1
|
Belem-Filho IJA, Godoy ACV, Busnardo C, Frias AT, Zangrossi H, Del Bianco Borges B, Herval ACF, Correa FMA, Crestani CC, Alves FHF. Role of endocannabinoid neurotransmission in the insular cortex on cardiovascular, autonomic and behavioral responses evoked by acute restraint stress in rats. Neuropharmacology 2025; 271:110404. [PMID: 40049238 DOI: 10.1016/j.neuropharm.2025.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
This study aimed to investigate the role of endocannabinoid mechanisms present within the insular cortex (IC) on cardiovascular, autonomic and anxiogenic-like responses evoked by an acute session of restraint in rats. For this, bilateral guide cannulas directed to the IC were implanted in male Wistar rats for intrabrain microinjection of the selective CB1 receptor antagonist AM251, the selective TRPV1 receptor antagonist capsazepine, the fatty acid amide hydrolase (FAAH) inhibitor URB597 or the monoacylglycerol lipase (MAGL) inhibitor JZL184. The effects of pharmacological treatments were evaluated on restraint-evoked increases in blood pressure and heart rate, sympathetically-mediated cutaneous vasoconstriction and in delayed anxiogenic-like effect assessed 24h after stress exposure in the elevated plus maze (EPM) and open field (OF). We observed that acute restraint stress decreased the exploration of both EPM open arms and OF center region in animals treated with vehicle into the IC, thus indicating an anxiogenic-like effect. Inhibition of MAGL within the IC evoked by local treatment with JZL184 avoided the restraint-evoked anxiogenic effect. IC treatment with JZL184 also attenuated the tachycardia during restraint. The other pharmacological treatments did not modify the cardiovascular, autonomic and behavioral responses evoked by restraint. Taken together, these findings suggest that endocannabinoid neurotransmission in the IC, potentially acting through the endocannabinoid 2-arachidonoylglycerol, plays an inhibitory role in both tachycardia and anxiogenic-like effect evoked by stressful events.
Collapse
MESH Headings
- Animals
- Male
- Endocannabinoids/metabolism
- Rats, Wistar
- Restraint, Physical
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Rats
- Heart Rate/drug effects
- Heart Rate/physiology
- Piperidines/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Carbamates/pharmacology
- Anxiety/drug therapy
- Anxiety/physiopathology
- Anxiety/metabolism
- Insular Cortex/drug effects
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Benzodioxoles/pharmacology
- Pyrazoles/pharmacology
- Benzamides/pharmacology
- Capsaicin/analogs & derivatives
- Capsaicin/pharmacology
- Amidohydrolases/antagonists & inhibitors
- Autonomic Nervous System/drug effects
- Monoacylglycerol Lipases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/agonists
Collapse
Affiliation(s)
- Ivaldo J A Belem-Filho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana C V Godoy
- Department of Health Sciences, Faculty of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Cristiane Busnardo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Alana T Frias
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruno Del Bianco Borges
- Department of Health Sciences, Faculty of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Ana C F Herval
- Institute of Science, Technology and Innovation- Federal University of Lavras, Antônio Carlos Pinheiro de Alcântara, 855 - Jardim Califórnia Garden, São Sebastião Do Paraíso, Minas Gerais, Brazil
| | - Fernando M A Correa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos C Crestani
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Fernando H F Alves
- Institute of Science, Technology and Innovation- Federal University of Lavras, Antônio Carlos Pinheiro de Alcântara, 855 - Jardim Califórnia Garden, São Sebastião Do Paraíso, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Islam J, Rahman MT, Ali M, Kc E, Park YS. Potential hypothalamic mechanisms in trigeminal neuropathic pain: a comparative analysis with migraine and cluster headache. J Headache Pain 2024; 25:205. [PMID: 39587517 PMCID: PMC11587712 DOI: 10.1186/s10194-024-01914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Trigeminal neuropathic pain (TNP), migraine, and cluster headache (CH) profoundly impact the quality of life and present significant clinical challenges due to their complex neurobiological underpinnings. This review delves into the pivotal role of the hypothalamus in the pathophysiology of these facial pain syndromes, highlighting its distinctive functions and potential as a primary target for research, diagnosis, and therapy. While the involvement of the hypothalamus in migraine and CH has been increasingly supported by imaging and clinical studies, the precise mechanisms of its role remain under active investigation. The role of the hypothalamus in TNP, in contrast, is less explored and represents a critical gap in our understanding. The hypothalamus's involvement varies significantly across these conditions, orchestrating a unique interplay of neural circuits and neurotransmitter systems that underlie the distinct characteristics of each pain type. We have explored advanced neuromodulation techniques, such as deep brain stimulation (DBS) and optogenetics, which show promise in targeting hypothalamic dysfunction to alleviate pain symptoms. Furthermore, we discuss the neuroplastic changes within the hypothalamus that contribute to the chronicity of these pains and the implications of these findings for developing targeted therapies. By offering a comprehensive examination of the hypothalamus's roles, this paper aims to bridge existing knowledge gaps and propel forward the understanding and management of facial neuralgias, underscoring the hypothalamus's critical position in future neurological research.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Muhammad Ali
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Elina Kc
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
3
|
Quintero JM, Diaz LE, Galve-Roperh I, Bustos RH, Leon MX, Beltran S, Dodd S. The endocannabinoid system as a therapeutic target in neuropathic pain: a review. Expert Opin Ther Targets 2024; 28:739-755. [PMID: 39317147 DOI: 10.1080/14728222.2024.2407824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION This review highlights the critical role of the endocannabinoid system (ECS) in regulating neuropathic pain and explores the therapeutic potential of cannabinoids. Understanding the mechanisms of the ECS, including its receptors, endogenous ligands, and enzymatic routes, can lead to innovative treatments for chronic pain, offering more effective therapies for neuropathic conditions. This review bridges the gap between preclinical studies and clinical applications by emphasizing ECS modulation for better pain management outcomes. AREAS COVERED A review mapped the existing literature on neuropathic pain and the effects of modulating the ECS using natural and synthetic cannabinoids. This analysis examined ECS components and their alterations in neuropathic pain, highlighting the peripheral, spinal, and supraspinal mechanisms. This review aimed to provide a thorough understanding of the therapeutic potential of cannabinoids in the management of neuropathic pain. EXPERT OPINION Advances in cannabinoid research have shown significant potential for the management of chronic neuropathic pain. The study emphasizes the need for high-quality clinical trials and collaborative efforts among researchers, clinicians, and regulatory bodies to ensure safe and effective integration of cannabinoids into pain management protocols. Understanding the mechanisms and optimizing cannabinoid formulations and delivery methods are crucial for enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Jose-Manuel Quintero
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía, Cundinamarca, Colombia
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía, Colombia
| | | | - Ismael Galve-Roperh
- Department of Biochemistry and Molecular Biology, School of Chemistry and Instituto de Investigación en Neuroquímica, Complutense University, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rosa-Helena Bustos
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía, Cundinamarca, Colombia
| | - Marta-Ximena Leon
- Grupo Dolor y Cuidados Paliativos, Universidad de La Sabana, Chía, Colombia
| | | | - Seetal Dodd
- Faculty of Medicine, Universidad de La Sabana, Chía, Colombia
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
4
|
Wei HL, Yu YS, Wang MY, Zhou GP, Li J, Zhang H, Zhou Z. Exploring potential neuroimaging biomarkers for the response to non-steroidal anti-inflammatory drugs in episodic migraine. J Headache Pain 2024; 25:104. [PMID: 38902598 PMCID: PMC11191194 DOI: 10.1186/s10194-024-01812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) are considered first-line medications for acute migraine attacks. However, the response exhibits considerable variability among individuals. Thus, this study aimed to explore a machine learning model based on the percentage of amplitude oscillations (PerAF) and gray matter volume (GMV) to predict the response to NSAIDs in migraine treatment. METHODS Propensity score matching was adopted to match patients having migraine with response and nonresponse to NSAIDs, ensuring consistency in clinical characteristics and migraine-related features. Multimodal magnetic resonance imaging was employed to extract PerAF and GMV, followed by feature selection using the least absolute shrinkage and selection operator regression and recursive feature elimination algorithms. Multiple predictive models were constructed and the final model with the smallest predictive residuals was chosen. The model performance was evaluated using the area under the receiver operating characteristic (ROCAUC) curve, area under the precision-recall curve (PRAUC), balance accuracy (BACC), sensitivity, F1 score, positive predictive value (PPV), and negative predictive value (NPV). External validation was performed using a public database. Then, correlation analysis was performed between the neuroimaging predictors and clinical features in migraine. RESULTS One hundred eighteen patients with migraine (59 responders and 59 non-responders) were enrolled. Six features (PerAF of left insula and left transverse temporal gyrus; and GMV of right superior frontal gyrus, left postcentral gyrus, right postcentral gyrus, and left precuneus) were observed. The random forest model with the lowest predictive residuals was selected and model metrics (ROCAUC, PRAUC, BACC, sensitivity, F1 score, PPV, and NPV) in the training and testing groups were 0.982, 0.983, 0.927, 0.976, 0.930, 0.889, and 0.973; and 0.711, 0.648, 0.639, 0.667,0.649, 0.632, and 0.647, respectively. The model metrics of external validation were 0.631, 0.651, 0.611, 0.808, 0.656, 0.553, and 0.706. Additionally, a significant positive correlation was found between the GMV of the left precuneus and attack time in non-responders. CONCLUSIONS Our findings suggest the potential of multimodal neuroimaging features in predicting the efficacy of NSAIDs in migraine treatment and provide novel insights into the neural mechanisms underlying migraine and its optimized treatment strategy.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, China
| | - Meng-Yao Wang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, China
| | - Gang-Ping Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China.
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, China.
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
- Department of Radiology, Nanjing Drum Tower Hospital, Nanjing, China.
| |
Collapse
|
5
|
Islam J, Rahman MT, Kc E, Park YS. Deciphering the functional role of insular cortex stratification in trigeminal neuropathic pain. J Headache Pain 2024; 25:76. [PMID: 38730344 PMCID: PMC11084050 DOI: 10.1186/s10194-024-01784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Trigeminal neuropathic pain (TNP) is a major concern in both dentistry and medicine. The progression from normal to chronic TNP through activation of the insular cortex (IC) is thought to involve several neuroplastic changes in multiple brain regions, resulting in distorted pain perception and associated comorbidities. While the functional changes in the insula are recognized contributors to TNP, the intricate mechanisms underlying the involvement of the insula in TNP processing remain subjects of ongoing investigation. Here, we have overviewed the most recent advancements regarding the functional role of IC in regulating TNP alongside insights into the IC's connectivity with other brain regions implicated in trigeminal pain pathways. In addition, the review examines diverse modulation strategies that target the different parts of the IC, thereby suggesting novel diagnostic and therapeutic management of chronic TNP in the future.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
6
|
Wei HL, Yang Q, Zhou GP, Chen YC, Yu YS, Yin X, Li J, Zhang H. Abnormal causal connectivity of anterior cingulate cortex-visual cortex circuit related to nonsteroidal anti-inflammatory drug efficacy in migraine. Eur J Neurosci 2024; 59:446-456. [PMID: 38123158 DOI: 10.1111/ejn.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
The anterior cingulate cortex (ACC) and visual cortex are integral components of the neurophysiological mechanisms underlying migraine, yet the impact of altered connectivity patterns between these regions on migraine treatment remains unknown. To elucidate this issue, we investigated the abnormal causal connectivity between the ACC and visual cortex in patients with migraine without aura (MwoA), based on the resting-state functional magnetic resonance imaging data, and its predictive ability for the efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs). The results revealed increased causal connectivity from the bilateral ACC to the lingual gyrus (LG) and decreased connectivity in the opposite direction in nonresponders compared with the responders. Moreover, compared with the healthy controls, nonresponders exhibited heightened causal connectivity from the ACC to the LG, right inferior occipital gyrus (IOG) and left superior occipital gyrus, while connectivity patterns from the LG and right IOG to the ACC were diminished. Based on the observed abnormal connectivity patterns, the support vector machine (SVM) models showed that the area under the receiver operator characteristic curves for the ACC to LG, LG to ACC and bidirectional models were 0.857, 0.898, and 0.939, respectively. These findings indicate that neuroimaging markers of abnormal causal connectivity in the ACC-visual cortex circuit may facilitate clinical decision-making regarding NSAIDs administration for migraine management.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Qian Yang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Gang-Ping Zhou
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Wei HL, Wei C, Feng Y, Yan W, Yu YS, Chen YC, Yin X, Li J, Zhang H. Predicting the efficacy of non-steroidal anti-inflammatory drugs in migraine using deep learning and three-dimensional T1-weighted images. iScience 2023; 26:108107. [PMID: 37867961 PMCID: PMC10585394 DOI: 10.1016/j.isci.2023.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Deep learning (DL) models based on individual images could contribute to tailored therapies and personalized treatment strategies. We aimed to construct a DL model using individual 3D structural images for predicting the efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) in migraine. A 3D convolutional neural network model was constructed, with ResNet18 as the classification backbone, to link structural images to predict the efficacy of NSAIDs. In total, 111 patients were included and allocated to the training and testing sets in a 4:1 ratio. The prediction accuracies of the ResNet34, ResNet50, ResNeXt50, DenseNet121, and 3D ResNet18 models were 0.65, 0.74, 0.65, 0.70, and 0.78, respectively. This model, based on individual 3D structural images, demonstrated better predictive performance in comparison to conventional models. Our study highlights the feasibility of the DL algorithm based on brain structural images and suggests that it can be applied to predict the efficacy of NSAIDs in migraine treatment.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Cunsheng Wei
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Yibo Feng
- Infervision Medical Technology Co., Ltd, Beijing, China
| | - Wanying Yan
- Infervision Medical Technology Co., Ltd, Beijing, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu Province, Nanjing 210006, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu Province, Nanjing 210006, China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| |
Collapse
|
8
|
Zhou J, Zeng F, Cheng S, Dong X, Jiang N, Zhang X, Tang C, He W, Chen Y, Sun N, Zhou Y, Li X, Hu S, Sun R, Wintermark M, Yang W, Liang F, Li Z. Modulation effects of different treatments on periaqueductal gray resting state functional connectivity in knee osteoarthritis knee pain patients. CNS Neurosci Ther 2023. [PMID: 36890655 DOI: 10.1111/cns.14153] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND The analgesic effect of acupuncture is widely recognized, but the mechanical characteristics of acupuncture for pain relief, compared to non-steroidal anti-inflammatory (NSAIDs) and placebo medication, remain unknown. AIMS To compare the modulation effects of acupuncture treatment with NSAIDs and placebo medication on descending pain modulation system (DPMS) in knee osteoarthritis (KOA) patients. METHODS This study recruited 180 KOA patients with knee pain and 41 healthy controls (HCs). Individuals with KOA knee pain were divided randomly into groups of verum acupuncture (VA), sham acupuncture (SA), celecoxib (SC), placebo (PB), and waiting list (WT), with 36 patients in each group. VA and SA groups included ten sessions of puncturing acupoints or puncturing non-acupoints acupuncture treatment for two successive weeks. Celecoxib capsules were continuously given orally to patients in the SC group at a dosage of 200 mg daily for 2 weeks. In the PB group, patients received a placebo capsule once a day for 2 weeks at the same dosage as celecoxib capsules. In the WL group, patients did not receive any treatment. Patients underwent a resting-state BOLD-fMRI scan pre- and post-receiving the therapy, whereas HCs only underwent a baseline scan. Seed (ventrolateral periaqueductal gray, vlPAG, a key node in DPMS) based resting-state functional connectivity (rs-FC) was applied in the data analysis. RESULTS All groups demonstrated improved knee pain scores relative to the initial state. There was no statistical difference between the VA and SA groups in all clinical outcomes, and vlPAG rs-FC alterations. KOA knee pain individuals reported higher vlPAG rs-FC in the bilateral thalamus than HCs. KOA knee pain patients in the acupuncture group (verum + sham, AG) exhibited increased vlPAG rs-FC with the right dorsolateral prefrontal cortex (DLPFC) and the right angular, which is associated with knee pain improvement. In contrast with the SC and PB group, the AG exhibited significantly increased vlPAG rs-FC with the right DLPFC and angular. Contrary to the WT group, the AG showed greater vlPAG rs-FC with the right DLPFC and precuneus. CONCLUSIONS Acupuncture treatment, celecoxib, and placebo medication have different modulation effects on vlPAG DPMS in KOA knee pain patients. Acupuncture could modulate vlPAG rs-FC with brain regions associated with cognitive control, attention, and reappraisal for knee pain relief in KOA patients, compared with celecoxib and placebo medication.
Collapse
Affiliation(s)
- Jun Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zeng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture & Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shirui Cheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture & Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Dong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture & Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nannan Jiang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyue Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture & Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chenjian Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhua He
- The Second Affiliated Hospital of Shanxi, University of Traditional Chinese Medicine, Taiyuan, China
| | - Yang Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Yuanfang Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinling Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengjie Hu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruirui Sun
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture & Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Max Wintermark
- Radiology Department, Stanford University, Stanford, California, USA
| | - Weihua Yang
- Dali Bai Autonomous Prefecture Chinese Medicine Hospital, Dali, China
| | - Fanrong Liang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengjie Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture & Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Martínez-Martínez MDC, Parra-Flores LI, Baeza-Flores GDC, Torres-López JE. Isobolographic analysis of antinociceptive effect of ketorolac, indomethacin, and paracetamol after simultaneous peripheral local and systemic administration. Behav Pharmacol 2022; 33:15-22. [PMID: 35007232 DOI: 10.1097/fbp.0000000000000661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was designed to characterize the type of interaction (subadditive, additive, or synergistic) after simultaneous administration by two different routes (intraperitoneal plus peripheral local) of the same nonsteroidal anti-inflammatory drugs (NSAID) ketorolac and indomethacin or paracetamol. The antinociceptive effects of locally or intraperitoneally delivery of NSAIDs or paracetamol, and the simultaneous administration by the two routes at fixed-dose ratio combination were evaluated using the formalin test. Pain-related behavior was quantified as the number of flinches of the injected paw. Isobolographic analysis was used to characterize the interaction between the two routes. ED30 values were estimated for individual drugs, and isobolograms were constructed. Ketorolac, indomethacin, or paracetamol and fixed-dose ratio combinations produced a dose-dependent antinociceptive effect in the second but not in the first phase of the formalin test. The analysis of interaction type after simultaneous administration by the two routes the same NSAID or paracetamol (on basis of their ED30), revealed that the simultaneous administration of ketorolac or paracetamol was additive and for indomethacin was synergistic. Since the mechanisms underlying the additive effect of ketorolac or paracetamol and the synergistic effect of indomethacin were not explored; it is possible that the peripheral and central mechanism is occurring at several anatomical sites. The significance of these findings for theory and pain pharmacotherapy practice indicates that the combination of one analgesic drug given simultaneously by two different administration routes could be an additive or it could lead to a synergistic interaction.
Collapse
Affiliation(s)
- Mayra Del Carmen Martínez-Martínez
- Laboratorio Mecanismos del Dolor, Centro de Investigación, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa Tabasco, México
| | | | | | | |
Collapse
|
10
|
Current Understanding of the Involvement of the Insular Cortex in Neuropathic Pain: A Narrative Review. Int J Mol Sci 2021; 22:ijms22052648. [PMID: 33808020 PMCID: PMC7961886 DOI: 10.3390/ijms22052648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropathic pain is difficult to cure and is often accompanied by emotional and psychological changes. Exploring the mechanisms underlying neuropathic pain will help to identify a better treatment for this condition. The insular cortex is an important information integration center. Numerous imaging studies have documented increased activity of the insular cortex in the presence of neuropathic pain; however, the specific role of this region remains controversial. Early studies suggested that the insular lobe is mainly involved in the processing of the emotional motivation dimension of pain. However, increasing evidence suggests that the role of the insular cortex is more complex and may even be related to the neural plasticity, cognitive evaluation, and psychosocial aspects of neuropathic pain. These effects contribute not only to the development of neuropathic pain, but also to its comorbidity with neuropsychiatric diseases. In this review, we summarize the changes that occur in the insular cortex in the presence of neuropathic pain and analgesia, as well as the molecular mechanisms that may underlie these conditions. We also discuss potential sex-based differences in these processes. Further exploration of the involvement of the insular lobe will contribute to the development of new pharmacotherapy and psychotherapy treatments for neuropathic pain.
Collapse
|