1
|
Wu GF, Luo ZG, Gao K, Ren Y, Shen C, Ying XR. LRP8 Regulates Lipid Metabolism to Stimulate Malignant Progression and Cisplatin Resistance in Bladder Cancer. Kaohsiung J Med Sci 2025:e70042. [PMID: 40372166 DOI: 10.1002/kjm2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Low-density lipoprotein receptor-related protein 8 (LRP8) is a crucial regulator of lipid metabolism and is implicated in the development and treatment of various cancers. However, its role in bladder cancer (BCa) remains unknown. We analyzed LRP8 expression in BCa using the TCGA database and clinical samples. We manipulated LRP8 expression in tumor cell lines using siRNA or overexpression plasmid transfection. Cell proliferation, migration, invasion, apoptosis, and drug resistance were assessed through CCK-8, transwell, flow cytometry, and IC50 assays. Additionally, a rescue experiment confirmed the association between LRP8 and lipid metabolism. LRP8 was significantly upregulated in BCa tissues and cells. Knockdown of LRP8 reduced tumor cell proliferation, migration, invasion, and increased apoptosis while enhancing cisplatin sensitivity. Overexpression of LRP8 boosted malignant progression and cisplatin resistance in tumor cells. The expression level of LRP8 is positively linked with the expression of lipid metabolism-related genes, phospholipid accumulation, and triglyceride accumulation. Notably, inhibiting lipid metabolism reversed the malignant progression and cisplatin resistance induced by LRP8 overexpression. LRP8 could promote BCa malignant progression and cisplatin resistance through lipid metabolism regulation.
Collapse
Affiliation(s)
- Gang-Feng Wu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Zhen-Gang Luo
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Ke Gao
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Yu Ren
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Chong Shen
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Xiang-Rong Ying
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
2
|
Qiu J, Xu F, Wei H, Gao Y, Liu N, Zhao J, Yu Z, Chen L, Dou X. Metabolic restoration: Rhubarb polysaccharides as a shield against non-alcoholic fatty liver disease. Int J Biol Macromol 2025; 305:141151. [PMID: 39965694 DOI: 10.1016/j.ijbiomac.2025.141151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) accounts for remarkable burden of death and costs worldwide with no recommended pharmacological intervention for the clinical management. This study aimed to investigate the efficacy and underlying mechanisms of rhubarb-derived polysaccharides (RP) in mitigating high-fat diet (HFD)-induced NAFLD and to analyze the primary monosaccharide components of RP. Forty male C57BL/6 mice were subjected to a dietary intervention consisting of either a high fat or chow diet for a duration of 12 weeks. RP (270, 540 mg·kg-1·d-1) was administered to the mice for 4 consecutive weeks from the 9th week. Various assessments were conducted, including histopathological examination, liver transcriptome analysis, non-targeted metabolomics analysis, and evaluation of protein expressions related to lipid and bile acid metabolism. This study found RP demonstrate a protective effect on the livers of NAFLD mice by inhibiting lipid accumulation and reducing hepatocyte inflammatory damage. The metabolomics analysis of multi-tissues revealed that the RP exert a hepatoprotective effect against NAFLD by restoring the altered bile acids (BAs) and fatty acids (FFAs) metabolism through the improvement of BA transporter, nucleus hormone receptor, lipogenesis protein, FFA transporter, and lipolysis proteins. Hence, RP may serve as a potential therapeutic agent for NAFLD.
Collapse
Affiliation(s)
- Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangying Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huaxin Wei
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanyan Gao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Nian Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jinghua Zhao
- The First Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Lin Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Liu J, Li C, Yang Y, Li J, Sun X, Zhang Y, Liu R, Chen F, Li X. Special correlation between diet and MASLD: positive or negative? Cell Biosci 2025; 15:44. [PMID: 40221799 PMCID: PMC11992798 DOI: 10.1186/s13578-025-01382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic and systemic metabolic liver disease characterized by the presence of hepatic steatosis and at least one cardiometabolic risk factor (CMRF). The pathogenesis of MASLD involves multiple mechanisms, including lipid metabolism disorders, insulin resistance, inflammatory responses, and the hepato-intestinal axis of metabolic dysfunction. Among these factors, diet serves as both an inducement and a potential remedy in the disease's development. Notably, a high-lipid diet exacerbates fat accumulation, oxidative stress, and inflammatory responses, thereby promoting the progression of MASLD. Consequently, dietary induction models have become vital tools for studying the pathological mechanisms of MASLD, providing a foundation for identifying potential therapeutic targets. Additionally, we summarize the therapeutic effects of dietary optimization on MASLD and elucidate the role of specific dietary components in regulating the hepato-intestinal axis, lipid metabolism, and inhibiting inflammatory responses. In conclusion, studies utilizing animal models of MASLD offer significant insights into dietary therapy, particularly concerning the regulation of lipid metabolism-related and hepatoenteric axis-related signaling pathways as well as the beneficial mechanism of probiotics in hepatoenteric regulation. By understanding the specific mechanisms by which different dietary patterns affect MASLD, we can assess the clinical applicability of current dietary strategies and provide new directions for research and treatment aimed at disease modification.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changmeng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yun Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingtao Li
- Departments of Infectious Disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China
| | - Xiaoguang Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yinqiang Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fafeng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Lu Y, Li X, Ma S, Ding M, Yang F, Pang X, Sun J, Li X. Broccoli ( Brassica oleracea L. var. italica Planch) alleviates metabolic-associated fatty liver disease through regulating gut flora and lipid metabolism via the FXR/LXR signaling pathway. Food Funct 2025; 16:1218-1240. [PMID: 39903517 DOI: 10.1039/d4fo03731f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The increased consumption of dietary fats contributes to the development of MAFLD (metabolic fatty liver disease). The ability of broccoli to enhance lipid metabolism has attracted researchers' attention. Researchers fed C57BL/6 mice a 12-week HFD to ensure the induction of MAFLD. The findings indicated that broccoli floret juice could effectively relieve MAFLD. Broccoli is helpful for reducing weight, blood glucose levels, fat accumulation, and insulin resistance associated with MAFLD and reduces the concentrations of TC, TG, LDL-C, GOT, GPT, IL-1β, IL-6, CCL4, and MCP1. Broccoli can increase the concentration of HDL-C, CAT, GSH-Px, SOD, and T-AOC, relieve inflammation and hepatic and ileum damage, and improve the antioxidant capacity of the body. Also, broccoli can optimize the structure of intestinal flora, promote the growth of Allobaculum, Muribaculaceae, Akkermansia, Eubacterium, and Bacteroides, and reduce bile acid deposition. In addition, the FXR/LXRα signaling system is impacted by broccoli, which is capable of raising the average levels of expression of the Fxr, SHP, and Cyp7a1 genes and proteins and reducing those of the genes for Fasn, Lpin 1, Dgat 2, Scd1, LXRα, and SREBP-1c.
Collapse
Affiliation(s)
- Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xin Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Shaotong Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Meng Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Feiyu Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
5
|
Liu Y, Ma X, Le Y, Feng J, Xu M, Wang W, Wang C. Organophosphorus Flame Retardants and Metabolic Disruption: An in Silico, in Vitro, and in Vivo Study Focusing on Adiponectin Receptors. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:117003. [PMID: 39514743 PMCID: PMC11548883 DOI: 10.1289/ehp14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Environmental chemical exposures have been associated with metabolic outcomes, and typically, their binding to nuclear hormone receptors is considered the molecular initiating event (MIE) for a number of outcomes. However, more studies are needed to understand the influence of such exposures on cell membrane-bound adiponectin receptors (AdipoRs), which are critical metabolic regulators. OBJECTIVE We aimed to clarify the potential interactions between AdipoRs and environmental chemicals, specifically organophosphorus flame retardants (OPFRs), and the resultant effects. METHODS Employing in silico simulation, cell thermal shift, and noncompetitive binding assays, we screened eight OPFRs for interactions with AdipoR1 and AdipoR2. We tested two key events underlying AdipoR modulation upon OPFR exposure in a liver cell model. The Toxicological Prioritization Index (ToxPi)scoring scheme was used to rank OPFRs according to their potential to disrupt AdipoR-associated metabolism. We further examined the inhibitory effect of OPFRs on AdipoR signaling activation in mouse models. RESULTS Analyses identified pi-pi stacking and pi-sulfur interactions between the aryl-OPFRs 2-ethylhexyl diphenyl phosphate (EHDPP), triphenyl phosphate (TPhP), and tricresyl phosphate (TCP) and the transmembrane cavities of AdipoR1 and AdipoR2. Cell thermal shift assays showed a > 3 ° C rightward shift in the AdipoR proteins' melting curves upon exposure to these three compounds. Although the binding sites differed from adiponectin, results suggest that aryl-OPFRs noncompetitively inhibited the binding of the endogenous peptide ligand ADP355 to the receptors. Analyses of key events underlying AdipoR modulation revealed that glucose uptake was notably lower, whereas lipid content was higher in cells exposed to aryl-OPFRs. EHDPP, TCP, and TPhP were ranked as the top three disruptors according to the ToxPi scores. A noncompetitive binding between these aryl-OPFRs and AdipoRs was also observed in wild-type (WT) mice. In db/db mice, the finding of lower blood glucose levels after ADP355 injection was diminished in the presence of a typical aryl-OPFR (TCP). WT mice exposed to TCP demonstrated lower AdipoR1 signaling, which was marked by lower phosphorylated AMP-activated protein kinase (pAMPK) and a higher expression of gluconeogenesis-related genes. Moreover, WT mice exposed to ADP355 demonstrated higher levels of pAMPK protein and peroxisome proliferator-activated receptor-α messenger RNA. This was accompanied by higher glucose disposal and by lower levels of long-chain fatty acids and hepatic triglycerides; these metabolic improvements were negated upon TCP co-treatment. CONCLUSIONS In silico, in vitro, and in vivo assays suggest that aryl-OPFRs act as noncompetitive inhibitors of AdipoRs, preventing their activation by adiponectin, and thus function as antagonists to these receptors. Our study describes a novel MIE for chemical-induced metabolic disturbances and highlights a new pathway for environmental impact on metabolic health. https://doi.org/10.1289/EHP14634.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaochun Ma
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiafan Feng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Mengting Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wanyue Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
6
|
Zhao J, Liu L, Cao YY, Gao X, Targher G, Byrne CD, Sun DQ, Zheng MH. MAFLD as part of systemic metabolic dysregulation. Hepatol Int 2024; 18:834-847. [PMID: 38594474 DOI: 10.1007/s12072-024-10660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/11/2024] [Indexed: 04/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. In recent years, a new terminology and definition of metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed. Compared to the NAFLD definition, MAFLD better emphasizes the pathogenic role of metabolic dysfunction in the development and progression of this highly prevalent condition. Metabolic disorders, including overweight/obesity, type 2 diabetes mellitus (T2DM), atherogenic dyslipidemia and hypertension, are often associated with systemic organ dysfunctions, thereby suggesting that multiple organ damage can occur in MAFLD. Substantial epidemiological evidence indicates that MAFLD is not only associated with an increased risk of liver-related complications, but also increases the risk of developing several extra-hepatic diseases, including new-onset T2DM, adverse cardiovascular and renal outcomes, and some common endocrine diseases. We have summarized the current literature on the adverse effect of MAFLD on the development of multiple extrahepatic (cardiometabolic and endocrine) complications and examined the role of different metabolic pathways and organ systems in the progression of MAFLD, thus providing new insights into the role of MAFLD as a multisystem metabolic disorder. Our narrative review aimed to provide insights into potential mechanisms underlying the known associations between MAFLD and extrahepatic diseases, as part of MAFLD as a multisystem disease, in order to help focus areas for future drug development targeting not only liver disease but also the risk of extrahepatic complications.
Collapse
Affiliation(s)
- Jing Zhao
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- Wuxi No. 2 People's Hospital, Wuxi, China
| | - Lu Liu
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- Wuxi No. 2 People's Hospital, Wuxi, China
| | - Ying-Ying Cao
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Dan-Qin Sun
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China.
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China.
- Wuxi No. 2 People's Hospital, Wuxi, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
7
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
8
|
Tang LJ, Sun DQ, Song SJ, Yip TCF, Wong GLH, Zhu PW, Chen SD, Karsdal M, Leeming DJ, Jiang P, Wang C, Chen Q, Byrne CD, Targher G, Eslam M, George J, Wong VWS, Zheng MH. Serum PRO-C3 is useful for risk prediction and fibrosis assessment in MAFLD with chronic kidney disease in an Asian cohort. Liver Int 2024; 44:1129-1141. [PMID: 38426611 DOI: 10.1111/liv.15878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is an emerging risk factor for chronic kidney disease (CKD). N-terminal propeptide of collagen type 3 (PRO-C3) is a biomarker of advanced fibrosis in MAFLD and PRO-C3 may be involved in renal fibrosis. We aimed to use PRO-C3 measurements to generate a new algorithmic score to test the prediction of MAFLD with chronic kidney disease (MAFLD-CKD). METHODS A derivation and independent validation cohort of 750 and 129 Asian patients with biopsy-confirmed MAFLD were included. Serum PRO-C3 concentration was measured and regression analyses were performed to examine associations with MAFLD-CKD. A derivative algorithm for MAFLD-CKD risk prediction was evaluated with receiver operator characteristic (ROC) curve analysis. RESULTS The study included two Asian cohorts (n = 180 with MAFLD-CKD; mean-eGFR: 94.93 mL/min/1.73 m2; median-urinary albumin-to-creatinine ratio: 6.58 mg/mmol). PRO-C3 was associated with the severity of MAFLD-CKD and independently associated with MAFLD-CKD (adjusted odds ratio = 1.16, 95% confidence interval [CI]: 1.08-1.23, p < .001). A new non-invasive score (termed PERIOD) including PRO-C3 efficiently predicted MAFLD-CKD (AUROC = .842, 95% CI: .805-.875). Accuracy, specificity and negative predictive values were 80.2%, 85.1% and 88.4%, respectively. In the validation cohort, the PERIOD score had good diagnostic performance (AUROC = .807, 95% CI: .691-.893) with similar results in all patient subgroups. In the MAFLD-CKD subgroup, the accuracy for identifying advanced fibrosis was further improved by combining the PRO-C3-based ADAPT with the Agile 3+ scores (AUROC = .90, 95% CI: .836-.964). CONCLUSIONS The PERIOD score is helpful for accurately predicting the risk of MAFLD-CKD. PRO-C3 can also be used to assess liver fibrosis in people with MAFLD-CKD.
Collapse
Affiliation(s)
- Liang-Jie Tang
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Dan-Qin Sun
- Department of Nephrology, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Sherlot Juan Song
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Terry Cheuk-Fung Yip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Lai-Hung Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sui-Dan Chen
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Morten Karsdal
- Nordic Bioscience Biomarkers and Research A/S, Herlev, Denmark
| | | | - Pei Jiang
- Fosun Diagnostics (Shanghai) Co., Ltd, Shanghai, China
| | - Cong Wang
- Fosun Diagnostics (Shanghai) Co., Ltd, Shanghai, China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research, Biomedical Research Centre, University of Southampton and University Hospital Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
9
|
Xia W, Li S, Li L, Zhang S, Wang X, Ding W, Ding L, Zhang X, Wang Z. Role of anthraquinones in combating insulin resistance. Front Pharmacol 2023; 14:1275430. [PMID: 38053837 PMCID: PMC10694622 DOI: 10.3389/fphar.2023.1275430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Insulin resistance presents a formidable public health challenge that is intricately linked to the onset and progression of various chronic ailments, including diabetes, cardiovascular disease, hypertension, metabolic syndrome, nonalcoholic fatty liver disease, and cancer. Effectively addressing insulin resistance is paramount in preventing and managing these metabolic disorders. Natural herbal remedies show promise in combating insulin resistance, with anthraquinone extracts garnering attention for their role in enhancing insulin sensitivity and treating diabetes. Anthraquinones are believed to ameliorate insulin resistance through diverse pathways, encompassing activation of the AMP-activated protein kinase (AMPK) signaling pathway, restoration of insulin signal transduction, attenuation of inflammatory pathways, and modulation of gut microbiota. This comprehensive review aims to consolidate the potential anthraquinone compounds that exert beneficial effects on insulin resistance, elucidating the underlying mechanisms responsible for their therapeutic impact. The evidence discussed in this review points toward the potential utilization of anthraquinones as a promising therapeutic strategy to combat insulin resistance and its associated metabolic diseases.
Collapse
Affiliation(s)
- Wanru Xia
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuqian Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - LinZehao Li
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shibo Zhang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiandang Zhang
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhibin Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
10
|
Li Z, Ouyang H, Zhu J. Traditional Chinese medicines and natural products targeting immune cells in the treatment of metabolic-related fatty liver disease. Front Pharmacol 2023; 14:1195146. [PMID: 37361209 PMCID: PMC10289001 DOI: 10.3389/fphar.2023.1195146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver disease affecting one-third of adults worldwide, and is strongly associated with obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of conditions ranging from simple liver fat accumulation to advanced stages like chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular carcinoma. With limited approved drugs for MAFLD, identifying promising drug targets and developing effective treatment strategies is essential. The liver plays a critical role in regulating human immunity, and enriching innate and adaptive immune cells in the liver can significantly improve the pathological state of MAFLD. In the modern era of drug discovery, there is increasing evidence that traditional Chinese medicine prescriptions, natural products and herb components can effectively treat MAFLD. Our study aims to review the current evidence supporting the potential benefits of such treatments, specifically targeting immune cells that are responsible for the pathogenesis of MAFLD. By providing new insights into the development of traditional drugs for the treatment of MAFLD, our findings may pave the way for more effective and targeted therapeutic approaches.
Collapse
|
11
|
Sun DQ, Targher G, Byrne CD, Wheeler DC, Wong VWS, Fan JG, Tilg H, Yuan WJ, Wanner C, Gao X, Long MT, Kanbay M, Nguyen MH, Navaneethan SD, Yilmaz Y, Huang Y, Gani RA, Marzuillo P, Boursier J, Zhang H, Jung CY, Chai J, Valenti L, Papatheodoridis G, Musso G, Wong YJ, El-Kassas M, Méndez-Sánchez N, Sookoian S, Pavlides M, Duseja A, Holleboom AG, Shi J, Chan WK, Fouad Y, Yang J, Treeprasertsuk S, Cortez-Pinto H, Hamaguchi M, Romero-Gomez M, Al Mahtab M, Ocama P, Nakajima A, Dai C, Eslam M, Wei L, George J, Zheng MH. An international Delphi consensus statement on metabolic dysfunction-associated fatty liver disease and risk of chronic kidney disease. Hepatobiliary Surg Nutr 2023; 12:386-403. [PMID: 37351121 PMCID: PMC10282675 DOI: 10.21037/hbsn-22-421] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND With the rising global prevalence of fatty liver disease related to metabolic dysfunction, the association of this common liver condition with chronic kidney disease (CKD) has become increasingly evident. In 2020, the more inclusive term metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to replace the term non-alcoholic fatty liver disease (NAFLD). The observed association between MAFLD and CKD and our understanding that CKD can be a consequence of underlying metabolic dysfunction support the notion that individuals with MAFLD are at higher risk of having and developing CKD compared with those without MAFLD. However, to date, there is no appropriate guidance on CKD in individuals with MAFLD. Furthermore, there has been little attention paid to the link between MAFLD and CKD in the Nephrology community. METHODS AND RESULTS Using a Delphi-based approach, a multidisciplinary panel of 50 international experts from 26 countries reached a consensus on some of the open research questions regarding the link between MAFLD and CKD. CONCLUSIONS This Delphi-based consensus statement provided guidance on the epidemiology, mechanisms, management and treatment of MAFLD and CKD, as well as the relationship between the severity of MAFLD and risk of CKD, which establish a framework for the early prevention and management of these two common and interconnected diseases.
Collapse
Affiliation(s)
- Dan-Qin Sun
- Department of Nephrology, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and Southampton General Hospital, University of Southampton, Southampton, UK
| | - David C. Wheeler
- Department of Renal Medicine, University College London, London, UK
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Wei-Jie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christoph Wanner
- Division of Nephrology, Department of Medicine, Würzburg University Clinic, Würzburg, Germany
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Michelle T. Long
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine (M.K.), Koc University School of Medicine, Istanbul, Turkey
| | - Mindie H. Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Palo Alto, CA, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, USA
| | - Sankar D. Navaneethan
- Section of Nephrology and Institute of Clinical and Translational Research, Baylor College of Medicine, and Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Rino A. Gani
- Division of Hepatobiliary, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Medical Faculty Universitas Indonesia, Jakarta, Indonesia
| | - Pierluigi Marzuillo
- Department of Woman, Child and of General and Specialized Surgery, Università della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Jérôme Boursier
- HIFIH Laboratory, UPRES EA3859, Angers University, Angers, France
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chan-Young Jung
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Jin Chai
- Cholestatic Liver Diseases Center, Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Università degli Studi di Milano, Milan, Italy
| | - George Papatheodoridis
- Department of Gastroenterology, Laiko General Hospital, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Giovanni Musso
- Emergency and Intensive Care Medicine, HUMANITAS Gradenigo Hospital;
| | - Yu-Jun Wong
- Department of Gastroenterology & Hepatology, Changi General Hospital, Singhealth, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Mohamed El-Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt
| | | | - Silvia Sookoian
- Clinical and Molecular Hepatology, Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Michael Pavlides
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Adriaan G. Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Junping Shi
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wah-Kheong Chan
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Minya, Egypt
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | - Helena Cortez-Pinto
- Clínica Universitária de Gastrenterologia, Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Manuel Romero-Gomez
- UCM Digestive Diseases, University Hospital Virgen del Rocio, Institute of Biomedicine of Seville (CSIC/HUVR/US), Ciberehd, University of Seville, Sevilla, Spain
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Ponsiano Ocama
- Department of Medicine, Makerere University of College of Health Sciences, Kampala, Uganda
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
12
|
Xiao Y, Xiao L, Li M, Liu S, Wang Y, Huang L, Liu S, Jiang T, Zhou L, Li Y. Perillartine protects against metabolic associated fatty liver in high-fat diet-induced obese mice. Food Funct 2023; 14:961-977. [PMID: 36541423 DOI: 10.1039/d2fo02227c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolic associated fatty liver disease is the main cause of chronic liver disease in the world, but there is still no effective treatment. In the search for drugs to treat liver steatosis, we screened 303 natural products using HepG2 cells and discovered that perillartine derived from Perilla frutescens (L.) improved fat deposition as well as glucose homeostasis in hepatocytes. In vitro, perillartine reduced the expression of genes involved in lipid synthesis, lipid transport, and gluconeogenesis in hepatocytes, increased the number of mitochondria, and upregulated the phosphorylation of Akt. In vivo, perillartine reduced body weight gain and the fat rate, improved glucose metabolism and energy balance, and altered the gut microbial composition in mice given a high-fat diet. In addition, RORγ was identified as a possible target of perillartine through pharmacophore screening. Functional studies revealed that the overexpression of RORγ blocked the effects of perillartine, suggesting that it reduced lipid accumulation and regulated glucose metabolism by inhibiting the transcriptional activity of RORγ. Our results provide new information on a natural product inhibitor for RORγ and reveal that perillartine is a new candidate for the treatment of obesity and metabolic associated fatty liver disease.
Collapse
Affiliation(s)
- Yang Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Lianggui Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Mingming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Songsong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Yuwei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Liang Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Tianyu Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| |
Collapse
|
13
|
Liudvytska O, Kolodziejczyk-Czepas J. A Review on Rhubarb-Derived Substances as Modulators of Cardiovascular Risk Factors—A Special Emphasis on Anti-Obesity Action. Nutrients 2022; 14:nu14102053. [PMID: 35631194 PMCID: PMC9144273 DOI: 10.3390/nu14102053] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
The currently available anti-obesity therapies encounter many associated risks and side effects often causing the ineffectiveness of treatment. Therefore, various plant-derived substances have been extensively studied as a promising support or even an alternative for existing anti-obesity therapies. This review is dealing with the anti-obesity potential of edible and ethnomedicinal rhubarb species and emerging possible role of the rhubarb-derived extracts or individual compounds in the prevention of obesity and perspectives for their use in an anti-obesity treatment. A special emphasis is put on the most popular edible specimens, i.e., Rheum rhabarbarum L. (garden rhubarb) and Rheum rhaponticum L. (rhapontic rhubarb, Siberian rhubarb); however, the anti-obesity potential of other rhubarb species (e.g., R. officinale, R. palmatum, and R. emodi) is presented as well. The significance of rhubarb-derived extracts and low-molecular specialized rhubarb metabolites of diversified chemical background, e.g., anthraquinones and stilbenes, as potential modulators of human metabolism is highlighted, including the context of cardiovascular disease prevention. The available reports present multiple encouraging rhubarb properties starting from the anti-lipidemic action of rhubarb fibre or its use as purgative medicines, through various actions of rhubarb-derived extracts and their individual compounds: inhibition of enzymes of cholesterol and lipid metabolism, targeting of key molecular regulators of adipogenesis, regulators of cell energy metabolism, the ability to inhibit pro-inflammatory signalling pathways and to regulate glucose and lipid homeostasis contributing to overall in vivo and clinical anti-obesity effects.
Collapse
|
14
|
Yang QZ, Li HC, Guo ZB, Liao YZ, Liu RX, Liu YC, Liang H. The copper(II) complex of dantron showed therapeutic effect on bacterial gill-rot disease in tilapia infected by Flavobacterium columnar. J Inorg Biochem 2022; 232:111841. [DOI: 10.1016/j.jinorgbio.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
|
15
|
Nguyen TH, Yousefi H, Okpechi SC, Lauterboeck L, Dong S, Yang Q, Alahari SK. Nischarin Deletion Reduces Oxidative Metabolism and Overall ATP: A Study Using a Novel NISCHΔ5-6 Knockout Mouse Model. Int J Mol Sci 2022; 23:ijms23031374. [PMID: 35163298 PMCID: PMC8835720 DOI: 10.3390/ijms23031374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Nischarin (Nisch) is a cytosolic scaffolding protein that harbors tumor-suppressor-like characteristics. Previous studies have shown that Nisch functions as a scaffolding protein and regulates multiple biological activities. In the current study, we prepared a complete Nisch knockout model, for the first time, by deletion of exons 5 and 6. This knockout model was confirmed by Qrt–PCR and Western blotting with products from mouse embryonic fibroblast (MEF) cells. Embryos and adult mice of knockouts are significantly smaller than their wild-type counterparts. Deletion of Nisch enhanced cell migration, as demonstrated by wound type and transwell migration assays. Since the animals were small in size, we investigated Nisch’s effect on metabolism by conducting several assays using the Seahorse analyzer system. These data indicate that Nisch null cells have lower oxygen consumption rates, lower ATP production, and lower levels of proton leak. We examined the expression of 15 genes involved in lipid and fat metabolism, as well as cell growth, and noted a significant increase in expression for many genes in Nischarin null animals. In summary, our results show that Nischarin plays an important physiological role in metabolic homeostasis.
Collapse
Affiliation(s)
- Tina H. Nguyen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Samuel C. Okpechi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Lothar Lauterboeck
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (L.L.); (Q.Y.)
- Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Shengli Dong
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
| | - Qinglin Yang
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (L.L.); (Q.Y.)
- Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Suresh K. Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; (T.H.N.); (H.Y.); (S.C.O.); (S.D.)
- Correspondence: ; Tel.: +1-504-568-4734
| |
Collapse
|
16
|
Jiang Y, Li H, Song D, Ye P, Xu N, Chen Y, Zhang W, Hu Q, Ma X, Wen J, Li Y, Zhao Y. Comparative Evidence for Intrahepatic Cholestasis of Pregnancy Treatment With Traditional Chinese Medicine Therapy: A Network Meta-Analysis. Front Pharmacol 2021; 12:774884. [PMID: 34916949 PMCID: PMC8670235 DOI: 10.3389/fphar.2021.774884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Intrahepatic cholestasis of pregnancy (ICP) seriously threatens the health of pregnant women and newborns. A various number of Chinese prescriptions and patent medicines combined with ursodeoxycholic acid (UDCA) are used for treating ICP in China. However, there are still many doubts in choosing the suitable therapeutic drugs for the treatment of ICP in clinical practice. Methods: Several electronic databases, including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), China Biology Medicine disc (CBM), Wanfang, and VIP, were comprehensively searched from the database inception to February 22, 2021. Randomized controlled trials (RCTs) reporting the use of UDCA only, Chinese prescriptions plus UDCA, and patent medicine plus UDCA for the treatment of ICP were collected according to their inclusion and exclusion criteria. Cochrane Reviewers’ Handbook version 5.2 was applied for the risk assessment of the included trials. STATA 16.0 software was used for network meta-analysis (NMA). The pruritus score and the serum levels of total bile acid (TBA), alanine aminotransferase (ALT), and aspartate transaminase (AST) in ICP patients served as the primary outcomes. Moreover, this study had been registered in PROSPERO (https://www.crd.york.ac.uk/PROSPERO/#joinuppage), and the registration number is CRD42020188831. Results: Thirty-eight RCTs comprising 3,841 patients meeting the inclusion criteria were included in the network meta-analysis. The NMA results showed that compared with UDCA used alone, Yinchenhao decoction (seven different Chinese prescriptions or patent medicines) plus UDCA dramatically alleviated the primary outcomes of ICP, including the pruritus score, as well as the serum levels of TBA, ALT, and AST. The NMA results showed that the optimal drug ratio for the treatment of ICP was different from the dosage ratio of traditional Yinchenhao decoction. Significantly, the intervention plan f (IP-f) group [the similar prescription of Yinchenhao decoction 2 (Artemisia capillaris Thunb >15 g, Gardenia >9 g, and Rhubarb <5 g) + UDCA] was the best therapeutics among the eight therapies. Conclusion: Overall, the combined use of Chinese prescriptions or patent medicine with UDCA was generally better than UDCA used alone. The dose of IP-f might be a beneficial therapeutic method for the clinical medication of ICP. Clinical Trail Registration:https://www.crd.york.ac.uk/, identifier CRD42020188831.
Collapse
Affiliation(s)
- Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Penghui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yeyu Li
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Chen J, Ou Q, Wang Z, Liu Y, Hu S, Liu Y, Tian H, Xu J, Gao F, Lu L, Jin C, Xu GT, Cui HP. Small-Molecule Induction Promotes Corneal Endothelial Cell Differentiation From Human iPS Cells. Front Bioeng Biotechnol 2021; 9:788987. [PMID: 34976977 PMCID: PMC8714889 DOI: 10.3389/fbioe.2021.788987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose: Corneal endothelial cells (CECs) serve as a barrier and foothold for the corneal stroma to maintain the function and transparency of the cornea. Loss of CECs during aging or disease states leads to blindness, and cell replacement therapy using either donated or artificially differentiated CECs remains the only curative approach. Methods: Human induced pluripotent stem cells (hiPSCs) that were cultured in chemically defined medium were induced with dual-SMAD inhibition to differentiate into neural crest cells (NCCs). A small-molecule library was screened to differentiate the NCCs into corneal endothelial-like cells. The characteristics of these cells were identified with real-time PCR and immunofluorescence. Western blotting was applied to detect the signaling pathways and key factors regulated by the small molecules. Results: We developed an effective protocol to differentiate hiPSCs into CECs with defined small molecules. The hiPSC-CECs were characterized by ZO-1, AQP1, Vimentin and Na+/K+-ATPase. Based on our small-molecule screen, we identified a small-molecule combination, A769662 and AT13148, that enabled the most efficient production of CECs. The combination of A769662 and AT13148 upregulated the PKA/AKT signaling pathway, FOXO1 and PITX2 to promote the conversion of NCCs to CECs. Conclusion: We established an efficient small molecule-based method to differentiate hiPSCs into corneal endothelial-like cells, which might facilitate drug discovery and the development of cell-based therapies for corneal diseases.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhe Wang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuqin Hu
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yumeilan Liu
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingying Xu
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Hong-Ping Cui
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|