1
|
Saadh MJ, Bishoyi AK, Rekha MM, Verma A, Nanda A, Panigrahi R, Verma R, Gabble BC. Dual roles of long non-coding RNAs in thyroid cancer: regulation of programmed cell death pathways. Med Oncol 2025; 42:217. [PMID: 40407962 DOI: 10.1007/s12032-025-02750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/28/2025] [Indexed: 06/01/2025]
Abstract
Thyroid cancer (TC) represents the most common endocrine malignancy; however, the intricacies of its carcinogenesis pose significant challenges to therapeutic interventions. A comprehensive understanding of the molecular mechanisms that drive TC progression is crucial for the development of effective treatment strategies, especially considering the increasingly recognized role of non-coding RNAs (ncRNAs) in oncogenesis. Notwithstanding recent advancements, the regulatory functions of long non-coding RNAs (lncRNAs) and their interactions with microRNAs (miRNAs) in the context of TC are not yet fully elucidated. This review aims to address this knowledge deficiency by investigating the dual roles of lncRNAs in the pathogenesis of TC, specifically their regulation of programmed cell death (PCD) pathways. Current literature indicates that disrupted competitive endogenous RNA (ceRNA) networks are involved in drug resistance, epithelial-mesenchymal transition (EMT), as well as tumor proliferation, angiogenesis, invasion, and metastasis in TC. The basis of cancer therapy-induced tumor cell elimination is programmed cell death (PCD), which includes well-studied processes such as apoptosis, autophagy, and ferroptosis as well as novel pathways, such as cuproptosis, immunogenic cell death (ICD), and PANoptosis. Recent research has shown the critical function of long non-coding RNAs (lncRNAs) in modifying these several PCD pathways, impacting TC growth and therapy response. This review synthesizes evidence on how lncRNAs regulate PCD to influence TC progression and therapeutic outcomes. Additionally, we examine the clinical relevance of lncRNAs in TC, highlighting their potential as biomarkers for diagnosis and prognosis, therapeutic targets, and contributors to drug resistance, while emphasizing recent advancements in this field.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Ashish Verma
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Anima Nanda
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| | - Baneen C Gabble
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Zhang Y, Shi X, Cheng S, Liu J, Shi J, An Z, Yao J, Zou B, Gao M, Cheng X, Wang Y. Long Noncoding RNAs Papillary Thyroid Carcinoma Susceptibility Candidate 3 Antisense 1 and Papillary Thyroid Carcinoma Susceptibility Candidate 3 Synergistically Regulate ZC3H12A mRNA Stability via Vimentin at 14q13.3 Thyroid Cancer Locus. Thyroid 2025. [PMID: 40376726 DOI: 10.1089/thy.2024.0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Background: The 14q13.3 has been identified as a genetic locus associated with a genetically increased risk of papillary thyroid cancer (PTC) in several cohorts, yet its underlying regulatory mechanisms remain poorly understood. Methods: The full-length sequence of expressed sequence tag fragment AA632637 in the thyroid was obtained by rapid amplification of complementary DNA ends assay. Quantitative Reverse Transcription PCR (qRT-PCR) assays were utilized to examine the expression levels of the long noncoding RNA (lncRNA) in clinical thyroid tissues and cell lines. Functional assays, including cell proliferation, migration, invasion, and apoptosis assays, were conducted both in vitro and in vivo. Furthermore, RNA-seq analysis, actinomycin D assay, RNA pull-down, RNA immunoprecipitation, and dual-luciferase reporter assays were performed to identify the long noncoding RNA (lncRNA) binding targets and reveal the underlying regulatory mechanism. Results: We identified a previously unannotated lncRNA gene, named papillary thyroid carcinoma susceptibility candidate 3 antisense 1 (PTCSC3-AS1), within 14q13.3. The expression of PTCSC3-AS1 was strongly downregulated in PTC tumor tissues, and restoration of PTCSC3-AS1 expression in PTC cells inhibited tumorigenesis and promoted cell apoptosis. Moreover, PTCSC3-AS1 and PTCSC3, two lncRNAs located on the opposite strands at 14q13.3, were revealed to synergistically interact with their shared binding protein vimentin. Forced overexpression of PTCSC3 and PTCSC3-AS1 revealed that ZC3H12A, a gene validated as a PTC suppressor, was the shared downstream target of the two lncRNAs. Vimentin significantly reduced the mRNA stability of ZC3H12A, while the upregulation of PTCSC3 and PTCSC3-AS1 suppressed the mRNA degradation of ZC3H12A. In addition, rs944289 and rs116909374 were identified as two potential causative variants with distinct regulatory roles in the 14q13.3 locus. Mechanistically, PTCSC3-AS1 and PTCSC3 protected ZC3H12A from vimentin-mediated mRNA degradation by targeting the ZC3H12A 3' untranslated region (3'UTR) during PTC initiation and progression. Conclusion: Our results suggest a novel dual-lncRNA regulatory model in the 14q13.3 risk locus and provide a comprehensive annotation of the PTCSC3-AS1/PTCSC3-vimentin-ZC3H12A signaling network in PTC genetic predisposition.
Collapse
Affiliation(s)
- Yutong Zhang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiuzhi Shi
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Shengqi Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jing Liu
- Department of Thyroid Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianyun Shi
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhekun An
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jiali Yao
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Binbin Zou
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Ming Gao
- Department of Hepatobiliary Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaolong Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yanqiang Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Hu G, Niu W, Ge J, Xuan J, Liu Y, Li M, Shen H, Ma S, Li Y, Li Q. Identification of thyroid cancer biomarkers using WGCNA and machine learning. Eur J Med Res 2025; 30:244. [PMID: 40186253 PMCID: PMC11971869 DOI: 10.1186/s40001-025-02466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
OBJECTIVE The incidence of thyroid cancer (TC) is increasing in China, largely due to overdiagnosis from widespread screening and improved ultrasound technology. Identifying precise TC biomarkers is crucial for accurate diagnosis and effective treatment. METHODS TC patient data were obtained from TCGA. DEGs were analyzed using DESeq2, and WGCNA identified gene modules associated with TC. Machine learning algorithms (XGBoost, LASSO, RF) identified key biomarkers, with ROC and AUC > 0.95 indicating strong diagnostic performance. Immune cell infiltration and biomarker correlation were analyzed using CIBERSORT. RESULTS Four key genes (P4HA2, TFF3, RPS6KA5, EYA1) were found as potential biomarkers. High P4HA2 expression was associated with suppressed anti-tumor immune responses and promoted disease progression. In vitro studies showed that P4HA2 upregulation increased TC cell growth and migration, while its suppression reduced these activities. CONCLUSION Through bioinformatics and experimental validation, we identified P4HA2 as a key potential thyroid cancer biomarker. This finding provides new molecular targets for diagnosis and treatment. P4HA2 has the potential to be a diagnostic or therapeutic target, which could have significant implications for improving clinical outcomes in thyroid cancer patients.
Collapse
Affiliation(s)
- Gaofeng Hu
- Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wenyuan Niu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiaming Ge
- Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jie Xuan
- Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yanyang Liu
- Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Mengjia Li
- Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Huize Shen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shang Ma
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Yuanqiang Li
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Qinglin Li
- Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Wu J, Zhang C, Li H, Zhang S, Chen J, Qin L. Competing endogenous RNAs network dysregulation in oral cancer: a multifaceted perspective on crosstalk and competition. Cancer Cell Int 2024; 24:431. [PMID: 39725978 DOI: 10.1186/s12935-024-03580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer. However, the underlying roles and functions of various ncRNA types in the growth of this malignant tumor remain unclear. Competing endogenous RNAs (ceRNAs) refer to transcripts that can mutually regulate each other at the post-transcriptional level by vying for shared miRNAs. Networks of ceRNAs establish connections between the functions of protein-coding mRNAs and non-coding RNAs, including microRNA, long non-coding RNA, pseudogenic RNA, and circular RNA, piwi-RNA, snoRNA. A growing body of research has indicated that imbalances in ceRNAs networks play a crucial role in various facets of oral cancer, including development, metastasis, migration, invasion, and inflammatory responses. Hence, delving into the regulatory pathways of ceRNAs in oral cancer holds the potential to advance our understanding of the pathological mechanisms, facilitate early diagnosis, and foster targeted drug development for this malignancy. The present review summarized the fundamental role of ceRNA network, discussed the limitations of current ceRNA applications, which have been improved through chemical modification and carrier delivery as new biomarkers for diagnosis and prognosis is expected to offer a groundbreaking therapeutic approach for individuals with oral cancer.
Collapse
Affiliation(s)
- Jiajun Wu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jingxin Chen
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China.
- School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan, 410208, China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
5
|
Wen S, Lv X, Ma X, Deng S, Xie J, Yuan E. Immunogenic cell death (ICD) genes predict immunotherapy response and therapeutic targets in acute myeloid leukemia (AML). Front Genet 2024; 15:1419819. [PMID: 39205940 PMCID: PMC11349646 DOI: 10.3389/fgene.2024.1419819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Numerous studies have demonstrated acute myeloid leukemia (AML) is one of the malignancies with high mortality worldwide. Immunogenic cell death (ICD) is a form of cell death that is specialised in that it triggers the body's immune response, particularly the adaptive immune response. Recent evidence has confirmed that pseudogenes are implicated in multiple human tumorigenesis and progression although lacking the function of coding protein. However, the roles of ICD-associated genes in AML remain largely unascertained. Methods TCGA-AML and GSE71014 cohorts were picked out and we combined them into a merged dataset by removing the batch effect using the sva package in the R project. A consensus clustering analysis of the ICD genes in AML was performed to define subgroups. Based on the expression of 15 prognostic-related pseudogenes, we developed a prognostic model and categorized AML samples into low and high-risk groups. Results AML was differentiated into two subgroups (C1 and C2 clusters). Most ICD-related genes were significantly up-regulated in the C2 cluster. The single sample gene set enrichment analysis (ssGSEA) revealed that the immune cell infiltration and immune checkpoint gene expression of the C2 cluster was strongly high, suggesting that the C2 population responded well to immune checkpoint blockade (ICB) therapy and had better survival. The C1 group was sensitive to chemotherapy, including Cytarabine, Midostaurin, and Doxorubicin. On the other hand, 15 ICD-related pseudogenes were identified to be associated with AML prognosis. The receiver operator curve (ROC) analysis and nomogram manifested that our prognostic model had high accuracy in predicting survival. However, the high-risk group was sensitive to ICB therapy and chemotherapy such as Methotrexate, Cytarabine, and Axitinib while the low-risk group benefited from 5-Fluorouracil, Talazoparib, and Navitoclax therapy. Discussion In summary, we defined two subgroups relying on 33 ICD-related genes and this classification exerted a decisive role in assessing immunotherapy and chemotherapy benefit. Significantly, a prognostic signature identified by critical ICD-related pseudogene was created. The pseudogene prognostic signature had a powerful performance in predicting prognosis and therapeutic efficacy, including immunotherapy and chemotherapy to AML. Our research points out novel implications of ICD in cancer prognosis and treatment approach choice.
Collapse
Affiliation(s)
- Shuang Wen
- Reproductive Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuefeng Lv
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Xiaohan Ma
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Shu Deng
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | | | - Enwu Yuan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Lan S, Zhong G. Identification of a novel survival and immune microenvironment related ceRNA regulatory network for hepatocellular carcinoma based on circHECTD1. Heliyon 2024; 10:e33763. [PMID: 39040406 PMCID: PMC11261882 DOI: 10.1016/j.heliyon.2024.e33763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Background CircHECTD1 (circ_0031450) is highly expressed in hepatocellular carcinoma (HCC) tissues and may act as an oncogene. Its specific competitive endogenous RNA (ceRNA) mechanism remains to be further elucidated. Methods Several databases and online platforms, including pathway activity, immune checkpoint, and overall survival analyses, were used to predict targets, download datasets, and perform online analyses. The R software was used for differential gene expression analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), clinical relevance, receiver operator characteristic curve, and single-cell analysis. Cytoscape software was used to construct ceRNAs, protein-protein interactions (PPI), and pivotal networks. Results The ceRNA, PPI, and pivotal networks were successfully constructed. Pathway enrichment analysis was mainly related to apoptosis, cell cycle, and epithelial-mesenchymal transition (EMT) pathways. Six pivotal targets related to survival, immune infiltration, immune checkpoints, clinical stage, and diagnosis of patients with HCC were identified. The recovery function and pathway enrichment results were consistent with previous results. Single-cell analysis suggested that the pivotal targets were highly expressed in T cells. Conclusion We successfully constructed a prognosis and immune microenvironment-related ceRNA network based on circHECTD1, providing new insights for diagnosing and treating HCC.
Collapse
Affiliation(s)
- Shuiqing Lan
- Department of Pain Management, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Guoqiang Zhong
- The Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| |
Collapse
|
7
|
Cabané P, Correa C, Bode I, Aguilar R, Elorza AA. Biomarkers in Thyroid Cancer: Emerging Opportunities from Non-Coding RNAs and Mitochondrial Space. Int J Mol Sci 2024; 25:6719. [PMID: 38928426 PMCID: PMC11204084 DOI: 10.3390/ijms25126719] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Thyroid cancer diagnosis primarily relies on imaging techniques and cytological analyses. In cases where the diagnosis is uncertain, the quantification of molecular markers has been incorporated after cytological examination. This approach helps physicians to make surgical decisions, estimate cancer aggressiveness, and monitor the response to treatments. Despite the availability of commercial molecular tests, their widespread use has been hindered in our experience due to cost constraints and variability between them. Thus, numerous groups are currently evaluating new molecular markers that ultimately will lead to improved diagnostic certainty, as well as better classification of prognosis and recurrence. In this review, we start reviewing the current preoperative testing methodologies, followed by a comprehensive review of emerging molecular markers. We focus on micro RNAs, long non-coding RNAs, and mitochondrial (mt) signatures, including mtDNA genes and circulating cell-free mtDNA. We envision that a robust set of molecular markers will complement the national and international clinical guides for proper assessment of the disease.
Collapse
Affiliation(s)
- Patricio Cabané
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Correa
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
| | - Ignacio Bode
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| |
Collapse
|
8
|
Shahraki K, Najafi A, Ilkhani Pak V, Shahraki K, Ghasemi Boroumand P, Sheervalilou R. The Traces of Dysregulated lncRNAs-Associated ceRNA Axes in Retinoblastoma: A Systematic Scope Review. Curr Eye Res 2024; 49:551-564. [PMID: 38299506 DOI: 10.1080/02713683.2024.2306859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE Long non-coding RNAs are an essential component of competing endogenous RNA regulatory axes and play their role by sponging microRNAs and interfering with the regulation of gene expression. Because of the broadness of competing endogenous RNA interaction networks, they may help investigate treatment targets in complicated disorders. METHODS This study performed a systematic scoping review to assess verified loops of competing endogenous RNAs in retinoblastoma, emphasizing the competing endogenous RNAs axis related to long non-coding RNAs. We used a six-stage approach framework and the PRISMA guidelines. A systematic search of seven databases was done to locate suitable papers published before February 2022. Two reviewers worked independently to screen articles and collect data. RESULTS Out of 363 records, fifty-one articles met the inclusion criteria, and sixty-three axes were identified in desired articles. The majority of the research reported several long non-coding RNAs that were experimentally verified to act as competing endogenous RNAs in retinoblastoma: XIST/NEAT1/MALAT1/SNHG16/KCNQ1OT1, respectively. At the same time, around half of the studies investigated unique long non-coding RNAs. CONCLUSIONS Understanding the many features of this regulatory system may aid in elucidating the unknown etiology of Retinoblastoma and providing novel molecular targets for therapeutic and clinical applications.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amin Najafi
- Department of Ophthalmology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vida Ilkhani Pak
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
9
|
Chen W, Wang S, Wei D, Zhai L, Liu L, Pan C, Han Z, Liu H, Zhong W, Jiang X. LncRNA ZFAS1 promotes invasion of medullary thyroid carcinoma by enhancing EPAS1 expression via miR-214-3p/UCHL1 axis. J Cell Commun Signal 2024; 18:e12021. [PMID: 38946718 PMCID: PMC11208124 DOI: 10.1002/ccs3.12021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 07/02/2024] Open
Abstract
lncRNA ZFAS1 was identified to facilitate thyroid cancer, but its role in medullary thyroid carcinoma (MTC) remains unknown. This study aimed to unravel the potential function of this lncRNA in MTC by investigating the involvement of the lncRNA ZFAS1 in a ceRNA network that regulates MTC invasion. Proliferation, invasion, and migration of cells were evaluated using EdU staining and Transwell assays. Immunoprecipitation (IP) assays, dual-fluorescence reporter, and RNA IP assays were employed to examine the binding interaction among genes. Nude mice were used to explore the role of lncRNA ZFAS1 in MTC in vivo. ZFAS1 and EPAS1 were upregulated in MTC. Silencing ZFAS1 inhibited MTC cell proliferation and invasion under hypoxic conditions, which reduced EPAS1 protein levels. UCHL1 knockdown increased EPAS1 ubiquitination. ZFAS1 positively regulated UCHL1 expression by binding to miR-214-3p. Finally, silencing ZFAS1 significantly repressed tumor formation and metastasis in MTC. LncRNA ZFAS1 promotes invasion of MTC by upregulating EPAS1 expression via the miR-214-3p/UCHL1 axis.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of PathologyQiqihar First HospitalQiqiharHeilongjiang ProvinceChina
| | - Shaoqing Wang
- Pathology of Qiqihar Medical CollegeQiqiharHeilongjiang ProvinceChina
| | - Dongmei Wei
- Department of Science and EducationQiqihar First HospitalQiqiharHeilongjiang ProvinceChina
| | - Lili Zhai
- Department of PathologyQiqihar First HospitalQiqiharHeilongjiang ProvinceChina
| | - Li Liu
- Department of CT RadiologyQiqihar First HospitalQiqiharHeilongjiang ProvinceChina
| | - Chunlei Pan
- Department of General SurgeryQiqihar First HospitalQiqiharHeilongjiang ProvinceChina
| | - Zhongshu Han
- Department of Critical Care MedicineQiqihar First HospitalQiqiharHeilongjiang ProvinceChina
| | - Huiming Liu
- Department of PathologyQiqihar First HospitalQiqiharHeilongjiang ProvinceChina
| | - Wei Zhong
- Qiqihar First HospitalQiqiharHeilongjiang ProvinceChina
| | - Xin Jiang
- Department of OrthopaedicsThird Affiliated Hospital of Qiqihar Medical CollegeQiqiharHeilongjiang ProvinceChina
| |
Collapse
|
10
|
Liang DM, Li YJ, Zhang JX, Shen HH, Wu CX, Xie N, Liang Y, Li YM, Xue JN, Sun HF, Wang Q, Yang J, Li XH, Wang PY, Xie SY. m6A-methylated KCTD21-AS1 regulates macrophage phagocytosis through CD47 and cell autophagy through TIPR. Commun Biol 2024; 7:215. [PMID: 38383737 PMCID: PMC10881998 DOI: 10.1038/s42003-024-05854-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
Blocking immune checkpoint CD47/SIRPα is a useful strategy to engineer macrophages for cancer immunotherapy. However, the roles of CD47-related noncoding RNA in regulating macrophage phagocytosis for lung cancer therapy remain unclear. This study aims to investigate the effects of long noncoding RNA (lncRNA) on the phagocytosis of macrophage via CD47 and the proliferation of non-small cell lung cancer (NSCLC) via TIPRL. Our results demonstrate that lncRNA KCTD21-AS1 increases in NSCLC tissues and is associated with poor survival of patients. KCTD21-AS1 and its m6A modification by Mettl14 promote NSCLC cell proliferation. miR-519d-5p gain suppresses the proliferation and metastasis of NSCLC cells by regulating CD47 and TIPRL. Through ceRNA with miR-519d-5p, KCTD21-AS1 regulates the expression of CD47 and TIPRL, which further regulates macrophage phagocytosis and cancer cell autophagy. Low miR-519d-5p in patients with NSCLC corresponds with poor survival. High TIPRL or CD47 levels in patients with NSCLC corresponds with poor survival. In conclusion, we demonstrate that KCTD21-AS1 and its m6A modification promote NSCLC cell proliferation, whereas miR-519d-5p inhibits this process by regulating CD47 and TIPRL expression, which further affects macrophage phagocytosis and cell autophagy. This study provides a strategy through miR-519-5p gain or KCTD21-AS1 depletion for NSCLC therapy by regulating CD47 and TIPRL.
Collapse
Affiliation(s)
- Dong-Min Liang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong, 264003, PR China
- Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai), Shandong, 264000, PR China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong, 264003, PR China
| | - Jia-Xiang Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong, 264003, PR China
| | - Huan-Huan Shen
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong, 264003, PR China
| | - Chun-Xia Wu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong, 264003, PR China
| | - Ning Xie
- Department of Chest Surgery, Yantaishan Hospital, Yantai, Shandong, 264000, PR China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong, 264003, PR China
| | - Yan-Mei Li
- Department of Immune Rheumatism, Yantaishan Hospital, Yantai, Shandong, 264000, PR China
| | - Jiang-Nan Xue
- Department of Immunology, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong, 264003, PR China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong, 264003, PR China
| | - Jian Yang
- Yantai Central Blood Station, Yantai, Shandong, 264003, PR China
| | - Xiao-Hua Li
- Yantai Central Blood Station, Yantai, Shandong, 264003, PR China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong, 264003, PR China.
- Department of Epidemiology, Binzhou Medical University, YanTai, ShanDong, 264003, PR China.
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong, 264003, PR China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai), Shandong, 264000, PR China.
| |
Collapse
|
11
|
Wen J, Liu J, Wan L, Wang F. Long noncoding RNA/circular RNA regulates competitive endogenous RNA networks in rheumatoid arthritis: molecular mechanisms and traditional Chinese medicine therapeutic significances. Ann Med 2023; 55:973-989. [PMID: 36905646 PMCID: PMC10795602 DOI: 10.1080/07853890.2023.2172605] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/20/2023] [Indexed: 03/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic and autoimmune disease that is mainly featured abnormal fibroblast-like synoviocyte (FLS) proliferation and inflammatory cell infiltration. Abnormal expression or function of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are closely related to human diseases, including RA. There has been increasing evidence showing that in the competitive endogenous RNA (ceRNA) networks, both lncRNA and circRNA are vital in the biological functions of cells. Nevertheless, the exact mechanism of ceRNA in RA remains to be investigated. Herein, we summarized the molecular potencies of lncRNA/circRNA-mediated ceRNA networks in RA, with emphasis on the phenotypic regulation of ceRNA in the progression of RA, including regulation of proliferation, invasion, inflammation and apoptosis, as well as the role of ceRNA in traditional Chinese medicine (TCM) in the treatment of RA. In addition, we also discussed the future direction and potential clinical value of ceRNA in the treatment of RA, which may provide potential reference value for clinical trials of TCM therapy for the treatment of RA.Key messagesLong noncoding RNA/circular RNA can work as the competitive endogenous RNA sponge and participate in the pathogenesis of rheumatoid arthritis.Traditional Chinese medicine and its agents have shown potential roles in the prevention and treatment of rheumatoid arthritis via competitive endogenous RNA.
Collapse
Affiliation(s)
- Jianting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Xin’an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Fanfan Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
12
|
Hu J, Liu J, Zhou S, Luo H. A review on the role of gamma-butyrobetaine hydroxylase 1 antisense RNA 1 in the carcinogenesis and tumor progression. Cancer Cell Int 2023; 23:263. [PMID: 37925403 PMCID: PMC10625699 DOI: 10.1186/s12935-023-03113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Gamma-butyrobetaine hydroxylase 1 antisense RNA 1 (BBOX1-AS1), located on human chromosome 11 p14, emerges as a critical player in tumorigenesis with diverse oncogenic effects. Aberrant expression of BBOX1-AS1 intricately regulates various cellular processes, including cell growth, epithelial-mesenchymal transition, migration, invasion, metastasis, cell death, and stemness. Notably, the expression of BBOX1-AS1 was significantly correlated with clinical-pathological characteristics and tumor prognoses, and it could also be used for the diagnosis of lung and esophageal cancers. Through its involvement in the ceRNA network, BBOX1-AS1 competitively binds to eight miRNAs in ten different cancer types. Additionally, BBOX1-AS1 can directly modulate downstream protein-coding genes or act as an mRNA stabilizer. The implications of BBOX1-AS1 extend to critical signaling pathways, including Hedgehog, Wnt/β-catenin, and MELK/FAK pathways. Moreover, it influences drug resistance in hepatocellular carcinoma. The present study provides a systematic review of the clinical significance of BBOX1-AS1's aberrant expression in diverse tumor types. It sheds light on the intricate molecular mechanisms through which BBOX1-AS1 influences cancer initiation and progression and outlines potential avenues for future research in this field.
Collapse
Affiliation(s)
- Juan Hu
- Medical Service Division, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Jipeng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330000, Jiangxi, People's Republic of China
| | - Siwei Zhou
- Second School of Clinical Medicine, Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330000, Jiangxi, People's Republic of China.
| |
Collapse
|
13
|
Gao S, Liu S, Wei W, Qi Y, Meng F. Advances in targeting of miR‑10‑associated lncRNAs/circRNAs for the management of cancer (Review). Oncol Lett 2023; 25:89. [PMID: 36817057 PMCID: PMC9931999 DOI: 10.3892/ol.2023.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
With advancements in sequencing technologies, an increasing number of aberrantly expressed long-non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have been identified in various types of cancer. lncRNAs and circRNAs are now well-established tumor-influencing factors in cancer, driving not only tumor proliferation and invasion, but also cancer progression, drug resistance and metastatic recurrence. The majority of lncRNAs and circRNAs influence cancer progression by targeting microRNAs (miRNAs/miRs). miR-10a and miR-10b, key members of the miR-10 family, have been shown to play important regulatory roles in cell proliferation, differentiation to cancer progression, and development. Manual evaluation and grouping according to different types of competing endogenous RNA and tumor was performed. The review outlined the current state of knowledge on the regulation of miR-10 family-related lncRNAs and circRNAs. The involvement of lncRNAs and circRNAs in the biogenesis, maturation and function of malignant tumors through the miR-10 family, and the key gene targets and signaling cascades that lncRNAs and circRNAs regulate through the miR-10 family were summarized. Based on the findings of this review, it can be hypothesized that lncRNAs and circRNAs targeting the miR-10 family may serve as diagnostic/prognostic markers and/or therapeutic targets for the management of cancer.
Collapse
Affiliation(s)
- Shengyu Gao
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China,Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shuang Liu
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Weiwei Wei
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Yanxiu Qi
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Fanshi Meng
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China,Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China,Correspondence to: Professor Fanshi Meng, Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, 348 Dexiang Street, Jiamusi, Heilongjiang 154002, P.R. China, E-mail:
| |
Collapse
|
14
|
Macrophage-derived exosomal lncRNA MSTRG.91634.7 inhibits fibroblasts activation by targeting PINK1 in silica-induced lung fibrosis. Toxicol Lett 2023; 372:36-44. [DOI: 10.1016/j.toxlet.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
15
|
LncRNA CARMN Affects Hepatocellular Carcinoma Prognosis by Regulating the miR-192-5p/LOXL2 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9277360. [PMID: 36254230 PMCID: PMC9569233 DOI: 10.1155/2022/9277360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
Background. Hepatocellular carcinoma (HCC) is aggressive cancer with a poor prognosis. It has been suggested that the aberrant expression of LOXL2 is associated with the development of HCC, but the exact mechanism remains unclear. This research is aimed at examining the expression level and prognostic value of LOXL2 in hepatocellular carcinoma and its relationship with immune infiltration and at predicting its upstream noncoding RNAs (ncRNAs). Method. The transcriptome data of HCC was first downloaded from The Cancer Genome Atlas (TCGA) database to investigate the expression and prognosis of LOXL2. Then, the starBase database was used to find the upstream ncRNAs of LOXL2, and correlation analysis and expression analysis were performed. Finally, the Tumor Immune Estimation Resource (TIMER) was used to explore the association between LOXL2 and immune cell infiltration. Result. CARMN was considered to be the potential upstream lncRNA for the hsa-miR-192-5p/LOXL2 axis in HCC. Furthermore, the level LOXL2 was markedly positively associated with tumor immune cell infiltration and immune checkpoint expression in HCC. Conclusion. Higher expression of LOXL2 mediated by microRNA (miRNA) and long noncoding RNAs (lncRNA) is associated with poor overall survival (OS), immune infiltration, and immune checkpoint expression in HCC.
Collapse
|
16
|
Yu X, He L, Chen Y, Lin W, Liu H, Yang X, Ye Y, Zheng X, Yang Z, Lin Y. Construction of a focal adhesion signaling pathway-related ceRNA network in pelvic organ prolapse by transcriptome analysis. Front Genet 2022; 13:996310. [PMID: 36176289 PMCID: PMC9513229 DOI: 10.3389/fgene.2022.996310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: Pelvic organ prolapse (POP) affects a large proportion of adult women, but the pathogenesis of POP remains unclear. The increase in global population aging will impose a substantial medical burden. Herein, we aimed to explore the related RNAs regulating the occurrence of POP and provide potential therapeutic targets. Method: Tissue biopsies were collected from the anterior vaginal wall of six women with POP and six matched subjects without POP. The profiles of mRNAs, circRNAs, lncRNAs, and miRNAs were obtained by whole transcriptome RNA sequencing. Result: The findings revealed that 71 circRNAs, 76 known lncRNAs, 84 miRNAs, and 931 mRNAs were significantly altered (p < 0.05 and |log2FC| > 1). GO and KEGG enrichment analyses indicated that the differentially expressed genes (DEGs) were mainly enriched in the focal adhesion signaling pathway. FLT, ITGA9, VEGFD, PPP1R12B, and ROCK2 were identified as focal adhesion signaling pathway-related hub genes by protein–protein interaction network analysis. Based on the relationships between the DEGs and miRNA, lncRNA and circRNA targets, we constructed a focal adhesion signaling pathway-related ceRNA network. The ceRNA network includes hsa_circ_0002190/hsa_circ_0046843/lnc-CARMN -miR-23a-3p - ROCK2 and hsa_circ_0001326/hsa_circ_0007733/lnc-AC107959/lnc-TPM1-AS - miR-205-5p - ROCK2/PPP1R12B/VEGFD. Moreover, abnormalities in the cytoskeleton in fibroblasts from individuals with POP were observed. Conclusion: In this study, a focal adhesion signaling pathway-related ceRNA network was constructed, and this network may serve as a target for finding suitable drugs for the treatment of POP.
Collapse
Affiliation(s)
- Xia Yu
- Department of Clinical Laboratory, Chengdu Women’s and Children’s Central Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Li He
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wenyi Lin
- Department of Medical Pathology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hong Liu
- Department of Surgical, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiu Yang
- Department of Surgical, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ying Ye
- Department of Surgical, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xuemei Zheng
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Yonghong Lin, ; Zhenglin Yang,
| | - Yonghong Lin
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- *Correspondence: Yonghong Lin, ; Zhenglin Yang,
| |
Collapse
|
17
|
Li Y, Zhou H, Huang Q, Tan W, Cai Y, Wang Z, Zou J, Li B, Yoshida S, Zhou Y. Potential biomarkers for retinopathy of prematurity identified by circular RNA profiling in peripheral blood mononuclear cells. Front Immunol 2022; 13:953812. [PMID: 36081509 PMCID: PMC9447331 DOI: 10.3389/fimmu.2022.953812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aims to reveal the altered expression profiles of circular RNAs (circRNAs) in the peripheral blood mononuclear cells (PBMCs) of patients with retinopathy of prematurity (ROP), and to identify potential biomarkers for ROP diagnosis. Methods Differentially expressed circRNAs in PBMCs of five infants with ROP and five controls were identified using microarray analysis. Twelve altered circRNAs were validated using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Bioinformatic analyses were conducted to predict the circRNA/miRNA interactions, competing endogenous RNA (ceRNA) network, related biological functions, and signaling pathways. Four selected circRNAs in PBMCs were verified using RT-qPCR in another cohort, including 24 infants with ROP and 23 premature controls, and receiver operating characteristic (ROC) curves were used to estimate their potential as diagnostic biomarkers of ROP. Results A total of 54 and 143 circRNAs were significantly up- and down-regulated, respectively, in the PBMCs of patients with ROP compared with controls. Twelve of the significantly altered circRNAs were preliminarily validated by RT-qPCR, which confirmed the reliability of the microarray analysis. The circRNA/miRNA interactions and ceRNA network were displayed according to the altered circRNAs. Three circRNAs (hsa_circRNA_061346, hsa_circRNA_092369, and hsa_circRNA_103554) were identified as potential diagnostic biomarkers for ROP with certain clinical values. Conclusions CircRNAs were significantly altered in PBMCs of treatment-requiring ROP patients. CircRNAs may be used as potential biomarkers and possible therapeutic targets for ROP.
Collapse
Affiliation(s)
- Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
- *Correspondence: Yedi Zhou,
| |
Collapse
|
18
|
lncRNA 1700101O22Rik and NONMMUG030480.1 Are Not Essential for Spermatogenesis in Mice. Int J Mol Sci 2022; 23:ijms23158627. [PMID: 35955762 PMCID: PMC9369125 DOI: 10.3390/ijms23158627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Many testis-specific lncRNAs are highly expressed in late spermatogenesis, especially in spermiogenesis. However, their functions and the underlying mechanisms in male fertility are largely unknown. Here, we screened two highly expressed lncRNAs, 1700101O22Rik (O22Rik) and NONMMUG030480.1 (NM480) in testes, to investigate the roles in spermatogenesis using lncRNA knockout (KO) mouse generated by CRISPER/Cas9 technology. Both testis-specific lncRNAs were mainly expressed from secondary spermatocytes to round spermatids, suggesting that they might be involved in spermiogenesis. Phenotypic analysis showed that the deletion of O22Rik or NM480 did not affect the development of testis and epididymis or spermatogenesis. These results were confirmed in both young and middle-aged male mice. In addition, there was no significant difference in sperm morphology and other parameters including concentration and motility between wild type (WT) and KO mice. Fertility tests showed that litter size was significantly lower in O22Rik KO mice compared with WT controls. Although O22Rik did not exert dramatic roles in spermatogenesis, on molecular levels, its surrounding gene expression was disturbed significantly. Gm32773 was decreased; however, Gm32828 was increased in KO mice. In conclusion, lncRNA O22Rik and NM480 are not individually essential for spermatogenesis in mice.
Collapse
|
19
|
ncRNA-Mediated High Expression of LPCAT1 Correlates with Poor Prognosis and Tumor Immune Infiltration of Liver Hepatocellular Carcinoma. J Immunol Res 2022; 2022:1584397. [PMID: 35615532 PMCID: PMC9126685 DOI: 10.1155/2022/1584397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose To investigate the expression of LPCAT1 in liver hepatocellular carcinoma (LIHC) and its relationship with prognosis and immune infiltration and predict its upstream nonencoding RNAs (ncRNAs). Method In this study, expression analysis and survival analysis for LPCAT1 in pan cancers were first performed by using The Cancer Genome Atlas (TCGA) data, which suggested that LPCAT1 might be a potential LIHC oncogene. Then, ncRNAs contributing to the overexpression of LPCAT1 were explored in starBase by a combination of expression analysis, correlation analysis, and survival analysis. Immune cell infiltration of LPCAT1 in LIHC was finally investigated via Tumor Immune Estimation Resource (TIMER). Result SNHG3 was observed to be the most promising upstream lncRNA for the hsa-miR-139-5p/LPCAT1 axis in LIHC. In addition, the LPCAT1 level was significantly positively associated with tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression in LIHC. Conclusion To summarize, the upregulation of LPCAT1 mediated by ncRNAs is associated with poor prognosis, immune infiltration, and immune checkpoint expression in LIHC.
Collapse
|