRNAs in DIC to better understand their functions, develop relevant applications in DIC, discuss possible reasons for the limitations of their use and speculate on innovative treatment strategies.
Collapse
Affiliation(s)
- Liuying Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Chen D, Kelly C, Haw TJ, Lombard JM, Nordman IIC, Croft AJ, Ngo DTM, Sverdlov AL. Heart Failure in Breast Cancer Survivors: Focus on Early Detection and Novel Biomarkers. Curr Heart Fail Rep 2021; 18:362-377. [PMID: 34731413 DOI: 10.1007/s11897-021-00535-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW Breast cancer survival rate has greatly improved in the last two decades due to the emergence of next-generation anti-cancer agents. However, cardiotoxicity remains a significant adverse effect arising from traditional and emerging chemotherapies as well as targeted therapies for breast cancer patients. In this review, we will discuss cardiotoxicities of both traditional and emerging therapies for breast cancer. We will discuss current practices to detect cardiotoxicity of these therapies with the focus on new and emerging biomarkers. We will then focus on 'omics approaches, especially the use of epigenetics to discover novel biomarkers and therapeutics to mitigate cardiotoxicity. RECENT FINDINGS Significant cardiotoxicities of conventional chemotherapies remain and new and unpredictable new forms of cardiac and/or vascular toxicity emerge with the surge in novel and targeted therapies. Yet, there is no clear guidance on detection of cardiotoxicity, except for significant left ventricular systolic dysfunction, and even then, there is no uniform definition of what constitutes cardiotoxicity. The gold standard for detection of cardiotoxicity involves a serial echocardiography in conjunction with blood-based biomarkers to detect early subclinical cardiac dysfunction. However, the ability of these tests to detect early disease remains limited and not all forms of toxicity are detectable with these modalities. There is an unprecedented need to discover novel biomarkers that are sensitive and specific for early detection of subclinical cardiotoxicity. In that space, novel echocardiographic techniques, such as strain, are becoming more common-place and new biomarkers, discovered by epigenetic approaches, seem to become promising alternatives or adjuncts to conventional non-specific cardiac biomarkers.
Collapse
Affiliation(s)
- Dongqing Chen
- Cardio-Oncology & Cardiometabolic Research Group, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle, NSW, Callaghan, Australia
| | - Conagh Kelly
- Cardio-Oncology & Cardiometabolic Research Group, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle, NSW, Callaghan, Australia
| | - Tatt Jhong Haw
- Cardio-Oncology & Cardiometabolic Research Group, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle, NSW, Callaghan, Australia.,Cardio-Oncology & Cardiometabolic Research Group, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle Calvary Mater Newcastle, NSW, Waratah, Australia
| | - Janine M Lombard
- Cardio-Oncology & Cardiometabolic Research Group, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle Calvary Mater Newcastle, NSW, Waratah, Australia
| | - Ina I C Nordman
- Cardio-Oncology & Cardiometabolic Research Group, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle Calvary Mater Newcastle, NSW, Waratah, Australia
| | - Amanda J Croft
- Cardio-Oncology & Cardiometabolic Research Group, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle Calvary Mater Newcastle, NSW, Waratah, Australia
| | - Doan T M Ngo
- Cardio-Oncology & Cardiometabolic Research Group, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle, NSW, Callaghan, Australia. .,School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| | - Aaron L Sverdlov
- Cardio-Oncology & Cardiometabolic Research Group, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle, NSW, Callaghan, Australia. .,Cardio-Oncology & Cardiometabolic Research Group, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle Calvary Mater Newcastle, NSW, Waratah, Australia. .,Cardiovascular Department, John Hunter Hospital, Hunter New England Local Health District, NSW, New Lambton Heights, Australia. .,School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
24
|
Abstract
The purpose of this review was to systematize data on molecular genetic markers of increased risk of cardiotoxic effects, as well as to search for risk and protective variants of candidate genes. Today, the therapy of malignant neoplasms is based on the use of anthracyclines – drugs of the cytostatic mechanism of action. Along with their effectiveness, these drugs can have a cardiotoxic effect on cardiomyocytes by increasing the amount of reactive oxygen species and disrupting mitochondrial biogenesis. Pathological disorders lead to an increased risk of myocardial dysfunction and a number of other cardiovascular pathologies in patients receiving chemotherapy using anthracyclines. The cardiotoxic effect of anthracyclines leads to cardiomyopathy, heart failure, myocardial infarction, and thrombosis. Early detection of cardiotoxic damage leads to reducing the negative effects of these drugs due to changes in chemotherapy tactics. It is known that the risk of cardiotoxic myocardial damage is genetically determined and controlled by more than 80 genes. In this review, the description of basic molecules such as ATP-binding cassette transporters and solute carrier family (SLC transporters), carbonyl reductase, molecules of antioxidant defense, xenobiotic and iron metabolism was performed. In addition, a special attention is paid to the study of epigenetic and post-translational regulation. The available data are characterized by some inconsistency that may be explained by the ethnic differences of the studied populations. Thus, a more detailed research of various ethnic groups, gene-gene interactions between potential candidate genes and epigenetic regulation is necessary. Thus, understanding the contribution of genetic polymorphism to the development of cardiotoxicity will help to assess the individual risks of cardiovascular pathology in patients with various types of cancer, as well as reduce the risk of myocardial damage by developing individual preventive measures and correcting chemotherapy.
Collapse
|
25
|
Zhou Z, Yang P, Zhang B, Yao M, Jia Y, Li N, Liu H, Bai H, Gong X. Long Noncoding RNA TTC39A-AS1 Promotes Breast Cancer Tumorigenicity by Sponging MicroRNA-483-3p and Thereby Upregulating MTA2. Pharmacology 2021; 106:573-587. [PMID: 34488224 DOI: 10.1159/000515909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/16/2021] [Indexed: 12/09/2022]
Abstract
INTRODUCTION In recent years, the regulatory activities of long noncoding RNAs have received increasing attention as an important research focus. This study aimed to characterize the expression and detailed roles of TTC39A antisense RNA 1 (TTC39A-AS1) in breast cancer (BC), in addition to concentrating on its downstream mechanisms. METHODS Quantitative RT-PCR was performed to determine the expression levels of TTC39A-AS1, microRNA-483-3p (miR-483-3p), and metastasis-associated gene 2 (MTA2). Further, the detailed functions of TTC39A-AS1 in BC cells were confirmed using the Cell Counting Kit 8 assay, flow cytometric analysis, and Transwell cell migration and invasion assays. The targeting relationship between TTC39A-AS1, miR-483-3p, and MTA2 in BC was predicted via bioinformatics analysis and further confirmed by performing the luciferase reporter assay and RNA immunoprecipitation. RESULTS TTC39A-AS1 was present in high levels in BC; this result was confirmed in our sample cohort and The Cancer Genome Atlas database. Patients with BC with a high level of TTC39A-AS1 had a shorter overall survival than those with a low level of TTC39A-AS1. Functionally, the absence of TTC39A-AS1 accelerated cell apo-ptosis but retained cell proliferation, migration, and invasion. Mechanistically, TTC39A-AS1 functioned as a competing endogenous RNA in BC by sponging miR-483-3p and thereby indirectly increasing MTA2 expression. Finally, rescue experiments revealed that the tumor-inhibiting actions of TTC39A-AS1 knockdown on the malignant characteristics of BC cells could be reversed by inhibiting miR-483-3p or upregulating MTA2. CONCLUSION The newly identified TTC39A-AS1/miR-483-3p/MTA2 pathway was revealed to be a critical regulator in the tumorigenicity of BC, possibly offering a novel therapeutic direction for the anticancer treatment of BC.
Collapse
Affiliation(s)
- Zhaohui Zhou
- Department of Breast and Thyroid, Tianshui Second Hospital, TianShui, China
| | - Ping Yang
- Department of Breast, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Binming Zhang
- Department of Breast, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Maohui Yao
- Department of Breast and Thyroid, Tianshui Second Hospital, TianShui, China
| | - Yali Jia
- Department of Breast and Thyroid, Tianshui Second Hospital, TianShui, China
| | - Na Li
- Department of Breast and Thyroid, Tianshui Second Hospital, TianShui, China
| | - Huimin Liu
- Department of Breast, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Haiya Bai
- Department of Breast, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Xiaojun Gong
- Department of Breast, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| |
Collapse
|
26
|
Li J, Peng D, Xie Y, Dai Z, Zou X, Li Z. Novel Potential Small Molecule-MiRNA-Cancer Associations Prediction Model Based on Fingerprint, Sequence, and Clinical Symptoms. J Chem Inf Model 2021; 61:2208-2219. [PMID: 33899462 DOI: 10.1021/acs.jcim.0c01458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As an important biomarker in organisms, miRNA is closely related to various small molecules and diseases. Research on small molecule-miRNA-cancer associations is helpful for the development of cancer treatment drugs and the discovery of pathogenesis. It is very urgent to develop theoretical methods for identifying potential small molecular-miRNA-cancer associations, because experimental approaches are usually time-consuming, laborious, and expensive. To overcome this problem, we developed a new computational method, in which features derived from structure, sequence, and symptoms were utilized to characterize small molecule, miRNA, and cancer, respectively. A feature vector was construct to characterize small molecule-miRNA-cancer association by concatenating these features, and a random forest algorithm was utilized to construct a model for recognizing potential association. Based on the 5-fold cross-validation and benchmark data set, the model achieved an accuracy of 93.20 ± 0.52%, a precision of 93.22 ± 0.51%, a recall of 93.20 ± 0.53%, and an F1-measure of 93.20 ± 0.52%. The areas under the receiver operating characteristic curve and precision recall curve were 0.9873 and 0.9870. The real prediction ability and application performance of the developed method have also been further evaluated and verified through an independent data set test and case study. Some potential small molecules and miRNAs related to cancer have been identified and are worthy of further experimental research. It is anticipated that our model could be regarded as a useful high-throughput virtual screening tool for drug research and development. All source codes can be downloaded from https://github.com/LeeKamlong/Multi-class-SMMCA.
Collapse
Affiliation(s)
- Jinlong Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Dongdong Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Yun Xie
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Zong Dai
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhanchao Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou 510006, People's Republic of China
| |
Collapse
|
27
|
Khan P, Ebenezer NS, Siddiqui JA, Maurya SK, Lakshmanan I, Salgia R, Batra SK, Nasser MW. MicroRNA-1: Diverse role of a small player in multiple cancers. Semin Cell Dev Biol 2021; 124:114-126. [PMID: 34034986 DOI: 10.1016/j.semcdb.2021.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022]
Abstract
The process of cancer initiation and development is a dynamic and complex mechanism involving multiple genetic and non-genetic variations. With the development of high throughput techniques like next-generation sequencing, the field of cancer biology extended beyond the protein-coding genes. It brought the functional role of noncoding RNAs into cancer-associated pathways. MicroRNAs (miRNAs) are one such class of noncoding RNAs regulating different cancer development aspects, including progression and metastasis. MicroRNA-1 (miR-1) is a highly conserved miRNA with a functional role in developing skeletal muscle precursor cells and cardiomyocytes and acts as a consistent tumor suppressor gene. In humans, two discrete genes, MIR-1-1 located on 20q13.333 and MIR-1-2 located on 18q11.2 loci encode for a single mature miR-1. Downregulation of miR-1 has been demonstrated in multiple cancers, including lung, breast, liver, prostate, colorectal, pancreatic, medulloblastoma, and gastric cancer. A vast number of studies have shown that miR-1 affects the hallmarks of cancer like proliferation, invasion and metastasis, apoptosis, angiogenesis, chemosensitization, and immune modulation. The potential therapeutic applications of miR-1 in multiple cancer pathways provide a novel platform for developing anticancer therapies. This review focuses on the different antitumorigenic and therapeutic aspects of miR-1, including how it regulates tumor development and associated immunomodulatory functions.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nivetha Sarah Ebenezer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
28
|
Alves MT, Simões R, Pestana RMC, de Oliveira AN, Oliveira HHM, Soares CE, Sabino ADP, Silva LM, Gomes KB. Interleukin-10 Levels are Associated with Doxorubicin-Related Cardiotoxicity in Breast Cancer Patients in a One-Year Follow-Up Study. Immunol Invest 2021; 51:883-898. [PMID: 33557640 DOI: 10.1080/08820139.2021.1882486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Myocardial toxicity is a common side effect of doxorubicin (DOXO) therapy in breast cancer patients. We hypothesized that DOXO-induced cardiotoxicity may be related to the release of inflammatory cytokines in response to the treatment. This study aimed to assess changes in plasma levels of interleukin (IL)-1β, IL-6, IL-10 and tumor necrosis factor (TNF) after chemotherapy and to correlate these levels with cardiac biomarkers and clinical data.Methods: Sixty-four patients with breast cancer treated with DOXO were included. Twenty-two subjects (cases) developed cardiotoxicity until one year after the end of DOXO treatment. Cytokines and cardiac markers were evaluated before starting chemotherapy (T0), up to 7 days after the last infusion (T1) and 12 months after the last infusion (T2).Results: Higher IL-10 levels were observed in the case group compared to controls at T1 (p = .006) and T2 (p = .046). The IL-1β, IL-6 and TNF levels did not change during treatment in each group (p > .05), nor between the case and control groups. The IL-10 levels were higher at T1 than at T0 and T2 (p < .05 for both) in the cardiotoxicity group. A correlation between IL-10 and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels at T0 and T2 in the cardiotoxicity group was observed (p = .048 and p = .004, respectively).Conclusion: Our study demonstrated that DOXO induced an increase in plasma IL-10 levels in patients who presented cardiotoxicity after treatment, which correlated with NT-proBNP levels.
Collapse
Affiliation(s)
- Michelle Teodoro Alves
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Simões
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Mendonça Cardoso Pestana
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Cintia Esteves Soares
- Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Karina Braga Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|