1
|
Rahmani M, Pham T, Crossman DJ, Tran K, Taberner AJ, Han JC. Sex differences in cardiac energetics in the rat ventricular muscle. Sci Rep 2024; 14:31242. [PMID: 39732777 DOI: 10.1038/s41598-024-82604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Cardiac sex-difference functional studies have centred on measurements of twitch force and Ca2+ dynamics. The energy expenditures from these two cellular processes: activation (Ca2+ handling) and contraction (cross-bridge cycling), have not been assessed, and compared, between sexes. Whole-heart studies measuring oxygen consumption do not directly measure the energy expenditure of these activation-contraction processes. In this study, we directly quantified these energy expenditures in terms of heat production. Left-ventricular trabeculae were dissected from rats aged 9-13 weeks. Mechano-energetics of trabeculae were characterized using our work-loop calorimeter under various conditions including varying muscle lengths, stimulus frequencies, and afterloads. Each trabecula was subjected to protocols that allowed it to contract either isometrically or shorten to perform work-loops. Force production, length change, and heat output were simultaneously measured. We extracted various metrics: twitch kinetics, shortening kinetics, mechanical work, and heat associated with cross-bridge cycling and Ca2+ cycling, and quantified mechanical efficiency. Results show no sex differences in any of the metrics. Peak mechanical efficiency was not affected by sex (10.25 ± 0.57% in female trabeculae; 10.93 ± 0.87% in male trabeculae). We conclude that cardiac mechanics and energetics are not affected by sex at the muscle level, within the rat age range studied.
Collapse
Affiliation(s)
- Maryam Rahmani
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Toan Pham
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - David J Crossman
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science and Biomedical Engineering, The University of Auckland, Auckland, New Zealand
| | - June-Chiew Han
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Zhang Y, Chen H, Ma Q, Jia H, Ma H, Du Z, Liu Y, Zhang X, Zhang Y, Guan Y, Ma H. Electrophysiological Mechanism of Catestatin Antiarrhythmia: Enhancement of Ito, IK, and IK1 and Inhibition of ICa-L in Rat Ventricular Myocytes. J Am Heart Assoc 2024; 13:e035415. [PMID: 39158577 PMCID: PMC11963934 DOI: 10.1161/jaha.124.035415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Cardiovascular disease remains one of the leading causes of death globally. Myocardial ischemia and infarction, in particular, frequently cause disturbances in cardiac electrical activity that can trigger ventricular arrhythmias. We aimed to investigate whether catestatin, an endogenous catecholamine-inhibiting peptide, ameliorates myocardial ischemia-induced ventricular arrhythmias in rats and the underlying ionic mechanisms. METHODS AND RESULTS Adult male Sprague-Dawley rats were randomly divided into control and catestatin groups. Ventricular arrhythmias were induced by ligation of the left anterior descending coronary artery and electrical stimulation. Action potential, transient outward potassium current, delayed rectifier potassium current, inward rectifying potassium current, and L-type calcium current (ICa-L) of rat ventricular myocytes were recorded using a patch-clamp technique. Catestatin notably reduced ventricular arrhythmia caused by myocardial ischemia/reperfusion and electrical stimulation of rats. In ventricular myocytes, catestatin markedly shortened the action potential duration of ventricular myocytes, which was counteracted by potassium channel antagonists TEACl and 4-AP, and ICa-L current channel agonist Bay K8644. In addition, catestatin significantly increased transient outward potassium current, delayed rectifier potassium current, and inward rectifying potassium current density in a concentration-dependent manner. Catestatin accelerated the activation and decelerated the inactivation of the transient outward potassium current channel. Furthermore, catestatin decreased ICa-L current density in a concentration-dependent manner. Catestatin also accelerated the inactivation of the ICa-L channel and slowed down the recovery of ICa-L from inactivation. CONCLUSIONS Catestatin enhances the activity of transient outward potassium current, delayed rectifier potassium current, and inward rectifying potassium current, while suppressing the ICa-L in ventricular myocytes, leading to shortened action potential duration and ultimately reducing the ventricular arrhythmia in rats.
Collapse
MESH Headings
- Animals
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Rats, Sprague-Dawley
- Chromogranin A/pharmacology
- Chromogranin A/metabolism
- Action Potentials/drug effects
- Peptide Fragments/pharmacology
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/drug effects
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Arrhythmias, Cardiac/metabolism
- Anti-Arrhythmia Agents/pharmacology
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Potassium Channels, Inwardly Rectifying/metabolism
- Potassium Channels, Inwardly Rectifying/drug effects
- Disease Models, Animal
- Potassium Channel Blockers/pharmacology
- Rats
- Patch-Clamp Techniques
- Delayed Rectifier Potassium Channels/metabolism
- Delayed Rectifier Potassium Channels/drug effects
- Potassium Channels/metabolism
- Potassium Channels/drug effects
Collapse
Affiliation(s)
- Ying Zhang
- Department of PhysiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Hua Chen
- Department of Cardiovascular Care UnitHebei General HospitalShijiazhuangHebeiChina
| | - Qingmin Ma
- Department of OphthalmologyHebei General HospitalShijiazhuangHebeiChina
| | - Hui Jia
- Department of PhysiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Hongyu Ma
- Department of PhysiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Zishuo Du
- Department of PhysiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Yan Liu
- Department of EndocrinologyThe Third Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio‐Cerebrovascular DiseaseShijiazhuangHebeiChina
| | - Yi Zhang
- Department of PhysiologyHebei Medical UniversityShijiazhuangHebeiChina
- Hebei Collaborative Innovation Center for Cardio‐Cerebrovascular DiseaseShijiazhuangHebeiChina
| | - Yue Guan
- Department of PhysiologyHebei Medical UniversityShijiazhuangHebeiChina
- Hebei Collaborative Innovation Center for Cardio‐Cerebrovascular DiseaseShijiazhuangHebeiChina
| | - Huijie Ma
- Department of PhysiologyHebei Medical UniversityShijiazhuangHebeiChina
- The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurophysiology of Hebei ProvinceShijiazhuangHebeiChina
- Hebei Collaborative Innovation Center for Cardio‐Cerebrovascular DiseaseShijiazhuangHebeiChina
| |
Collapse
|
3
|
Oknińska M, Duda MK, Czarnowska E, Bierła J, Paterek A, Mączewski M, Mackiewicz U. Sex- and age-dependent susceptibility to ventricular arrhythmias in the rat heart ex vivo. Sci Rep 2024; 14:3460. [PMID: 38342936 PMCID: PMC10859380 DOI: 10.1038/s41598-024-53803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024] Open
Abstract
The incidence of life-threatening ventricular arrhythmias, the most common cause of sudden cardiac death (SCD), depends largely on the arrhythmic substrate that develops in the myocardium during the aging process. There is a large deficit of comparative studies on the development of this substrate in both sexes, with a particular paucity of studies in females. To identify the substrates of arrhythmia, fibrosis, cardiomyocyte hypertrophy, mitochondrial density, oxidative stress, antioxidant defense and intracellular Ca2+ signaling in isolated cardiomyocytes were measured in the hearts of 3- and 24-month-old female and male rats. Arrhythmia susceptibility was assessed in ex vivo perfused hearts after exposure to isoproterenol (ISO) and hydrogen peroxide (H2O2). The number of ventricular premature beats (PVBs), ventricular tachycardia (VT) and ventricular fibrillation (VF) episodes, as well as intrinsic heart rate, QRS and QT duration, were measured in ECG signals recorded from the surfaces of the beating hearts. After ISO administration, VT/VFs were formed only in the hearts of males, mainly older ones. In contrast, H2O2 led to VT/VF formation in the hearts of rats of both sexes but much more frequently in older males. We identified several components of the arrhythmia substrate that develop in the myocardium during the aging process, including high spontaneous ryanodine receptor activity in cardiomyocytes, fibrosis of varying severity in different layers of the myocardium (nonheterogenic fibrosis), and high levels of oxidative stress as measured by nitrated tyrosine levels. All of these elements appeared at a much greater intensity in male individuals during the aging process. On the other hand, in aging females, antioxidant defense at the level of H2O2 detoxification, measured as glutathione peroxidase expression, was weaker than that in males of the same age. We showed that sex has a significant effect on the development of an arrhythmic substrate during aging. This substrate determines the incidence of life-threatening ventricular arrhythmias in the presence of additional stimuli with proarrhythmic potential, such as catecholamine stimulation or oxidative stress, which are constant elements in the pathomechanism of most cardiovascular diseases.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Monika Katarzyna Duda
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Elżbieta Czarnowska
- Department of Pathology, The Children's Memorial Health Institute, Aleja Dzieci Polskich 20, 04-736, Warsaw, Poland
- Department of Pathology, Medical University of Warsaw, Żwirki i Wigury 61, 02-091, Warsaw, Poland
| | - Joanna Bierła
- Department of Pathology, The Children's Memorial Health Institute, Aleja Dzieci Polskich 20, 04-736, Warsaw, Poland
| | - Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland.
| |
Collapse
|
4
|
Jin L, Yin Q, Mao Y, Gao Y, Han Q, Mei R, Xue L, Tan H, Li H. Putative Prevention of XML Injection Against Myocardial Ischemia Is Mediated by PKC and PLA2 Proteins. Front Cell Dev Biol 2022; 10:827691. [PMID: 35141226 PMCID: PMC8819063 DOI: 10.3389/fcell.2022.827691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Xinmailong (XML) injection is a CFDA-approved traditional Chinese medicine with clinical value for heart failure treatment. The present investigation was aimed to evaluate the potential protective roles of this injection on myocardial ischemia and the underlying molecular mechanism. Methods: In our study, we selected two models of myocardial ischemia rats. Rats were randomly divided into six groups, with saline or XML administrated 4 days before ischemia model establishment. ECG of different time intervals and biochemical parameters of end point were measured. The potential mechanisms of the protective role of XML were explored using system pharmacology and molecular biology approaches. Results: Myocardial ischemia rats demonstrated abnormal ECG and serum levels of cTnT. Pretreatment with XML significantly attenuated these damages, especially the medium doses. GO and KEGG analysis revealed that the 90 putative target genes were associated with pathways of fatty acid absorption/metabolism, inflammation, RAAS, and vascular smooth muscle. Further network pharmacology method identified five main chemical ingredients and potential targets of XML injection for myocardial ischemia. Mechanically, the beneficial effect of XML injection was mediated by the reactive oxygen species (ROS) inhibition and inflammation attenuation via regulating the expression levels of targets of PKC and PLA2. Conclusion: These findings indicate that XML exerts protective effects against myocardial injury, with attenuated ROS production, apoptosis, and inflammation. Therefore, we speculate that XML may be an alternative supplementary therapeutic agent for myocardial ischemia prevention.
Collapse
Affiliation(s)
- Ling Jin
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Qianqian Yin
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yiqing Mao
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Yuanxu Gao
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China
| | - Qing Han
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Ruisi Mei
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Huanran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- *Correspondence: Huanran Tan, ; Hui Li,
| | - Hui Li
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- *Correspondence: Huanran Tan, ; Hui Li,
| |
Collapse
|