1
|
Rahman ML, Bonnard AA, Wang F, Ruaud L, Guimiot F, Li Y, Defer I, Wang Y, Marchand V, Motorin Y, Yao B, Drunat S, Ghalei H. New ZNHIT3 Variants Disrupting snoRNP Assembly Cause Prenatal PEHO Syndrome with Isolated Hydrops. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.26.24312490. [PMID: 39252897 PMCID: PMC11383450 DOI: 10.1101/2024.08.26.24312490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
ZNHIT3 (zinc finger HIT type containing protein 3) is an evolutionarily conserved protein required for ribosome biogenesis by mediating the assembly of small nucleolar RNAs (snoRNAs) of class C/D into ribonucleoprotein complexes (snoRNPs). Missense mutations in the gene encoding ZNHIT3 protein have been previously reported to cause PEHO syndrome, a severe neurodevelopmental disorder typically presenting after birth. We discuss here the case of two fetuses from a single family who presented with isolated hydrops during the early second trimester of pregnancy, resulting in intrauterine demise. Autopsy revealed no associated malformation. Through whole-genome quartet analysis, we identified two novel variants within the ZNHIT3 gene, both inherited from healthy parents and occurring as compound heterozygotes in both fetuses. The c.40T>C p.Cys14Arg variant originated from the father, while the c.251_254delAAGA variant was of maternal origin. Analysis of the variants in human cell culture models reveals that both variants reduce cell growth, albeit to different extents, and impact the protein's stability and function in distinct ways. The c.251_254delAAGA results in production of a stable form of ZNHIT3 that lacks a domain required for mediating snoRNP biogenesis, whereas the c.40T>C p.Cys14Arg variation behaves similarly to the previously described PEHO-associated ZNHIT3 variants that destabilize the protein. Interestingly, both variations lead to a marked decrease in specific box C/D snoRNA levels, reduced rRNA levels and cellular translation. Analysis of rRNA methylation pattern in fetus samples reveals distinct sites of hypo 2'-O-methylation. RNA-seq analysis of undifferentiated and differentiated SHSY5Y cells transfected with the ZNHIT3 variants reveals differential expression of a set of genes, many of which are associated with developmental processes and RNA binding compared to cells expressing wild-type ZNHIT3. In summary, this work extends the phenotype of PEHO syndrome to include antenatal manifestations and describe the molecular defects induced by two novel ZNHIT3 variants.
Collapse
Affiliation(s)
- Md Lutfur Rahman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Adeline A. Bonnard
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
- INSERM UMR 1131, Saint-Louis Research Institute, Paris University, Paris, France
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lyse Ruaud
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
- INSERM UMR 1141, Paris-Cité University, NeuroDiderot, Paris, France
| | - Fabien Guimiot
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
- INSERM UMR 1141, Paris-Cité University, NeuroDiderot, Paris, France
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ines Defer
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
- INSERM UMR 1131, Saint-Louis Research Institute, Paris University, Paris, France
| | - Yilin Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Virginie Marchand
- Université de Lorraine, SMP IBSLor, Biopôle, 9 Avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, France
| | - Yuri Motorin
- Université de Lorraine, UMR7365 IMoPA, CNRS, Biopôle, 9 Avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, France
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Séverine Drunat
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
- INSERM UMR 1141, Paris-Cité University, NeuroDiderot, Paris, France
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Issa MY, Hafez MA, Mounir SM, Abdel Ghafar SF, Zaki MS, Abdel-Hamid MS. Refining the phenotypic spectrum of CCDC88A-related PEHO-like syndrome. Am J Med Genet A 2024; 194:226-232. [PMID: 37798908 DOI: 10.1002/ajmg.a.63425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) and PEHO-like syndromes are very rare infantile disorders characterized by profound intellectual disability, hypotonia, convulsions, optic, and progressive brain atrophy. Many causative genes for PEHO and PEHO-like syndromes have been identified including CCDC88A. So far, only five patients from two unrelated families with biallelic CCDC88A variants have been reported in the literature. Herein, we describe a new family from Egypt with a lethal epileptic encephalopathy. Our patient was the youngest child born to a highly consanguineous couple and had a family history of five deceased sibs with the same condition. She presented with postnatal microcephaly, poor visual responsiveness, and epilepsy. Her brain MRI showed abnormal cortical gyration with failure of opercularization of the insula, hypogenesis of corpus callosum, colpocephaly, reduced white matter, hypoplastic vermis, and brain stem. Whole exome sequencing identified a new homozygous frameshift variant in CCDC88A gene (c.1795_1798delACAA, p.Thr599ValfsTer4). Our study presents the third reported family with this extremely rare disorder. We also reviewed all described cases to better refine the phenotypic spectrum associated with biallelic loss of function variants in the CCDC88A gene.
Collapse
Affiliation(s)
- Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona A Hafez
- Radiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samir M Mounir
- Pediatrics Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Sherif F Abdel Ghafar
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
3
|
Dreggors-Walker RE, Cohen LN, Khoshnevis S, Marchand V, Motorin Y, Ghalei H. Studies of mutations of assembly factor Hit 1 in budding yeast suggest translation defects as the molecular basis for PEHO syndrome. J Biol Chem 2022; 298:102261. [PMID: 35843310 PMCID: PMC9418376 DOI: 10.1016/j.jbc.2022.102261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Regulation of protein synthesis is critical for control of gene expression in all cells. Ribosomes are ribonucleoprotein machines responsible for translating cellular proteins. Defects in ribosome production, function, or regulation are detrimental to the cell and cause human diseases, such as progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome. PEHO syndrome is a devastating neurodevelopmental disorder caused by mutations in the ZNHIT3 gene, which encodes an evolutionarily conserved nuclear protein. The precise mechanisms by which ZNHIT3 mutations lead to PEHO syndrome are currently unclear. Studies of the human zinc finger HIT-type containing protein 3 homolog in budding yeast (Hit1) revealed that this protein is critical for formation of small nucleolar ribonucleoprotein complexes that are required for rRNA processing and 2′-O-methylation. Here, we use budding yeast as a model system to reveal the basis for the molecular pathogenesis of PEHO syndrome. We show that missense mutations modeling those found in PEHO syndrome patients cause a decrease in steady-state Hit1 protein levels, a significant reduction of box C/D snoRNA levels, and subsequent defects in rRNA processing and altered cellular translation. Using RiboMethSeq analysis of rRNAs isolated from actively translating ribosomes, we reveal site-specific changes in the rRNA modification pattern of PEHO syndrome mutant yeast cells. Our data suggest that PEHO syndrome is a ribosomopathy and reveal potential new aspects of the molecular basis of this disease in translation dysregulation.
Collapse
Affiliation(s)
- R Elizabeth Dreggors-Walker
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA; Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Emory University, Atlanta, Georgia 30322, USA
| | - Lauren N Cohen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Virginie Marchand
- Université de Lorraine, UAR2008/US40 IBSLor, CNRS-INSERM, Biopôle, 9 Avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Yuri Motorin
- Université de Lorraine, UMR7365 IMoPA, CNRS- Biopôle, 9 Avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
4
|
Abstract
Macroautophagy is an evolutionarily conserved process that delivers diverse cellular contents to lysosomes for degradation. As our understanding of this pathway grows, so does our appreciation for its importance in disorders of the CNS. Once implicated primarily in neurodegenerative events owing to acute injury and ageing, macroautophagy is now also linked to disorders of neurodevelopment, indicating that it is essential for both the formation and maintenance of a healthy CNS. In parallel to understanding the significance of macroautophagy across contexts, we have gained a greater mechanistic insight into its physiological regulation and the breadth of cargoes it can degrade. Macroautophagy is a broadly used homeostatic process, giving rise to questions surrounding how defects in this single pathway could cause diseases with distinct clinical and pathological signatures. To address this complexity, we herein review macroautophagy in the mammalian CNS by examining three key features of the process and its relationship to disease: how it functions at a basal level in the discrete cell types of the brain and spinal cord; which cargoes are being degraded in physiological and pathological settings; and how the different stages of the macroautophagy pathway intersect with diseases of neurodevelopment and adult-onset neurodegeneration.
Collapse
Affiliation(s)
- Christopher J Griffey
- Doctoral Program in Neurobiology and Behaviour, Medical Scientist Training Program, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology, and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|