1
|
Tang X, Zhang A, Feng X, Wang W, Chen F, Tao Y, Wu C, Jiang F. Global research trends on the associations between chronic kidney disease and mitochondria: insights from the bibliometric analysis. Int Urol Nephrol 2025:10.1007/s11255-025-04437-x. [PMID: 40019610 DOI: 10.1007/s11255-025-04437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a global health burden characterized by a progressive and irreversible loss of kidney function. Mitochondrial dysfunction has emerged as a pivotal factor in CKD pathogenesis, contributing to renal cell injury, inflammation, and fibrosis through mechanisms such as oxidative stress and impaired bioenergetics. This study aimed to provide a comprehensive bibliometric analysis of global research trends on the associations between CKD and mitochondria over the past two decades. METHODS A bibliometric analysis was conducted using the Web of Science Core Collection database, focusing on publications from 2004 to 2024. Data were analyzed using Citespace and VOSviewer to visualize publication trends, key contributors, keyword co-occurrences, and collaboration networks. RESULTS A total of 2,870 publications were identified, with a significant increase in annual output observed after 2010. The United States, China, and Japan were the leading contributors, fostering strong international collaborations. Institutional analysis highlighted the prominent roles of the US Department of Veterans Affairs and the University of California System. Key authors, such as Jose Pedraza-Chaverri and HM Kang, and influential studies addressing mitochondrial quality control and metabolic reprogramming were identified. Keyword analysis revealed major research themes, including oxidative stress, ischemia-reperfusion injury, and fatty acid oxidation, with recent trends emphasizing mitochondrial dynamics and autophagy. CONCLUSIONS This analysis underscored the growing recognition of mitochondrial dysfunction in CKD pathogenesis and highlighted the interdisciplinary nature of this field. The findings revealed key research trends, influential contributors, and emerging topics, providing a foundation for future studies and the development of targeted mitochondrial therapies. These insights hold promise for advancing the understanding and treatment of CKD through precision medicine approaches. Specifically, therapeutic strategies aimed at enhancing mitochondrial biogenesis, promoting mitophagy, and restoring metabolic balance may offer novel avenues for delaying CKD progression and mitigating renal dysfunction. Integrating these mitochondrial-targeted interventions into current clinical practice could improve patient outcomes and guide the development of more effective treatment protocols.
Collapse
Affiliation(s)
- Xinfang Tang
- Department of Nephrology, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Anna Zhang
- Department of Nephrology, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Xiaojuan Feng
- Department of Laboratory, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Wenjuan Wang
- Department of Ultrasound, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Fanghong Chen
- Department of Scientific Research, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Yijie Tao
- Department of Nephrology, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
2
|
Balzer MS. LAPTM5: A Novel Target in an Old Fight against Tubular Senescence. J Am Soc Nephrol 2024; 35:1624-1626. [PMID: 39621687 PMCID: PMC11617476 DOI: 10.1681/asn.0000000524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Affiliation(s)
- Michael S Balzer
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany; and Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
3
|
Liu X, Zhan P, Zhang Y, Jin H, Wang Y, Yang Y, Wang Z, Wang X, Xu Q, Zhen J, Sun R, Sun J, Liu M, Yi F. Lysosomal-Associated Protein Transmembrane 5, Tubular Senescence, and Progression of CKD. J Am Soc Nephrol 2024; 35:1655-1670. [PMID: 39078711 PMCID: PMC11617486 DOI: 10.1681/asn.0000000000000446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Key Points Lysosomal-associated protein transmembrane 5 (LAPTM5) is increased in tubular epithelial cells in CKD. Conditional knockout of Laptm5 in tubules attenuates kidney fibrosis in mice with CKD. LAPTM5 contributes to tubular senescence by inhibiting WWP2-mediated ubiquitination of notch1 intracellular domain. Background Tubular senescence is a major determinant of CKD, and identification of potential therapeutic targets involved in senescent tubular epithelial cells has clinical importance. Lysosomal-associated protein transmembrane 5 (LAPTM5) is a key molecule related to T- and B-cell receptor expression and inflammation. However, the expression pattern of LAPTM5 in the kidney and the contribution of LAPTM5 to the development of CKD are unknown. Methods Laptm5 −/− mice and tubule specific–Laptm5 knockout mice were used to examine the role of LAPTM5 in tubular senescence by establishing different experimental mouse CKD models. Results LAPTM5 expression was significantly induced in the kidney, especially in proximal tubules and distal convoluted tubules, from mice with aristolochic acid nephropathy, bilateral ischemia/reperfusion injury–induced CKD, or unilateral ureter obstruction. Tubule-specific deletion of Laptm5 inhibited senescence of tubular epithelial cells and alleviated tubulointerstitial fibrosis in aged mice. Moreover, Laptm5 deficiency ameliorated kidney injury and tubular senescence in mice with CKD. Mechanistically, LAPTM5 inhibited ubiquitination of notch1 intracellular domain by mediating WWP2 lysosomal degradation and then leading to cellular senescence in tubular epithelial cells. We also observed a higher expression of LAPTM5 in tubules from patients with CKD, and the level of LAPTM5 was correlated with kidney fibrosis and tubular senescence in people with CKD. Conclusions LAPTM5 contributed to tubular senescence by regulating the WWP2/notch1 intracellular domain signaling pathway and exacerbated kidney injury during the progression of CKD.
Collapse
Affiliation(s)
- Xiaohan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ping Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Huiying Jin
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Youzhao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yujie Yang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ziying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qianqian Xu
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Rong Sun
- The Second Hospital of Shandong University, Jinan, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
4
|
Panditrao Lahane G, Dhar A. Renoprotective effect of Nesfatin-1 in Adenine-Induced Chronic kidney Disease: An in vitro and in vivo study. Biochem Pharmacol 2024; 225:116284. [PMID: 38750903 DOI: 10.1016/j.bcp.2024.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Chronic Kidney Disease (CKD) presents a significant global health challenge with limited treatment options. Nesfatin-1, an anorexigenic peptide, has demonstrated antioxidant, anti-inflammatory, and anti-apoptotic properties in various diseases. However, the role of nesfatin-1 in CKD remains unclear. This study investigates the potential renoprotective effects of nesfatin-1 in adenine-induced CKD mice and in NRK-52E renal epithelial cells. Male C57BL/6J mice and NRK-52E renal epithelial cells were administered adenine to induce CKD. Various aspects of renal function, histopathology, oxidative stress, inflammation, apoptosis, and renal interstitial fibrosis were assessed and downstream pathways were investigated. Adenine-fed mice exhibited reduced nesfatin-1 expression and increased markers of kidney damage, including elevated blood urea nitrogen (BUN), serum creatinine, and histological abnormalities, reactive oxygen species (ROS), inflammation, apoptosis, and fibrosis. Treatment with nesfatin-1 in adenine induced mice significantly reversed these changes. Nesfatin-1 also lowered calcium levels and the expression of inflammatory markers, including IL-1β, IL-6, TNF-α, and Nf-kB. Furthermore, nesfatin-1 reduced the expression of apoptotic markers (Caspase-3, Caspase-1, Bax/Bcl2 ratio) and restored the balance of Bcl2 and MMP. Lastly, nesfatin-1 attenuated fibrotic markers (Tgf-β, Smad2/3,4, type IV collagen, α-SMA) in both adenine-induced CKD mice and NRK-52E cells. In conclusion, our results suggest that nesfatin-1 may enhance kidney function in adenine-induced CKD mice and NRK-52E cells. The renoprotective effects of nesfatin-1 are likely associated with its antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic properties.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India.
| |
Collapse
|
5
|
Abokyi S, Ghartey-Kwansah G, Tse DYY. TFEB is a central regulator of the aging process and age-related diseases. Ageing Res Rev 2023; 89:101985. [PMID: 37321382 DOI: 10.1016/j.arr.2023.101985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Old age is associated with a greater burden of disease, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as other chronic diseases. Coincidentally, popular lifestyle interventions, such as caloric restriction, intermittent fasting, and regular exercise, in addition to pharmacological interventions intended to protect against age-related diseases, induce transcription factor EB (TFEB) and autophagy. In this review, we summarize emerging discoveries that point to TFEB activity affecting the hallmarks of aging, including inhibiting DNA damage and epigenetic modifications, inducing autophagy and cell clearance to promote proteostasis, regulating mitochondrial quality control, linking nutrient-sensing to energy metabolism, regulating pro- and anti-inflammatory pathways, inhibiting senescence and promoting cell regenerative capacity. Furthermore, the therapeutic impact of TFEB activation on normal aging and tissue-specific disease development is assessed in the contexts of neurodegeneration and neuroplasticity, stem cell differentiation, immune responses, muscle energy adaptation, adipose tissue browning, hepatic functions, bone remodeling, and cancer. Safe and effective strategies of activating TFEB hold promise as a therapeutic strategy for multiple age-associated diseases and for extending lifespan.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong SAR of China.
| |
Collapse
|
6
|
Kim YS, Lee AS, Hur HJ, Lee SH, Na HJ, Sung MJ. Renoprotective Effect of Chrysanthemum coronarium L. Extract on Adenine-Induced Chronic Kidney Disease in Mice. Pharmaceuticals (Basel) 2023; 16:1048. [PMID: 37513959 PMCID: PMC10383626 DOI: 10.3390/ph16071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic kidney disease (CKD) gradually leads to loss of renal function and is associated with inflammation and fibrosis. Chrysanthemum coronarium L., a leafy vegetable, possesses various beneficial properties, including anti-oxidative, anti-inflammatory, and antiproliferative effects. In this study, we investigated the renoprotective effect of Chrysanthemum coronarium L. extract (CC) on adenine (AD)-induced CKD in mice. CKD was induced by feeding mice with an AD diet (0.25% w/w) for 4 weeks. Changes in renal function, histopathology, inflammation, and renal interstitial fibrosis were analyzed. The adenine-fed mice were characterized by increased blood urea nitrogen, serum creatinine, and histological changes, including inflammation and fibrosis; however, these changes were significantly restored by treatment with CC. Additionally, CC inhibited the expression of the inflammatory markers, monocyte chemoattractant protein-1, interleukins-6 and -1β, intercellular adhesion molecule-1, and cyclooxygenase 2. Moreover, CC suppressed the expression of the fibrotic markers, type IV collagen, and fibronectin. Furthermore, CC attenuated the expression of profibrotic genes (tumor growth factor-β and α-smooth muscle actin) in AD-induced renal injury mice. Thus, our results suggest that CC has the potential to attenuate AD-induced renal injury and might offer a new option as a renoprotective agent or functional food supplement to manage CKD.
Collapse
Affiliation(s)
- Yi-Seul Kim
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, 245 Nongsaenmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Ae-Sin Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, 245 Nongsaenmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Haeng-Jeon Hur
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, 245 Nongsaenmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Sang-Hee Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, 245 Nongsaenmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Hyun-Jin Na
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, 245 Nongsaenmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Mi-Jeong Sung
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, 245 Nongsaenmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| |
Collapse
|
7
|
Kamt SF, Liu J, Yan LJ. Renal-Protective Roles of Lipoic Acid in Kidney Disease. Nutrients 2023; 15:1732. [PMID: 37049574 PMCID: PMC10097220 DOI: 10.3390/nu15071732] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The kidney is a crucial organ that eliminates metabolic waste and reabsorbs nutritious elements. It also participates in the regulation of blood pressure, maintenance of electrolyte balance and blood pH homeostasis, as well as erythropoiesis and vitamin D maturation. Due to such a heavy workload, the kidney is an energy-demanding organ and is constantly exposed to endogenous and exogenous insults, leading to the development of either acute kidney injury (AKI) or chronic kidney disease (CKD). Nevertheless, there are no therapeutic managements to treat AKI or CKD effectively. Therefore, novel therapeutic approaches for fighting kidney injury are urgently needed. This review article discusses the role of α-lipoic acid (ALA) in preventing and treating kidney diseases. We focus on various animal models of kidney injury by which the underlying renoprotective mechanisms of ALA have been unraveled. The animal models covered include diabetic nephropathy, sepsis-induced kidney injury, renal ischemic injury, unilateral ureteral obstruction, and kidney injuries induced by folic acid and metals such as cisplatin, cadmium, and iron. We highlight the common mechanisms of ALA's renal protective actions that include decreasing oxidative damage, increasing antioxidant capacities, counteracting inflammation, mitigating renal fibrosis, and attenuating nephron cell death. It is by these mechanisms that ALA achieves its biological function of alleviating kidney injury and improving kidney function. Nevertheless, we also point out that more comprehensive, preclinical, and clinical studies will be needed to make ALA a better therapeutic agent for targeting kidney disorders.
Collapse
Affiliation(s)
- Sulin F. Kamt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China;
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| |
Collapse
|
8
|
Habshi T, Shelke V, Kale A, Anders HJ, Gaikwad AB. Role of endoplasmic reticulum stress and autophagy in the transition from acute kidney injury to chronic kidney disease. J Cell Physiol 2023; 238:82-93. [PMID: 36409755 DOI: 10.1002/jcp.30918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health concerns with increasing rates in morbidity and mortality. Transition from AKI-to-CKD is common and requires awareness in the management of AKI survivors. AKI-to-CKD transition is a main risk factor for the development of cardiovascular disease and progression to end-stage kidney disease. The mechanisms driving AKI-to-CKD transition are being explored to identify potential molecular and cellular targets for renoprotective drug interventions. Endoplasmic reticulum (ER) stress and autophagy are involved in the process of AKI-to-CKD transition. Excessive ER stress results in the persistent activation of unfolded protein response, which is an underneath cause of kidney cell death. Moreover, ER stress modulates autophagy and vice-versa. Autophagy is a degradation defensive mechanism protecting cells from malfunction. However, the underlying pathological mechanism involved in this interplay in the context of AKI-to-CKD transition is still unclear. In this review, we discuss the crosstalk between ER stress and autophagy in AKI, AKI-to-CKD transition, and CKD progression. In addition, we explore possible therapeutic targets that can regulate ER stress and autophagy to prevent AKI-to-CKD transition to improve the long-term prognosis of AKI survivors.
Collapse
Affiliation(s)
- Tahib Habshi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| |
Collapse
|
9
|
Ren J, Wei H, Sun J, Feng X, Zhang Y, Yuan H, Miao J, Qi X, Qiao Y, Xiao B, Li Q. GSK3β-dependent lysosome biogenesis: An effective pathway to mitigate renal fibrosis with LM49. Front Pharmacol 2022; 13:925489. [PMID: 36225562 PMCID: PMC9550195 DOI: 10.3389/fphar.2022.925489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Renal fibrosis is an incurable disorder characterised by an imbalance of the extracellular matrix (ECM) favouring excess production over degradation. The identification of actionable pathways and agents that promote ECM degradation to restore ECM homeostasis may help mitigate renal fibrosis. In this study, we identified 5,2′-dibromo-2,4′,5′-trihydroxydiphenylmethanone (LM49), a compound we previously synthesised, as a small-molecule inducer of ECM degradation. LM49 administration efficiently reduced ECM deposition in renal tissue of diabetic nephropathy rats and in transforming growth factor β-treated renal fibroblast cells. LM49 promoted the cytosol-to-nucleus translocation of transcription factor EB (TFEB) to increase lysosome biogenesis, leading to lysosome-based degradation of the ECM. TFEB-mediated lysosome biogenesis was induced by LM49 directly inhibiting the activity of glycogen synthase kinase 3β (GSK3β) rather than mammalian target of rapamycin complex 1. LM49 inhibited GSK3β kinase activity concentration-dependently via competing with ATP. Direct binding between LM49 and GSK3β was confirmed by the bio-layer interferometry assay, cellular thermal shift assay, and drug affinity responsive target stability. A molecular docking and molecular dynamic simulation revealed that LM49 occupied the ATP pocket of GSK3β, which was consistent with the kinase activity assay. In summary, LM49 enhances TFEB-mediated lysosome biogenesis by directly inhibiting GSK3β, leading to the degradation of the ECM by lysosomes. The enhancement of GSK3β-dependent lysosome biogenesis to rebalance the ECM may be a novel strategy to counteract renal fibrosis, and LM49 may be a viable clinical candidate for treating this disorder.
Collapse
Affiliation(s)
- Jinhong Ren
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Huizhi Wei
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Jian Sun
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xiue Feng
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Yuanlin Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Hongxia Yuan
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Junqiu Miao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Xiaoming Qi
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yuanbiao Qiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Baoguo Xiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Qingshan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
- *Correspondence: Qingshan Li,
| |
Collapse
|
10
|
Dai R, Zhang L, Jin H, Wang D, Cheng M, Sang T, Peng C, Li Y, Wang Y. Autophagy in renal fibrosis: Protection or promotion? Front Pharmacol 2022; 13:963920. [PMID: 36105212 PMCID: PMC9465674 DOI: 10.3389/fphar.2022.963920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a process that degrades endogenous cellular protein aggregates and damaged organelles via the lysosomal pathway to maintain cellular homeostasis and energy production. Baseline autophagy in the kidney, which serves as a quality control system, is essential for cellular metabolism and organelle homeostasis. Renal fibrosis is the ultimate pathological manifestation of progressive chronic kidney disease. In several experimental models of renal fibrosis, different time points, stimulus intensities, factors, and molecular mechanisms mediating the upregulation or downregulation of autophagy may have different effects on renal fibrosis. Autophagy occurring in a single lesion may also exert several distinct biological effects on renal fibrosis. Thus, whether autophagy prevents or facilitates renal fibrosis remains a complex and challenging question. This review explores the different effects of the dual regulatory function of autophagy on renal fibrosis in different renal fibrosis models, providing ideas for future work in related basic and clinical research.
Collapse
Affiliation(s)
- Rong Dai
- Department of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Zhang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hua Jin
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Dong Wang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meng Cheng
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Tian Sang
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Chuyi Peng
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Li
- Blood Purification Center, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Yiping Wang,
| |
Collapse
|
11
|
Experimental Study on Danggui Shaoyao San Improving Renal Fibrosis by Promoting Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6761453. [PMID: 35958909 PMCID: PMC9357681 DOI: 10.1155/2022/6761453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Renal fibrosis could lead to chronic kidney disease (CKD) developing into the end-stage with its pathological manifestation is the deposition of extracellular matrix (ECM). Danggui Shaoyao San (DSS) is one of the widely used herbal formulas in ancient China, which has been proven to have efficacy in the treatment of CKD. The experiment employed TGF-β1 to stimulate the NRK-52E cells to establish a renal fibrosis model. With rapamycin (RAPA) used as the positive control, we detected the expression of fibronectin (FN), caspase-3, and autophagy-related proteins in the NRK-52E cells treated with DSS by Western blot and immunofluorescence assay. In order to further verify autophagy-promoting effects of DSS, we adopted 3-MA to inhibit autophagy. The experiment has found that DSS can lower the protein levels of FN and caspase-3 in the NRK-52E cells induced by TGF-β1. After TGF-β1 stimulation, the expression of LC3 II/I and Beclin 1 has decreased, and the protein levels of mTOR and p62 have increased. Consistent with rapamycin, DSS has significantly reduced these effects of TGF-β1. It has also been found that DSS can increase the expression of LC3 II/I and Beclin 1 proteins and can reduce the level of mTOR in cells treated with 3-MA, suggesting that DSS can promote autophagy. In conclusion, DSS has been proved to reduce the apoptosis and fibrosis of NRK-52E cells induced by TGF-β1, which may be achieved by promoting autophagy.
Collapse
|
12
|
Lee SJ, Kim YA, Park KK. Anti-Fibrotic Effect of Synthetic Noncoding Decoy ODNs for TFEB in an Animal Model of Chronic Kidney Disease. Int J Mol Sci 2022; 23:8138. [PMID: 35897713 PMCID: PMC9330689 DOI: 10.3390/ijms23158138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Despite emerging evidence suggesting that autophagy occurs during renal interstitial fibrosis, the role of autophagy activation in fibrosis and the mechanism by which autophagy influences fibrosis remain controversial. Transcription factor EB (TFEB) is a master regulator of autophagy-related gene transcription, lysosomal biogenesis, and autophagosome formation. In this study, we examined the preventive effects of TFEB suppression on renal fibrosis. We injected synthesized TFEB decoy oligonucleotides (ODNs) into the tail veins of unilateral ureteral obstruction (UUO) mice to explore the regulation of autophagy in UUO-induced renal fibrosis. The expression of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and collagen was decreased by TFEB decoy ODN. Additionally, TEFB ODN administration inhibited the expression of microtubule-associated protein light chain 3 (LC3), Beclin1, and hypoxia-inducible factor-1α (HIF-1α). We confirmed that TFEB decoy ODN inhibited fibrosis and autophagy in a UUO mouse model. The TFEB decoy ODNs also showed anti-inflammatory effects. Collectively, these results suggest that TFEB may be involved in the regulation of autophagy and fibrosis and that regulating TFEB activity may be a promising therapeutic strategy against kidney diseases.
Collapse
Affiliation(s)
| | | | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Korea; (S.-J.L.); (Y.-A.K.)
| |
Collapse
|
13
|
Tubular Mitochondrial Dysfunction, Oxidative Stress, and Progression of Chronic Kidney Disease. Antioxidants (Basel) 2022; 11:antiox11071356. [PMID: 35883847 PMCID: PMC9311633 DOI: 10.3390/antiox11071356] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected conditions, and CKD is projected to become the fifth leading global cause of death by 2040. New therapeutic approaches are needed. Mitochondrial dysfunction and oxidative stress have emerged as drivers of kidney injury in acute and chronic settings, promoting the AKI-to-CKD transition. In this work, we review the role of mitochondrial dysfunction and oxidative stress in AKI and CKD progression and discuss novel therapeutic approaches. Specifically, evidence for mitochondrial dysfunction in diverse models of AKI (nephrotoxicity, cytokine storm, and ischemia-reperfusion injury) and CKD (diabetic kidney disease, glomerulopathies) is discussed; the clinical implications of novel information on the key role of mitochondria-related transcriptional regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha, transcription factor EB (PGC-1α, TFEB), and carnitine palmitoyl-transferase 1A (CPT1A) in kidney disease are addressed; the current status of the clinical development of therapeutic approaches targeting mitochondria are updated; and barriers to the clinical development of mitochondria-targeted interventions are discussed, including the lack of clinical diagnostic tests that allow us to categorize the baseline renal mitochondrial dysfunction/mitochondrial oxidative stress and to monitor its response to therapeutic intervention. Finally, key milestones for further research are proposed.
Collapse
|