1
|
Sahu SN, Shaw R, Yadav S, Althagafi I, Upadhyay MK, Pratap R. A green approach towards the on-water synthesis of multifunctional 3-amino/hydroxy thieno[3,2- c]pyrans. RSC Adv 2025; 15:12117-12124. [PMID: 40248243 PMCID: PMC12004110 DOI: 10.1039/d5ra01296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
An efficient, one-pot, and green synthetic strategy was established for 3-amino/hydroxy thieno[3,2-c]pyrans in water through a reaction of 6-aryl-4-(methylthio)-2-oxo-2H-pyran-3-carbonitriles/carboxylates with methyl thioglycolate, yielding excellent results (65-95%). The present approach was also employed to synthesize benzo[h]thieno[3,2-c]chromene-2-carboxylate derivatives in good yield. This efficient method eliminated the need for tedious purification steps, and the products were purified by simply washing the crude material with lukewarm water. Furthermore, the reaction medium was reusable and could be repeated up to six cycles, producing the desired product with only minimal loss, although the reaction time increased with each cycle. All the synthesized compounds were characterized by spectroscopic analysis, and the structure of one compound was confirmed by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Satya Narayan Sahu
- Department of Chemistry, Swami Atmanand Govt. English Medium Model College Ambikapur Surguja Chhattisgarh 497001 India
| | - Ranjay Shaw
- Department of Chemistry, GLA University Chaumuhan Uttar Pradesh 281406 India
| | - Saroj Yadav
- Department of Chemistry, University of Delhi Delhi 110007 India
| | - Ismail Althagafi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Manmohan Krishna Upadhyay
- Department of Chemistry, College-Mahant Avaidyanath Government Degree College Jungle Kaudiya Gorakhpur 273007 Uttar Pradesh India
| | - Ramendra Pratap
- Department of Chemistry, University of Delhi Delhi 110007 India
| |
Collapse
|
2
|
Srivastava P, Shukla A, Singh R, Kant R, Mishra N, Behera SP, Dwivedi GR, Yadav DK. Orientia tsutsugamushi: An Unusual Intracellular Bacteria-Adaptation Strategies, Available Antibiotics, and Alternatives for Treatment. Curr Microbiol 2024; 81:236. [PMID: 38907107 DOI: 10.1007/s00284-024-03754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
During evolution Orientia tsutsugamushi became a smarter obligate bacterium to establish as intracellular pathogens. O. tsutsugamushi is a human pathogenic bacterium responsible for 1 billion infections of scrub typhus. Several novel mechanisms make this bacterium unique (cell wall, genetic constitutions, secretion system, etc.). In 2007, O. tsutsugamushi Boryong was pioneer strain for whole-genome sequencing. But the fundamental biology of this bacterial cell is a mystery till date. The unusual biology makes this organism as model for host cell interaction. Only a few antibiotics are effective against this intracellular pathogen but emergence of less susceptibility toward antibiotics make the situation alarming. The review was captivated to highlight the unusual aspects of adaptation, antibiotics, and drugs beyond antibiotics.
Collapse
Affiliation(s)
- Prashansha Srivastava
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Aishwarya Shukla
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Rajeev Singh
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Rajni Kant
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Nalini Mishra
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Sthita P Behera
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Gaurav R Dwivedi
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India.
| | - Dharmendra K Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-Gu, Incheon, 21924, Korea
| |
Collapse
|
3
|
Dwivedi GR, Pathak N, Tiwari N, Negi AS, Kumar A, Pal A, Sharma A, Darokar MP. Synergistic Antibacterial Activity of Gallic Acid Based Chalcone Indl 2 by Inhibiting Efflux Pump Transporters. Chem Biodivers 2024; 21:e202301820. [PMID: 38372508 DOI: 10.1002/cbdv.202301820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/20/2024]
Abstract
As a part of novel discovery of drugs from natural resources, present study was undertaken to explore the antibacterial potential of chalcone Indl-2 in combination with different group of antibiotics. MIC of antibiotics was reduced up to eight folds against the different cultures of E. coli by both chalcones. Among the two compounds, the i. e. 1-(3', 4,'5'-trimethoxyphenyl)-3-(3-Indyl)-prop-2-enone (6, Indl-2), a chalcone derivative of gallic acid (Indl-2) was better along with tetracycline (TET) worked synergistically and was found to inhibit efflux transporters as obvious by ethidium bromide efflux confirmed by ATPase assays and docking studies. In combination, Indl-2 kills the MDREC-KG4 cells, post-antibiotic effect (PAE) of TET was prolonged and mutant prevention concentration (MPC) of TET was also decreased. In-vivo studies revealed that Indl-2 reduces the concentration of TNF-α. In acute oral toxicity study, Indl-2 was non-toxic and well tolerated up-to dose of 2000 mg/kg. Perhaps, the study is going to report gallic acid derived chalcone as synergistic agent acting via inhibiting the primary efflux pumps.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur, 273013, U.P., India
| | - Nandini Pathak
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Nimisha Tiwari
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
| | - Arvind Singh Negi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
| | - Anirban Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| |
Collapse
|
4
|
Mohareb RM, Mukhtar S, Parveen H, Abdelaziz MA, Alwan ES. Anti-proliferative, Morphological and Molecular Docking Studies of New Thiophene Derivatives and their Strategy in Ionic Liquids Immobilized Reactions. Anticancer Agents Med Chem 2024; 24:691-708. [PMID: 38321904 DOI: 10.2174/0118715206262307231122104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND A number of research were conducted on the pyran and thiophene derivatives, which were attributed to have a wide range of biological activities, including anti-plasmodial, as well as acting as caspase, hepatitis C and cancer inhibitors. OBJECTIVE The multicomponent reactions of the 5-acetyl-2-amino-4-(phenylamino)-thiophene-3-carbonitrile produced biologically active target molecules like pyran and their fused derivatives. Comparison between regular catalytic multi-component reactions and solvent-free ionic liquids immobilized multicomponent was studied. METHODS The multicomponent reactions in this work were carried out not only under the reflux conditions using triethylamine as a catalyst but also in solvent-free ionic liquids immobilized magnetic nanoparticles (MNPs) catalysts. RESULTS Through this work, thirty-one new compounds were synthesized and characterized and were evaluated toward the six cancer cell lines, namely A549, HT-29, MKN-45, U87MG, and SMMC-7721 and H460. The most active compounds were further screened toward seventeen cancer cell lines classified according to the disease. In addition, the effect of compound 11e on the A549 cell line was selected to make further morphological changes in the cell line. The Molecular docking studies of 11e and 11f were carried and promising results were obtained. CONCLUSION The synthesis of heterocyclic compounds derived from thiophene derivatives has been receiving significant attention. After a detailed optimizing study, it has been found that the solvent-free ionic liquids immobilized multi-component syntheses afforded a high yield of compounds, opening a greener procedure for this synthetically relevant transformation. Many of the synthesized compounds can be considered anticancer agents, enhancing further studies.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, A.R. Egypt
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Ensaf S Alwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
5
|
Demonstration of the efficacy of curcumin on carbapenem-resistant Pseudomonas aeruginosa with Galleria mellonella larvae model. Arch Microbiol 2022; 204:524. [PMID: 35882691 DOI: 10.1007/s00203-022-03135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/31/2022]
Abstract
Due to increasing antimicrobial resistance, studies where new treatment options are investigated along with the synergistic effects of natural products with antibiotics have arisen. Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen and infection with multi-drug resistant (MDR) P. aeruginosa poses a critical problem during treatment. Curcumin (CUR) is listed in the literature as one of the promising natural ingredients with its strong antimicrobial activity. In our study, our aim was to investigate the in vitro synergistic effect of CUR with imipenem (IMP) and Colistin (CST) in MDR P. aeruginosa isolates and in vivo activity on Galleria mellonella (G. mellonella) larvae. Three clinical isolates of MDR P. aeruginosa, which were determined to be phenotypically resistant to carbapenems, were used, and KPC and OXA48 resistance genes were determined by PCR method. The synergistic effect of CUR with antibiotics were investigated by the checkerboard method. Larval survival and bacterial load were compared with the in vivo study. In this study, IMP MIC values were significantly reduced (two to eight-fold decrease) in the presence of CUR, and partial synergy was observed. For CST, this value decreased two-fold. Bacterial load was evaluated to investigate the effect of antimicrobials during infection. While the CFUs increased over time in non-treated larvae as compared to the initial inoculum, bacterial load was significantly decreased for the groups treated with CUR, IMP and CST compared to the untreated group (p < 0.05). It was concluded CUR-antibiotic combinations can provide an alternative approach in the treatment of infections with MDR bacteria.
Collapse
|
6
|
Yousuf M, Ali A, Khan P, Anjum F, Elasbali AM, Islam A, Yadav DK, Shafie A, Rizwanul Haque QM, Hassan MI. Insights into the Antibacterial Activity of Prolactin-Inducible Protein against the Standard and Environmental MDR Bacterial Strains. Microorganisms 2022; 10:microorganisms10030597. [PMID: 35336169 PMCID: PMC8950685 DOI: 10.3390/microorganisms10030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Prolactin inducible protein (PIP) is a small secretary glycoprotein present in most biological fluids and contributes to various cellular functions, including cell growth, fertility, antitumor, and antifungal activities. Objectives: The present study evaluated the antibacterial activities of recombinant PIP against multiple broad-spectrum MDR bacterial strains. Methods: The PIP gene was cloned, expressed and purified using affinity chromatography. Disk diffusion, broth microdilution, and growth kinetic assays were used to determine the antibacterial activities of PIP. Results: Disk diffusion assay showed that PIP has a minimum and maximum zone of inhibition against E. coli and P. aeruginosa, respectively, compared to the reference drug ampicillin. Furthermore, growth kinetics studies also suggested that PIP significantly inhibited the growth of E. coli and P. aeruginosa. The minimum inhibitory concentration of PIP was 32 µg/mL for E. coli (443), a standard bacterial strain, and 64 µg/mL for Bacillus sp. (LG1), an environmental multidrug-resistant (MDR) strain. The synergistic studies of PIP with ampicillin showed better efficacies towards selected bacterial strains having MDR properties. Conclusion: Our findings suggest that PIP has a broad range of antibacterial activities with important implications in alleviating MDR problems.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.Y.); (A.A.); (Q.M.R.H.)
| | - Asghar Ali
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.Y.); (A.A.); (Q.M.R.H.)
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.K.); (A.I.)
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakakah 42421, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.K.); (A.I.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon City 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Qazi Mohd. Rizwanul Haque
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.Y.); (A.A.); (Q.M.R.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.K.); (A.I.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|
7
|
Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M, Islam A, Hassan MI, Snoussi M, De Feo V. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomed Pharmacother 2022; 147:112658. [PMID: 35066300 PMCID: PMC8769927 DOI: 10.1016/j.biopha.2022.112658] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The unexpected emergence of the new Coronavirus disease (COVID-19) has affected more than three hundred million individuals and resulted in more than five million deaths worldwide. The ongoing pandemic has underscored the urgent need for effective preventive and therapeutic measures to develop anti-viral therapy. The natural compounds possess various pharmaceutical properties and are reported as effective anti-virals. The interest to develop an anti-viral drug against the novel severe acute respiratory syndrome Coronavirus (SARS-CoV-2) from natural compounds has increased globally. Here, we investigated the anti-viral potential of selected promising natural products. Sources of data for this paper are current literature published in the context of therapeutic uses of phytoconstituents and their mechanism of action published in various reputed peer-reviewed journals. An extensive literature survey was done and data were critically analyzed to get deeper insights into the mechanism of action of a few important phytoconstituents. The consumption of natural products such as thymoquinone, quercetin, caffeic acid, ursolic acid, ellagic acid, vanillin, thymol, and rosmarinic acid could improve our immune response and thus possesses excellent therapeutic potential. This review focuses on the anti-viral functions of various phytoconstituent and alkaloids and their potential therapeutic implications against SARS-CoV-2. Our comprehensive analysis provides mechanistic insights into phytoconstituents to restrain viral infection and provide a better solution through natural, therapeutically active agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh 201303, India
| | - Urooj Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, Italy.
| |
Collapse
|
8
|
Alam M, Ali S, Ashraf GM, Bilgrami AL, Yadav DK, Hassan MI. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem 2022; 379:132135. [PMID: 35063850 DOI: 10.1016/j.foodchem.2022.132135] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) possesses various biological functions, including anti-cancer and anti-inflammatory properties. EGCG is an abundant polyphenolic component originating from green tea extract that has exhibited versatile bioactivities in combating several cancers. This review highlights the pharmacological features of EGCG and its therapeutic implications in cancer and other metabolic diseases. It modulates numerous signaling pathways, regulating cells' undesired survival and proliferation, thus imparting strong tumor chemopreventive and therapeutic effects. EGCG initiates cell death through the intrinsic pathway and causes inhibition of EGFR, STAT3, and ERK pathways in several cancers. EGCG alters and inhibits ERK1/2, NF-κB, and Akt-mediated signaling, altering the Bcl-2 family proteins ratio and activating caspases in tumor cells. This review focuses on anti-cancer, anti-oxidant, anti-inflammatory, anti-angiogenesis, and apoptotic effects of EGCG. We further highlighted the potential of EGCG in different types of cancer, emphasizing clinical trials formulations that further improve our understanding of the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
9
|
Alam M, Ali S, Ahmed S, Elasbali AM, Adnan M, Islam A, Hassan MI, Yadav DK. Therapeutic Potential of Ursolic Acid in Cancer and Diabetic Neuropathy Diseases. Int J Mol Sci 2021; 22:12162. [PMID: 34830043 PMCID: PMC8621142 DOI: 10.3390/ijms222212162] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid frequently found in medicinal herbs and plants, having numerous pharmacological effects. UA and its analogs treat multiple diseases, including cancer, diabetic neuropathy, and inflammatory diseases. UA inhibits cancer proliferation, metastasis, angiogenesis, and induced cell death, scavenging free radicals and triggering numerous anti- and pro-apoptotic proteins. The biochemistry of UA has been examined broadly based on the literature, with alterations frequently having been prepared on positions C-3 (hydroxyl), C12-C13 (double bonds), and C-28 (carboxylic acid), leading to several UA derivatives with increased potency, bioavailability and water solubility. UA could be used as a protective agent to counter neural dysfunction via anti-oxidant and anti-inflammatory effects. It is a potential therapeutic drug implicated in the treatment of cancer and diabetic complications diseases provide novel machinery to the anti-inflammatory properties of UA. The pharmacological efficiency of UA is exhibited by the therapeutic theory of one-drug → several targets → one/multiple diseases. Hence, UA shows promising therapeutic potential for cancer and diabetic neuropathy diseases. This review aims to discuss mechanistic insights into promising beneficial effects of UA. We further explained the pharmacological aspects, clinical trials, and potential limitations of UA for the management of cancer and diabetic neuropathy diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
| |
Collapse
|
10
|
Alam M, Ali S, Mohammad T, Hasan GM, Yadav DK, Hassan MI. B Cell Lymphoma 2: A Potential Therapeutic Target for Cancer Therapy. Int J Mol Sci 2021; 22:ijms221910442. [PMID: 34638779 PMCID: PMC8509036 DOI: 10.3390/ijms221910442] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Defects in the apoptosis mechanism stimulate cancer cell growth and survival. B cell lymphoma 2 (Bcl-2) is an anti-apoptotic molecule that plays a central role in apoptosis. Bcl-2 is the founding constituent of the Bcl-2 protein family of apoptosis controllers, the primary apoptosis regulators linked with cancer. Bcl-2 has been identified as being over-expressed in several cancers. Bcl-2 is induced by protein kinases and several signaling molecules which stimulate cancer development. Identifying the important function played by Bcl-2 in cancer progression and development, and treatment made it a target related to therapy for multiple cancers. Among the various strategies that have been proposed to block Bcl-2, BH3-mimetics have appeared as a novel group of compounds thanks to their favorable effects on many cancers within several clinical settings. Because of the fundamental function of Bcl-2 in the regulation of apoptosis, the Bcl-2 protein is a potent target for the development of novel anti-tumor treatments. Bcl-2 inhibitors have been used against several cancers and provide a pre-clinical platform for testing novel therapeutic drugs. Clinical trials of multiple investigational agents targeting Bcl-2 are ongoing. This review discusses the role of Bcl-2 in cancer development; it could be exploited as a potential target for developing novel therapeutic strategies to combat various types of cancers. We further highlight the therapeutic activity of Bcl-2 inhibitors and their implications for the therapeutic management of cancer.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|