1
|
Yuan W, Shi Y, Dai S, Deng M, Zhu K, Xu Y, Chen Z, Xu Z, Zhang T, Liang S. The role of MAPK pathway in gastric cancer: unveiling molecular crosstalk and therapeutic prospects. J Transl Med 2024; 22:1142. [PMID: 39719645 PMCID: PMC11667996 DOI: 10.1186/s12967-024-05998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer remains a significant health burden globally, especially prevalent in Asian and European regions. Despite a notable decline in incidence in the United States and Western Europe over recent decades, the disease's persistence underscores the urgency for advanced research in its pathogenesis and treatment strategies. Central to this pursuit is the exploration of the mitogen-activated protein kinase (MAPK) pathway, a pivotal cellular mechanism implicated in the complex processes of gastric cancer development, including cellular proliferation, invasion, migration, and metastasis. The MAPK or extracellular signal-regulated kinase pathway serves as a crucial conduit for transmitting extracellular signals to elicit intracellular responses, with its signaling cascades subject to alterations due to genetic and epigenetic variations across various diseases, prominently cancer. This review delves into the intricate role of the MAPK signaling pathway in the pathogenesis of gastric cancer, drawing upon the most recent and critical studies that shed light on MAPK pathway alterations as a gateway to the disease. It highlights the pathway's involvement in Helicobacter pylori-mediated gastric carcinogenesis and the tumorigenic processes induced by the Epstein-Barr virus, showcasing the substantial influence of miRNAs and lncRNAs in modulating gastric cancer's biological properties through their interaction with the MAPK pathway. Furthermore, the review extends into the therapeutic arena, discussing the promising impacts of herbal medicines, MAPK pathway inhibitors, and immunosuppressants on mitigating gastric cancer's progression. Through an exhaustive examination of the MAPK pathway's multifaceted role in gastric cancer, from molecular crosstalks to therapeutic prospects, this review aspires to contribute to the ongoing efforts in understanding and combating this global health challenge, paving the way for novel therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Yin Shi
- Department of Internal Medicine, Yiwu Maternity and Children Hospital, Yiwu, Zhejiang, China
| | - Shiping Dai
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Mao Deng
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Kai Zhu
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhou Xu
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China.
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Song Liang
- Department of General Surgery, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, 237000, China.
| |
Collapse
|
2
|
Liu Y, Feng D, Liu F, Liu Y, Zuo F, Wang Y, Chen L, Guo X, Tian J. LncRNA MALAT1 Facilitates Parkinson's Disease Progression by Increasing SOCS3 Promoter Methylation. Gerontology 2024; 70:1294-1304. [PMID: 39413738 DOI: 10.1159/000541719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been shown to be involved in Parkinson's disease (PD) progression, but its mechanism needs to be further explored. METHODS Mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD mice models, and BV2 cells were treated with lipopolysaccharides (LPS) to mimic PD cell models. MALAT1 expression and suppressor of cytokine signaling 3 (SOCS3) protein level were examined using quantitative real-time PCR and Western blot, respectively. Cell functions were tested by cell counting kit 8 assay and flow cytometry. The interaction between MALAT1 and SOCS3 was confirmed using RNA pull-down and RIP assays. RESULTS MALAT1 was upregulated in MPTP-induced PD mice and LPS-induced BV2 cells. Silencing of MALAT1 increased viability, while inhibiting apoptosis and inflammation in LPS-induced BV2 cells. Besides, MALAT1 enhanced the SOCS3 promoter methylation to decrease its expression by recruiting DNMT1, DNMT3A, and DNMT3B. Furthermore, SOCS3 knockdown eliminated sh-MALAT1-mediated the inhibition effect on LPS-induced BV2 cell injury. In vivo, MALAT1 silencing ameliorated neurological impairment and neuroinflammation in MPTP-induced PD mice. CONCLUSION Our data revealed that MALAT1 worsened PD processes via inhibiting SOCS3 expression by increasing its promoter methylation.
Collapse
Affiliation(s)
- Yuqi Liu
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dan Feng
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fenfen Liu
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yun Liu
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fangya Zuo
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yujie Wang
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lanlan Chen
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
- Zunyi Medical University, Zunyi, China
| | - Xiuhong Guo
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jinyong Tian
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
3
|
Ari Yuka S, Yilmaz A. Decoding dynamic miRNA:ceRNA interactions unveils therapeutic insights and targets across predominant cancer landscapes. BioData Min 2024; 17:11. [PMID: 38627780 PMCID: PMC11022475 DOI: 10.1186/s13040-024-00362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Competing endogenous RNAs play key roles in cellular molecular mechanisms through cross-talk in post-transcriptional interactions. Studies on ceRNA cross-talk, which is particularly dependent on the abundance of free transcripts, generally involve large- and small-scale studies involving the integration of transcriptomic data from tissues and correlation analyses. This abundance-dependent nature of ceRNA interactions suggests that tissue- and condition-specific ceRNA dynamics may fluctuate. However, there are no comprehensive studies investigating the ceRNA interactions in normal tissue, ceRNAs that are lost and/or appear in cancerous tissues or their interactions. In this study, we comprehensively analyzed the tumor-specific ceRNA fluctuations observed in the three highest-incidence cancers, LUAD, PRAD, and BRCA, compared to healthy lung, prostate, and breast tissues, respectively. Our observations pertaining to tumor-specific competing endogenous RNA (ceRNA) interactions revealed that, in the cases of lung adenocarcinoma (LUAD), prostate adenocarcinoma (PRAD), and breast invasive carcinoma (BRCA), 3,204, 1,233, and 406 ceRNAs, respectively, engage in post-transcriptional intercommunication within tumor tissues, in contrast to their absence in corresponding healthy samples. We also found that 90 ceRNAs are shared by the three cancer types and that these ceRNAs participate in ceRNA interactions in tumor tissues compared to those in normal tissues. Among the 90 ceRNAs that directly interact with miRNAs, we uncovered a core network of 165 miRNAs and 63 ceRNAs that should be considered in RNA-targeted and RNA-mediated approaches in future studies and could be used in these three aggressive cancer types. More specifically, in this core interaction network, ceRNAs such as GALNT7, KLF9, and DAB2 and miRNAs like miR-106a/b-5p, miR-20a-5p, and miR-519d-3p may have potential as common targets in the three critical cancers. In contrast to conventional methods that construct ceRNA networks using differentially expressed genes compared to normal tissues, our proposed approach identifies ceRNA players by considering their context within the ceRNA:miRNA interactions. Our results have the potential to reveal distinct and common ceRNA interactions in cancer types and to pinpoint critical RNAs, thereby paving the way for RNA-based strategies in the battle against cancer.
Collapse
Affiliation(s)
- Selcen Ari Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Yildiz Technical University, Istanbul, 34220, Turkey.
| | - Alper Yilmaz
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| |
Collapse
|
4
|
Yang M, Hu X, Tang B, Deng F. Exploring the interplay between methylation patterns and non-coding RNAs in non-small cell lung cancer: Implications for pathogenesis and therapeutic targets. Heliyon 2024; 10:e24811. [PMID: 38312618 PMCID: PMC10835372 DOI: 10.1016/j.heliyon.2024.e24811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Lung cancer is a global public health issue, with non-small cell lung cancer (NSCLC) accounting for 80-85 % of cases. With over two million new diagnoses annually, understanding the complex evolution of this disease is crucial. The development of lung cancer involves a complex interplay of genetic, epigenetic, and environmental factors, leading the key oncogenes and tumor suppressor genes to disorder, and activating the cancer related signaling pathway. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNA (circRNAs) are unique RNA transcripts with diverse biological functions. These ncRNAs are generated through genome transcription and play essential roles in cellular processes. Epigenetic modifications such as DNA methylation, N6-methyladenosine (m6A) modification, and histone methylation have gained significant attention in NSCLC research. The complexity of the interactions among these methylation modifications and ncRNAs contribute to the precise regulation of NSCLC development. This review comprehensively summarizes the associations between ncRNAs and different methylation modifications and discusses their effects on NSCLC. By elucidating these relationships, we aim to advance our understanding of NSCLC pathogenesis and identify potential therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mei Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
5
|
Yan Q, Su X, Chen Y, Wang Z, Han W, Xia Q, Mao Y, Si J, Li H, Duan S. LINC00941: a novel player involved in the progression of human cancers. Hum Cell 2024; 37:167-180. [PMID: 37995050 DOI: 10.1007/s13577-023-01002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
LINC00941, also known as lncRNA-MUF, is an intergenic non-coding RNA located on chromosome 12p11.21. It actively participates in a complex competing endogenous RNA network, regulating the expression of microRNA and its downstream proteins. Through transcriptional and post-transcriptional regulation, LINC00941 plays a vital role in multiple signaling pathways, influencing cell behaviors such as tumor cell proliferation, epithelial-mesenchymal transition, migration, and invasion. Noteworthy is its consistently high expression in various tumor types, closely correlating with clinicopathological features and cancer prognoses. Elevated LINC00941 levels are associated with adverse clinical outcomes, including increased tumor size, extensive lymphatic metastasis, and distant metastasis, leading to poorer survival rates across different cancers. Additionally, LINC00941 and its associated genes are linked to various targeted drugs available in the market. In this comprehensive review, we systematically summarize existing studies, detailing LINC00941's differential expression, clinicopathological and prognostic implications, regulatory mechanisms, and associated therapeutic drugs. Our analysis includes relevant charts and incorporates bioinformatics analyses to verify LINC00941's differential expression in pan-cancer and explore potential transcriptional regulation patterns of downstream targets. This work not only establishes a robust data foundation but also guides future research directions. Given its potential as a significant cancer biomarker and therapeutic target, further investigation into LINC00941's differential expression and regulatory mechanisms is essential.
Collapse
Affiliation(s)
- Qibin Yan
- Institute of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Pharmacy, Hangzhou City University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinming Su
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yunzhu Chen
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Wenbo Han
- Department of Pharmacy, Hangzhou City University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qing Xia
- Institute of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yunan Mao
- Department of Pharmacy, Hangzhou City University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiahua Si
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hanbing Li
- Institute of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Pan C, Lin J, Dai X, Jiao L, Liu J, Lin A. An m1A/m6A/m5C-associated long non-coding RNA signature: Prognostic and immunotherapeutic insights into cervical cancer. J Gene Med 2024; 26:e3618. [PMID: 37923390 DOI: 10.1002/jgm.3618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) remains a significant clinical challenge, even though its fatality rate has been declining in recent years. Particularly in developing countries, the prognosis for CC patients continues to be suboptimal despite numerous therapeutic advances. METHODS Using The Cancer Genome Atlas database, we extracted CC-related data. From this, 52 methylation-related genes (MRGs) were identified, leading to the selection of a 10 long non-coding RNA (lncRNA) signature co-expressed with these MRGs. R programming was employed to filter out the methylation-associated lncRNAs. Through univariate, least absolute shrinkage and selection operator (i.e. LASSO) and multivariate Cox regression analysis, an MRG-associated lncRNA model was constructed. The established risk model was further assessed via the Kaplan-Meier method, principal component analysis, functional enrichment annotation and a nomogram. Furthermore, we explored the potential of this model with respect to guiding immune therapeutic interventions and predicting drug sensitivities. RESULTS The derived 10-lncRNA signature, linked with MRGs, emerged as an independent prognostic factor. Segmenting patients based on their immunotherapy responses allowed for enhanced differentiation between patient subsets. Lastly, we highlighted potential compounds for distinguishing CC subtypes. CONCLUSIONS The risk model, associated with MRG-linked lncRNA, holds promise in forecasting clinical outcomes and gauging the efficacy of immunotherapies for CC patients.
Collapse
Affiliation(s)
- Chenxiang Pan
- Department of Gynaecology Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Jiali Lin
- Institute of Reproduction and Development, Affiliated Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaoxiao Dai
- Department of Gynaecology Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Lili Jiao
- Department of Gynaecology Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Jinsha Liu
- Department of Laboratory Medicine, Meizhou Meixian District Hospital of Traditional Chinese Medicine, Meizhou, China
| | - Aidi Lin
- Department of Gynaecology Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Chen P, Liu Z, Xiao H, Yang X, Li T, Huang W, Zhou H. Effect of tumor exosome-derived Lnc RNA HOTAIR on the growth and metastasis of gastric cancer. Clin Transl Oncol 2023; 25:3447-3459. [PMID: 37199906 DOI: 10.1007/s12094-023-03208-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE HOX transcribed antisense RNA (HOTAIR) is a long noncoding RNA (LncRNA) that promotes tumor progression. Exosomes are critically involved in cancer progression. The presence of HOTAIR in the circulating exosomes and the roles of exosomal HOTAIR in gastric cancer (GC) remains unknown. This study aimed to investigate the role of HOTAIR in exosomes in promoting the growth and metastasis of GC. METHODS Serum exosomes from GC patients were captured by CD63 immunoliposome magnetic spheres (CD63-IMS), and the biological characteristics of the exosomes were identified. The expression levels of HOTAIR in GC cells, tissues, serum and serum exosomes were detected by fluorescence quantitative PCR (qRT-PCR), and the clinicopathological correlation was statistically analyzed. The growth and metastasis abilities of GC cells with HOTAIR knockdown in vitro were evaluated by cell experiment. The effects of HOTAIR highly-expressed NCI-N87 cell-derived exosomes were used to treat HOTAIR lowly-expressed MKN45 cells on GC growth and metastasis were also evaluated. RESULTS The exosomes isolated by CD63-IMS had a particle size of 89.78 ± 4.8 nm and were oval membranous particles. The expression of HOTAIR in tumor tissues and serum of GC patients was increased (P < 0.05), and the expression of HOTAIR in serum exosomes was significantly increased (P < 0.01). The in NCI-N87 and MKN45 cell experiment demonstrated that HOTAIR knockdown by RNA interference suppressed cell growth and metastasis in NCI-N87 cells. Coculture of exosomes secreted by NCI-N87 cells with MKN45 cells significantly increased the expression of HOTAIR, and enhanced cell growth and metastasis. CONCLUSION LncRNA HOTAIR can be used as a potential biomarker which provides a new way for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Pan Chen
- The Animal Laboratory Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhenyang Liu
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Hua Xiao
- Hepatobiliary Surgery Department, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaolin Yang
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ting Li
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Huang
- Department of Radiation Oncology, Research Center of Carcinogenesis and Targeted Therapy/National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huijun Zhou
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
8
|
Kasprzak A. Prognostic Biomarkers of Cell Proliferation in Colorectal Cancer (CRC): From Immunohistochemistry to Molecular Biology Techniques. Cancers (Basel) 2023; 15:4570. [PMID: 37760539 PMCID: PMC10526446 DOI: 10.3390/cancers15184570] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and severe malignancies worldwide. Recent advances in diagnostic methods allow for more accurate identification and detection of several molecular biomarkers associated with this cancer. Nonetheless, non-invasive and effective prognostic and predictive testing in CRC patients remains challenging. Classical prognostic genetic markers comprise mutations in several genes (e.g., APC, KRAS/BRAF, TGF-β, and TP53). Furthermore, CIN and MSI serve as chromosomal markers, while epigenetic markers include CIMP and many other candidates such as SERP, p14, p16, LINE-1, and RASSF1A. The number of proliferation-related long non-coding RNAs (e.g., SNHG1, SNHG6, MALAT-1, CRNDE) and microRNAs (e.g., miR-20a, miR-21, miR-143, miR-145, miR-181a/b) that could serve as potential CRC markers has also steadily increased in recent years. Among the immunohistochemical (IHC) proliferative markers, the prognostic value regarding the patients' overall survival (OS) or disease-free survival (DFS) has been confirmed for thymidylate synthase (TS), cyclin B1, cyclin D1, proliferating cell nuclear antigen (PCNA), and Ki-67. In most cases, the overexpression of these markers in tissues was related to worse OS and DFS. However, slowly proliferating cells should also be considered in CRC therapy (especially radiotherapy) as they could represent a reservoir from which cells are recruited to replenish the rapidly proliferating population in response to cell-damaging factors. Considering the above, the aim of this article is to review the most common proliferative markers assessed using various methods including IHC and selected molecular biology techniques (e.g., qRT-PCR, in situ hybridization, RNA/DNA sequencing, next-generation sequencing) as prognostic and predictive markers in CRC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
9
|
Ramundo V, Palazzo ML, Aldieri E. TGF-β as Predictive Marker and Pharmacological Target in Lung Cancer Approach. Cancers (Basel) 2023; 15:cancers15082295. [PMID: 37190223 DOI: 10.3390/cancers15082295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Lung cancer (LC) represents the leading cause of cancer incidence and mortality worldwide. LC onset is strongly related to genetic mutations and environmental interactions, such as tobacco smoking, or pathological conditions, such as chronic inflammation. Despite advancement in knowledge of the molecular mechanisms involved in LC, this tumor is still characterized by an unfavorable prognosis, and the current therapeutic options are unsatisfactory. TGF-β is a cytokine that regulates different biological processes, particularly at the pulmonary level, and its alteration has been demonstrated to be associated with LC progression. Moreover, TGF-β is involved in promoting invasiveness and metastasis, via epithelial to mesenchymal transition (EMT) induction, where TGF-β is the major driver. Thus, a TGF-β-EMT signature may be considered a potential predictive marker in LC prognosis, and TGF-β-EMT inhibition has been demonstrated to prevent metastasis in various animal models. Concerning a LC therapeutic approach, some TGF-β and TGF-β-EMT inhibitors could be used in combination with chemo- and immunotherapy without major side effects, thereby improving cancer therapy. Overall, targeting TGF-β may be a valid possibility to fight LC, both in improving LC prognosis and cancer therapy, via a novel approach that could open up new effective strategies against this aggressive cancer.
Collapse
Affiliation(s)
- Valeria Ramundo
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | | | | |
Collapse
|
10
|
Ke S, Wang J, Lu J, Fang M, Li R. Long intergenic non-protein coding RNA 00858 participates in the occurrence and development of esophageal squamous cell carcinoma through the activation of the FTO-m6A-MYC axis by recruiting ZNF184. Genomics 2023; 115:110593. [PMID: 36868327 DOI: 10.1016/j.ygeno.2023.110593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVES We aimed at probing impact of LINC00858 on esophageal squamous cell carcinoma (ESCC) progression via ZNF184-FTO-m6A-MYC axis. METHODS Expression of related genes (LINC00858, ZNF184, FTO, and MYC) was detected in ESCC tissues or cells and their relationships were assessed. After expression alterations in ESCC cells, cell proliferation, invasion, migration, and apoptosis were detected. Tumor formation in nude mice was conducted. RESULTS LINC00858, ZNF184, FTO, and MYC were overexpressed in ESCC tissues and cells. LINC00858 enhanced ZNF184 expression to upregulate FTO, which augmented MYC expression. LINC00858 knockdown diminished ESCC cell proliferative, migratory, and invasive properties while elevating apoptosis, which was negated by FTO overexpression. FTO knockdown exerted similar functions of LINC00858 knockdown on ESCC cell movements, which was annulled by MYC upregulation. Silencing LINC00858 repressed tumor growth and related gene expression in nude mice. CONCLUSIONS LINC00858 modulated MYC m6A modification via FTO by recruiting ZNF184, thus facilitating ESCC progression.
Collapse
Affiliation(s)
- Shun Ke
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Jing Wang
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Jun Lu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Minghao Fang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ruichao Li
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
11
|
Xia Q, Shen J, Wang Q, Ke Y, Yan Q, Li H, Zhang D, Duan S. LINC00324 in cancer: Regulatory and therapeutic implications. Front Oncol 2022; 12:1039366. [PMID: 36620587 PMCID: PMC9815511 DOI: 10.3389/fonc.2022.1039366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
LINC00324 is a 2082 bp intergenic noncoding RNA. Aberrant expression of LINC00324 was associated with the risk of 11 tumors and was closely associated with clinicopathological features and prognostic levels of 7 tumors. LINC00324 can sponge multiple miRNAs to form complex ceRNA networks, and can also recruit transcription factors and bind RNA-binding protein HuR, thereby regulating the expression of a number of downstream protein-coding genes. LINC00324 is involved in 4 signaling pathways, including the PI3K/AKT signaling pathway, cell cycle regulatory pathway, Notch signaling pathway, and Jak/STAT3 signaling pathway. High expression of LINC00324 was associated with larger tumors, a higher degree of metastasis, a higher TNM stage and clinical stage, and shorter OS. Currently, four downstream genes in the LINC00324 network have targeted drugs. In this review, we summarize the molecular mechanisms and clinical value of LINC00324 in tumors and discuss future directions and challenges for LINC00324 research.
Collapse
Affiliation(s)
- Qing Xia
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China,College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China,Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jinze Shen
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Qurui Wang
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Yufei Ke
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Qibin Yan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Hanbing Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Dayong Zhang
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China,*Correspondence: Dayong Zhang, ; Shiwei Duan,
| | - Shiwei Duan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China,*Correspondence: Dayong Zhang, ; Shiwei Duan,
| |
Collapse
|
12
|
An X, Liu Y. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies. Biomed Pharmacother 2022; 154:113594. [DOI: 10.1016/j.biopha.2022.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
|
13
|
Zhang Q, Shen J, Wu Y, Ruan W, Zhu F, Duan S. LINC00520: A Potential Diagnostic and Prognostic Biomarker in Cancer. Front Immunol 2022; 13:845418. [PMID: 35309319 PMCID: PMC8924041 DOI: 10.3389/fimmu.2022.845418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNA (lncRNA) is important in the study of cancer mechanisms. LINC00520 is located on human chromosome 14q22.3 and is a highly conserved long non-coding RNA. LINC00520 is widely expressed in various tissues. The expression of LINC00520 is regulated by transcription factors such as Sp1, TFAP4, and STAT3. The high expression of LINC00520 is significantly related to the risk of 11 cancers. LINC00520 can competitively bind 10 miRNAs to promote tumor cell proliferation, invasion, and migration. In addition, LINC00520 is involved in the regulation of P13K/AKT and JAK/STAT signaling pathways. The expression of LINC00520 is significantly related to the clinicopathological characteristics and prognosis of tumor patients and is also related to the sensitivity of HNSCC to radiotherapy. Here, this article summarizes the abnormal expression pattern of LINC00520 in cancer and its potential molecular regulation mechanism and points out that LINC00520 can be used as a potential biomarker for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Qiudan Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, China.,Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Jinze Shen
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wenjing Ruan
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Shiwei Duan
- School of Medicine, Zhejiang University City College, Hangzhou, China.,Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|