1
|
Wang J, Hu X, Li Y, Li S, Wang T, Wang D, Gao Y, Wang Q, Zhou J, Wan C. Impaired lipid homeostasis and elevated lipid oxidation of erythrocyte membrane in adolescent depression. Redox Biol 2025; 80:103491. [PMID: 39809016 PMCID: PMC11780951 DOI: 10.1016/j.redox.2025.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Adolescent depression is a globally concerned mental health issue, the pathophysiological mechanisms of which remain elusive. Membrane lipids play a crucial role in brain development and function, potentially serving as a crossroad for the abnormalities in neurotransmitters, neuroendocrine, inflammation, oxidative stress, and energy metabolism observed in depressed adolescents. The primary aim of this study was to investigate the erythrocyte membrane lipid profile in adolescent depression. A total of 2838 erythrocyte membrane lipids were detected and quantified in 81 adolescents with depression and 67 matched healthy adolescents using ultra-high performance liquid chromatography-mass spectrometry. Depressed adolescents exhibited significantly different membrane lipid characteristics compared to healthy controls. Specifically, the levels of cholesterol, sphingomyelins, and ceramides were increased, while ether lipids were decreased in patients. Moreover, the patients showed reduced polyunsaturated fatty acids and elevated lipophilic index in membrane, suggesting diminished membrane fluidity. The higher oxidized membrane lipids and plasma malondialdehyde were observed in adolescent depression, indicating the presence of oxidative stress. Importantly, membrane lipid damage was associated with more severe depressive symptoms and worse cognitive function in patients. In addition, reduced polyunsaturated fatty acids and membrane fluidity may be partly responsible for the blunted niacin skin flushing response found in depressed adolescents. In conclusion, our results reveal impaired erythrocyte membrane lipid homeostasis in adolescents with depression, which may implicate membrane dysfunction in the brain. These findings offer new insights into the underlying molecular mechanisms of adolescent depression, highlighting the potential of counteracting membrane damage as a promising avenue for future therapeutic interventions.
Collapse
Affiliation(s)
- Jinfeng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Ya Li
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China.
| | - Shuhui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Tianqi Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Yan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Qian Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Li R, Wang Y, Xu J, Yu J, Li B. Effects of n-3 Polyunsaturated Fatty Acid Supplementation on Cardiovascular Indices in Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials. Rev Cardiovasc Med 2025; 26:25882. [PMID: 40026502 PMCID: PMC11868883 DOI: 10.31083/rcm25882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 03/05/2025] Open
Abstract
Background Individuals with type 2 diabetes (T2DM) face a significantly increased risk of cardiovascular disease. This study aims to explore the impact of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on cardiovascular indices in this population. Although the benefits of n-3 PUFAs on cardiovascular health and glycemic outcomes are highly regarded, previous research reports have shown inconsistent results. Therefore, a comprehensive meta-analysis is needed to gain a deeper understanding of the specific effects of n-3 PUFAs on patients with T2DM. To examine the effect of n-3 PUFAs on cardiovascular indices in T2DM using a meta-analysis of randomized controlled trials (RCTs). Methods Online databases including PUBMED, EMBASE and Cochrane libraries were searched up to December 2023. We assessed the overall weighted mean difference in cardiovascular indices between the group supplemented with n-3 PUFAs and the control group. The differences were compared uniformly using pre- and post-treatment differences. Results Supplementation with n-3PUFAs in patients diagnosed solely with T2DM significantly reduced low density lipoprotein (LDL) (weighted mean difference (WMD) = -3.92, 95% confidence interval (CI) = -6.52 to -1.32, p = 0.003 < 0.05), triglycerides (WMD = -23.94, 95% CI = -34.95 to -12.93, p = 0.000 < 0.05), cholesterol (WMD = -8.39, 95% CI = -12.06 to -4.72, p = 0.000 < 0.05), glycated hemoglobin (WMD = -0.25, 95% CI = -0.41 to -0.06, p = 0.003 < 0.05) and the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index (WMD = -0.55, 95% CI = -0.81 to -0.29, p = 0.000 < 0.05). All other differences in lipid indices, glycemic indices, inflammatory parameters and blood pressure were not statistically significant (p > 0.05). Supplementation with n-3 PUFAs decreased high density lipoprotein (HDL) concentration in patients with T2DM and coronary heart disease (CHD) (WMD = -3.92, 95% CI = -6.36 to -1.48, p = 0.002 < 0.05). There were no significant differences in LDL, triglycerides, cholesterol, and C-reactive protein (CRP) in patients with T2DM and CHD (p > 0.05). Conclusions N-3 PUFAs improved lipid levels and long-term blood glucose levels in patients diagnosed solely with T2DM, but did not significantly improve blood pressure inflammatory markers. N-3 PUFAs showed no significant improvement in blood lipid and inflammatory indexes in patients with T2DM and CHD. The PROSPERO registration CRD42024522262, https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024522262.
Collapse
Affiliation(s)
- Ruiyao Li
- School of Clinical Medicine, Shandong Second Medical University, 261053 Weifang, Shandong, China
| | - Yao Wang
- School of Clinical Medicine, Shandong Second Medical University, 261053 Weifang, Shandong, China
| | - Jing Xu
- School of Clinical Medicine, Shandong First Medical University, 250117 Jinan, Shandong, China
| | - Jiahao Yu
- School of Clinical Medicine, Shandong First Medical University, 250117 Jinan, Shandong, China
| | - Bin Li
- Department of Cardiology, Jinan Central Hospital, Shandong First Medical University, 250013 Jinan, Shandong, China
| |
Collapse
|
3
|
Kravitz MS, Lee JH, Shapiro NI. Cardiac arrest and microcirculatory dysfunction: a narrative review. Curr Opin Crit Care 2024; 30:611-617. [PMID: 39377652 PMCID: PMC11540727 DOI: 10.1097/mcc.0000000000001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
PURPOSE OF REVIEW This review provides an overview of the role of microcirculation in cardiac arrest and postcardiac arrest syndrome through handheld intravital microscopy and biomarkers. It highlights the importance of microcirculatory dysfunction in postcardiac arrest outcomes and explores potential therapeutic targets. RECENT FINDINGS Sublingual microcirculation is impaired in the early stage of postarrest and is potentially associated with increased mortality. Recent work suggests that the proportion of perfused small vessels is predictive of mortality. Microcirculatory impairment is consistently found to be independent of macrohemodynamic parameters. Biomarkers of endothelial cell injury and endothelial glycocalyx degradation are elevated in postarrest settings and may predict mortality and clinical outcomes, warranting further studies. Recent studies of exploratory therapies targeting microcirculation have shown some promise in animal models but still require significant research. SUMMARY Although research continues to suggest the important role that microcirculation may play in postcardiac arrest syndrome and cardiac arrest outcomes, the existing studies are still limited to draw any definitive conclusions. Further research is needed to better understand microcirculatory changes and their significance to improve cardiac arrest care and outcomes.
Collapse
Affiliation(s)
- Max S. Kravitz
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - John H. Lee
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nathan I. Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Bajorat R, Grest SL, Bergt S, Klawitter F, Vollmar B, Reuter DA, Bajorat J. Administration of Delphinidin to Improve Survival and Neurological Outcome in Mice After Cardiac Arrest and Resuscitation. Antioxidants (Basel) 2024; 13:1469. [PMID: 39765798 PMCID: PMC11672804 DOI: 10.3390/antiox13121469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Reactive oxygen species (ROS) play an important role in ischemia-reperfusion (I/R) after cardiac arrest and cardiopulmonary resuscitation (CA-CPR). Early administration of vitamin C at a high dose in experimental models resulted in less myocardial damage and had a positive effect on survival after resuscitation. Here, we postulated that the ROS scavenging activity of an anthocyanin (i.e., delphinidin) would positively influence resuscitation outcomes. We hypothesized that administration of delphinidin immediately after CA-CPR could attenuate systemic inflammation in a standardized mouse model and thereby improve survival and long-term outcomes. Outcomes up to 28 days were evaluated in a control group (saline-treated) and a delphinidin-treated cohort. Survival, neurological and cognitive parameters were assessed. Post-CPR infusion of delphinidin deteriorated survival time after a 10 min CA. Survivors amongst the controls showed significantly more anxious behavior than in the pre-CPR phases. This tendency was also observed in the animals treated with delphinidin. In our study, we did not find an improvement in survival with delphinidin after CA-CPR and observed no effect on learning behavior. Our long-term behavioral tests clearly show that CA-CPR is associated with the development of post-interventional anxiety-like symptoms. Our findings open up scopes to investigate the intrinsic factors (e.g., oxidative stress, inflammatory and systemic-microbial response, etc.) influencing the therapeutic efficacy of anthocyanins in vivo.
Collapse
Affiliation(s)
- Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Stella Line Grest
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Center, Goethestraße 18, 18055 Rostock, Germany
| | - Stefan Bergt
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
- Department of Anesthesiology and Intensive Care Medicine, Mediclin, 17192 Waren, Germany
| | - Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Institute of Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany
| | - Daniel A. Reuter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Jörn Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
5
|
Moon J, Kim M, Kim Y. N-3 Fatty Acids in Seafood Influence the Association Between the Composite Dietary Antioxidant Index and Depression: A Community-Based Prospective Cohort Study. Antioxidants (Basel) 2024; 13:1413. [PMID: 39594554 PMCID: PMC11591020 DOI: 10.3390/antiox13111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Accumulating evidence suggests that seafood and its components, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are associated with mental health. However, little is known regarding whether the status of n-3 polyunsaturated fatty acids (PUFAs) modify the effect of dietary antioxidants on depression. The main purpose of study is to investigate longitudinal associations between seafood consumption and depression among 2564 participants aged 40-69 years using data from the Korean Genome and Epidemiology Study. The composite dietary antioxidant index (CDAI) and dietary intake were measured by a validated 106-item food frequency questionnaire and depression was assessed using the Beck Depression Inventory (BDI). The Cox's proportional hazard model was used to examine the risk of depression according to seafood consumption. During an 8-year follow-up period, 165 (11.9%) men and 224 (18.9%) women experienced depression. After adjustment for confounders, the risk of depression was inversely associated with seafood consumption, with a 42% lower risk (HR T5 vs. T1 = 0.58, 95% CI: 0.35-0.98, p = 0.040) only being found among women. In a group with a high n-3 PUFA intake, CDAI scores were negatively correlated with BDI scores (r = -0.146, p < 0.001) among women. Seafood consumption might lead to more favorable outcomes against depression if accompanied by an increased intake of foods that are rich in antioxidants.
Collapse
Affiliation(s)
- Junhwi Moon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03670, Republic of Korea; (J.M.); (M.K.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minji Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03670, Republic of Korea; (J.M.); (M.K.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03670, Republic of Korea; (J.M.); (M.K.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Tánczos B, Vass V, Szabó E, Lovas M, Kattoub RG, Bereczki I, Borbás A, Herczegh P, Tósaki Á. Effects of H 2S-donor ascorbic acid derivative and ischemia/reperfusion-induced injury in isolated rat hearts. Eur J Pharm Sci 2024; 195:106721. [PMID: 38331005 DOI: 10.1016/j.ejps.2024.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Hydrogen sulfide (H2S), a gasotransmitter, plays a crucial role in vasorelaxation, anti-inflammatory processes and mitigating myocardial ischemia/reperfusion-induced injury by regulating various signaling processes. We designed a water soluble H2S-releasing ascorbic acid derivative, BM-164, to combine the beneficial cardiovascular and anti-inflammatory effects of H2S with the excellent water solubility and antioxidant properties of ascorbic acid. DPPH antioxidant assay revealed that the antioxidant activity of BM-164 in the presence of a myocardial tissue homogenate (extract) increased continuously over the 120 min test interval due to the continuous release of H2S from BM-164. The cytotoxicity of BM-164 was tested by MTT assay on H9c2 cells, which resulted in no cytotoxic effect at concentrations of 10 to 30 μM. The possible beneficial effects of BM-164 (30 µM) was examined in isolated 'Langendorff' rat hearts. The incidence of ventricular fibrillation (VF) was significantly reduced from its control value of 79 % to 31 % in the BM-164 treated group, and the infarct size was also diminished from the control value of 28 % to 14 % in the BM-164 treated group. However, coronary flow (CF) and heart rate (HR) values in the BM-164 treated group did not show significantly different levels in comparison with the drug-free control, although a non-significant recovery in both CF and HR was observed at each time point. We attempted to reveal the mechanism of action of BM-164, focusing on the processes of autophagy and apoptosis. The expression of key autophagic and apoptotic markers in isolated rat hearts were detected by Western blot analysis. All the examined autophagy-related proteins showed increased expression levels in the BM-164 treated group in comparison to the drug-free control and/or ascorbic acid treated groups, while the changes in the expression of apoptotic markers were not obvious. In conclusion, the designed water soluble H2S releasing ascorbic acid derivative, BM-164, showed better cardiac protection against ischemia/reperfusion-induced injury compared to the untreated and ascorbic acid treated hearts, respectively.
Collapse
Affiliation(s)
- Bence Tánczos
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary
| | - Virág Vass
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary; Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Hungary
| | - Erzsébet Szabó
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary
| | - Miklós Lovas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Rasha Ghanem Kattoub
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Hungary
| | - Ilona Bereczki
- HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Pál Herczegh
- HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Árpád Tósaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary.
| |
Collapse
|
7
|
The Anti-Inflammatory and Antioxidant Impact of Dietary Fatty Acids in Cardiovascular Protection in Older Adults May Be Related to Vitamin C Intake. Antioxidants (Basel) 2023; 12:antiox12020267. [PMID: 36829826 PMCID: PMC9952336 DOI: 10.3390/antiox12020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), α-linolenic acid (ALA), or linoleic acid (LA), have a particular role in counteracting cardiovascular diseases. They may regulate antioxidant potential and inflammatory reactions. Little is known whether other fatty acids, such as saturated fatty acids (e.g., short-chain fatty acids (SCFA) such as butyric or caproic acid) or monounsaturated fatty acids, may be involved and whether the level of Vitamin C intake may affect these processes. The purpose of this study was to assess the impact of fatty acid intake on plasma and salivary total antioxidant capacity (TAC), and the salivary inflammation marker C-reactive protein (CRP). Eighty older adults (60-79 years old) were divided into two groups with high (n = 39) and low (n = 41) Vitamin C intake. In the group with high Vitamin C intake SCFA, ALA, LA positively correlated with the plasma TAC indices, and in the group with low Vitamin C intake, the salivary TAC was decreased in subjects with a higher SCFA intake. Salivary CRP negatively corresponded to SCFA, EPA, and DHA in the whole study group (p < 0.05 for all). Fatty acids and Vitamin C intake may influence antioxidant potential and salivary CRP.
Collapse
|
8
|
The monoacylglycerol lipase inhibitor, JZL184, has comparable effects to therapeutic hypothermia, attenuating global cerebral injury in a rat model of cardiac arrest. Biomed Pharmacother 2022; 156:113847. [DOI: 10.1016/j.biopha.2022.113847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/24/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
|
9
|
Hemilä H, Chalker E, de Man AME. Vitamin C May Improve Left Ventricular Ejection Fraction: A Meta-Analysis. Front Cardiovasc Med 2022; 9:789729. [PMID: 35282368 PMCID: PMC8913583 DOI: 10.3389/fcvm.2022.789729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/21/2022] [Indexed: 01/02/2023] Open
Abstract
Background Vitamin C deprivation can lead to fatigue, dyspnea, oedema and chest pain, which are also symptoms of heart failure (HF). In animal studies vitamin C has improved contractility and mechanical efficiency of the heart. Compared with healthy people, patients with HF have lower vitamin C levels, which are not explained by differences in dietary intake levels, and more severe HF seems to be associated with lower plasma vitamin C levels. This meta-analysis looks at the effect of vitamin C on left ventricular ejection fraction (LVEF). Methods We searched for trials reporting the effects of vitamin C on LVEF. We assessed the quality of the trials, and pooled selected trials using the inverse variance, fixed effect options. We used meta-regression to examine the association between the effect of vitamin C on LVEF level and the baseline LVEF level. Results We identified 15 trials, three of which were excluded from our meta-analysis. In six cardiac trials with 246 patients, vitamin C increased LVEF on average by 12.0% (95% CI 8.1–15.9%; P < 0.001). In six non-cardiac trials including 177 participants, vitamin C increased LVEF on average by 5.3% (95% CI 2.0–8.5%; P = 0.001). In meta-regression analysis we found that the effect of vitamin C was larger in trials with the lowest baseline LVEF levels with P = 0.001 for the test of slope. The meta-regression line crossed the null effect level at a baseline LVEF level close to 70%, with progressively greater benefit from vitamin C with lower LVEF levels. Some of the included trials had methodological limitations. In a sensitivity analysis including only the four most methodologically sound cardiac trials, the effect of vitamin C was not substantially changed. Conclusions In this meta-analysis, vitamin C increased LVEF in both cardiac and non-cardiac patients, with a strong negative association between the size of the vitamin C effect and the baseline LVEF. Further research on vitamin C and HF should be carried out, particularly in patients who have low LVEF together with low vitamin C intake or low plasma levels. Different dosages and different routes of administration should be compared.
Collapse
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, Helsinki, Finland
- *Correspondence: Harri Hemilä
| | - Elizabeth Chalker
- Biological Data Science Institute, Australian National University, Canberra, ACT, Australia
| | - Angelique M. E. de Man
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
10
|
TOMÉ AC, MÁRSICO ET, SILVA GSD, COSTA DPD, GUIMARÃES JDT, RAMOS GLDPA, ESMERINO EA, SILVA FAD. Effects of the addition of microencapsulated aromatic herb extracts on fatty acid profile of different meat products. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.62622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Fang C, Zuo K, Zhang W, Zhong J, Li J, Xu L, Yang X. Association between Gut Microbiota Dysbiosis and the CHA2DS2-VASc Score in Atrial Fibrillation Patients. Int J Clin Pract 2022; 2022:7942605. [PMID: 35685549 PMCID: PMC9159190 DOI: 10.1155/2022/7942605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In our previous studies, we found a disordered taxonomic composition and function of gut microbiota (GM) in atrial fibrillation (AF) patients. However, direct evidence about the association between dysbiotic microbiota and thromboembolic risk in AF is lacking. AIMS In this study, we analyzed the interaction of GM and related functional patterns in AF with different CHA2DS2-VASc scores to assess its potential as a biomarker for predicting stroke risk. Patients and Methods. The CHA2DS2-VASc score was used for thromboembolic risk stratification in AF according to American Heart Association (AHA) guidelines. We investigated the taxonomic and functional annotation of GM based on metagenomic data from 50 AF patients (32 with high thromboembolic risk (CHA2DS2-VASc score ≥2 (males) or CHA2DS2-VASc score ≥3 (females)) and 18 individuals with low thromboembolic risk (CHA2DS2-VASc score <2 (males) or CHA2DS2-VASc score <3 (females))). RESULTS The gut microbial diversity, composition, and function in AF were different in high and low CHA2DS2-VASc score groups. In high thromboembolic risk group, the abundance of Prevotella, Lachnospiraceae, and Eubacterium rectale, related to the production of short-chain fatty acids and anti-inflammatory were reduced (all P < 0.05). Furthermore, annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG), a database of genes and genomes, the KEGG orthology-based scoring approach exhibited a significant association with thromboembolic risk in AF patients. CONCLUSIONS Imbalance of GM and microbial dysfunction are involved in aggravated thromboembolic risk of AF.
Collapse
Affiliation(s)
- Chen Fang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Kun Zuo
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wanjing Zhang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiuchang Zhong
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jing Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Li Xu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
12
|
Inhibition of Fatty Acid Metabolism Increases EPA and DHA Levels and Protects against Myocardial Ischaemia-Reperfusion Injury in Zucker Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7493190. [PMID: 34367467 PMCID: PMC8342141 DOI: 10.1155/2021/7493190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
Long-chain ω-3 polyunsaturated fatty acids (PUFAs) are known to induce cardiometabolic benefits, but the metabolic pathways of their biosynthesis ensuring sufficient bioavailability require further investigation. Here, we show that a pharmacological decrease in overall fatty acid utilization promotes an increase in the levels of PUFAs and attenuates cardiometabolic disturbances in a Zucker rat metabolic syndrome model. Metabolome analysis showed that inhibition of fatty acid utilization by methyl-GBB increased the concentration of PUFAs but not the total fatty acid levels in plasma. Insulin sensitivity was improved, and the plasma insulin concentration was decreased. Overall, pharmacological modulation of fatty acid handling preserved cardiac glucose and pyruvate oxidation, protected mitochondrial functionality by decreasing long-chain acylcarnitine levels, and decreased myocardial infarct size twofold. Our work shows that partial pharmacological inhibition of fatty acid oxidation is a novel approach to selectively increase the levels of PUFAs and modulate lipid handling to prevent cardiometabolic disturbances.
Collapse
|
13
|
Henry S, Wijesinghe DS, Myers A, McInnes BT. Using Literature Based Discovery to Gain Insights Into the Metabolomic Processes of Cardiac Arrest. Front Res Metr Anal 2021; 6:644728. [PMID: 34250435 PMCID: PMC8267364 DOI: 10.3389/frma.2021.644728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
In this paper, we describe how we applied LBD techniques to discover lecithin cholesterol acyltransferase (LCAT) as a druggable target for cardiac arrest. We fully describe our process which includes the use of high-throughput metabolomic analysis to identify metabolites significantly related to cardiac arrest, and how we used LBD to gain insights into how these metabolites relate to cardiac arrest. These insights lead to our proposal (for the first time) of LCAT as a druggable target; the effects of which are supported by in vivo studies which were brought forth by this work. Metabolites are the end product of many biochemical pathways within the human body. Observed changes in metabolite levels are indicative of changes in these pathways, and provide valuable insights toward the cause, progression, and treatment of diseases. Following cardiac arrest, we observed changes in metabolite levels pre- and post-resuscitation. We used LBD to help discover diseases implicitly linked via these metabolites of interest. Results of LBD indicated a strong link between Fish Eye disease and cardiac arrest. Since fish eye disease is characterized by an LCAT deficiency, it began an investigation into the effects of LCAT and cardiac arrest survival. In the investigation, we found that decreased LCAT activity may increase cardiac arrest survival rates by increasing ω-3 polyunsaturated fatty acid availability in circulation. We verified the effects of ω-3 polyunsaturated fatty acids on increasing survival rate following cardiac arrest via in vivo with rat models.
Collapse
Affiliation(s)
- Sam Henry
- Department of Physics, Computer Science and Engineering, Christopher Newport University, Newport News, VA, United States
| | - D. Shanaka Wijesinghe
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Aidan Myers
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Bridget T. McInnes
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
14
|
Choudhary RC, Shoaib M, Sohnen S, Rolston DM, Jafari D, Miyara SJ, Hayashida K, Molmenti EP, Kim J, Becker LB. Pharmacological Approach for Neuroprotection After Cardiac Arrest-A Narrative Review of Current Therapies and Future Neuroprotective Cocktail. Front Med (Lausanne) 2021; 8:636651. [PMID: 34084772 PMCID: PMC8167895 DOI: 10.3389/fmed.2021.636651] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrest (CA) results in global ischemia-reperfusion injury damaging tissues in the whole body. The landscape of therapeutic interventions in resuscitation medicine has evolved from focusing solely on achieving return of circulation to now exploring options to mitigate brain injury and preserve brain function after CA. CA pathology includes mitochondrial damage and endoplasmic reticulum stress response, increased generation of reactive oxygen species, neuroinflammation, and neuronal excitotoxic death. Current non-pharmacologic therapies, such as therapeutic hypothermia and extracorporeal cardiopulmonary resuscitation, have shown benefits in protecting against ischemic brain injury and improving neurological outcomes post-CA, yet their application is difficult to institute ubiquitously. The current preclinical pharmacopeia to address CA and the resulting brain injury utilizes drugs that often target singular pathways and have been difficult to translate from the bench to the clinic. Furthermore, the limited combination therapies that have been attempted have shown mixed effects in conferring neuroprotection and improving survival post-CA. The global scale of CA damage and its resultant brain injury necessitates the future of CA interventions to simultaneously target multiple pathways and alleviate the hemodynamic, mitochondrial, metabolic, oxidative, and inflammatory processes in the brain. This narrative review seeks to highlight the current field of post-CA neuroprotective pharmaceutical therapies, both singular and combination, and discuss the use of an extensive multi-drug cocktail therapy as a novel approach to treat CA-mediated dysregulation of multiple pathways, enhancing survival, and neuroprotection.
Collapse
Affiliation(s)
- Rishabh C Choudhary
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Emergency Medicine, Northshore University Hospital, Northwell Health, Manhasset, NY, United States
| | - Muhammad Shoaib
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Samantha Sohnen
- Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Daniel M Rolston
- Department of Emergency Medicine, Northshore University Hospital, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,Department of Surgery, North Shore University Hospital, Northwell Health, Manhasset, NY, United States
| | - Daniel Jafari
- Department of Emergency Medicine, Northshore University Hospital, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,Department of Surgery, North Shore University Hospital, Northwell Health, Manhasset, NY, United States
| | - Santiago J Miyara
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Emergency Medicine, Northshore University Hospital, Northwell Health, Manhasset, NY, United States
| | | | - Junhwan Kim
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Emergency Medicine, Northshore University Hospital, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Lance B Becker
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Emergency Medicine, Northshore University Hospital, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
15
|
Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L, Rodrigo R. Targeting Ferroptosis against Ischemia/Reperfusion Cardiac Injury. Antioxidants (Basel) 2021; 10:antiox10050667. [PMID: 33922912 PMCID: PMC8145541 DOI: 10.3390/antiox10050667] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease is a leading cause of death worldwide. Primarily, ischemia causes decreased oxygen supply, resulting in damage of the cardiac tissue. Naturally, reoxygenation has been recognized as the treatment of choice to recover blood flow through primary percutaneous coronary intervention. This treatment is the gold standard therapy to restore blood flow, but paradoxically it can also induce tissue injury. A number of different studies in animal models of acute myocardial infarction (AMI) suggest that ischemia-reperfusion injury (IRI) accounts for up to 50% of the final myocardial infarct size. Oxidative stress plays a critical role in the pathological process. Iron is an essential mineral required for a variety of vital biological functions but also has potentially toxic effects. A detrimental process induced by free iron is ferroptosis, a non-apoptotic type of programmed cell death. Accordingly, efforts to prevent ferroptosis in pathological settings have focused on the use of radical trapping antioxidants (RTAs), such as liproxstatin-1 (Lip-1). Hence, it is necessary to develop novel strategies to prevent cardiac IRI, thus improving the clinical outcome in patients with ischemic heart disease. The present review analyses the role of ferroptosis inhibition to prevent heart IRI, with special reference to Lip-1 as a promising drug in this clinicopathological context.
Collapse
Affiliation(s)
- José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Diego Muñoz-Salamanca
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer“, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer“, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
- Correspondence:
| |
Collapse
|