1
|
Long K, Kui X, Zeng Q, Dong W. Cancer cell-derived exosomal miR-34a inhibits the malignant progression of pancreatic adenocarcinoma cells by restraining the M2 polarization of macrophages. Eur J Histochem 2025; 69:4176. [PMID: 40244037 PMCID: PMC12051414 DOI: 10.4081/ejh.2025.4176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
This study aimed to investigate the crosstalk mechanism between pancreatic cancer (PAC) cells and M2 tumor-associated macrophages induced by tumor-derived exosomal miR-34a. MicroRNA and mRNA expression levels were detected using RT-qPCR. Cell Counting Kit-8, wound-healing, transwell assays and flow cytometry were respectively employed to assess cell proliferation, migration, invasion and apoptosis. Enzyme-linked immunosorbent assay was utilized to determine cytokine secretion. Transmission electron microscopy and nanoparticle tracking analyses were performed to detect the exosome morphology and particle size. Phagocytosis of exosomes by macrophages was verified by PKH26 labeling. The effects of exosome-treated macrophages on the epithelial-mesenchymal transition, invasion, and migration of PANC-1 cells were investigated using coculture experiments. The identification of miR-34a's potential targets were determined with TargetScan and validated by a dual-luciferase reporter assay. miR-34a was expressed at low levels in PAC tissues, cells, and exosomes. The overexpression of miR-34a restrains the malignant progression of PANC-1 cells. After miR-34a-overexpressed PANC-1-derived exosomes were phagocytosed by macrophages, the process of M2 polarization in macrophages was obstructed, leading to the suppression of epithelial-mesenchymal transition, migration, and invasion of the cocultured PANC-1 cells. Suppressor of cytokine signaling 3 is a direct target of miR-34a. MiR-34a negatively modulates the suppressor of cytokine signaling 3 to prevent the M2 polarization of macrophages by engaging the Janus kinase/signal transducers and activators of the transcription pathway and influencing the malignancy of PAC cells. miR-34a in cancer cell-derived exosomes inhibits the malignant progression of pancreatic cancer cells by restraining M2 polarization of macrophages.
Collapse
Affiliation(s)
- Kui Long
- Department of Three Wards of Hepatobiliary Surgery
| | - Xiang Kui
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qingbin Zeng
- Department of Three Wards of Hepatobiliary Surgery
| | - Wenzhi Dong
- Department of Three Wards of Hepatobiliary Surgery
| |
Collapse
|
2
|
Jabłońska K, Kmiecik A, Nowińska K, Piotrowska A, Suchański J, Ratajczak-Wielgomas K, Partyńska A, Romanowicz H, Smolarz B, Matkowski R, Dzięgiel P. Association of Selected STAT Inhibitors with Prolactin-Induced Protein (PIP) in Breast Cancer. Int J Mol Sci 2025; 26:1416. [PMID: 40003884 PMCID: PMC11855718 DOI: 10.3390/ijms26041416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer (BC) is the most common cancer in women, and a higher level of prolactin-induced protein (PIP) is associated with better responses to adjuvant chemotherapy. The signal transducer and activator of transcription 5 (STAT5) is a potential regulator of the PIP gene. Prolactin (PRL) and its receptor (PRLR) activate JAK2/STAT5 signaling in BC, which is modulated by inhibitors like suppressors of cytokine signaling (SOCS) proteins and protein inhibitors of activated STAT (PIAS). Using real-time PCR and immunohistochemistry, we studied the relationship between PIP and STAT5 inhibitors in BC. Our findings indicated that PIP and STAT5 levels decrease with a higher tumor grade, size, and tumor/nodes/metastasis (TNM) clinical stage, while nuclear PIAS3 levels increase with tumor progression. Both STAT inhibitors are linked to estrogen and progesterone receptor status. Notably, STAT5 correlates positively with PIP, SOCS3, and PIAS3, suggesting that it may be a favorable prognostic factor. Among the STAT inhibitors, only nuclear PIAS3 expression correlates with PIP. In vitro studies indicated that silencing PIAS3 in T47D cells does not affect PIP expression or sensitivity to doxorubicin (DOX), but T47D control cells with a higher PIP expression are more sensitive to DOX, highlighting the need for further investigation into these mechanisms.
Collapse
Affiliation(s)
- Karolina Jabłońska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
| | - Katarzyna Nowińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
| | - Jarosław Suchański
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
| | - Aleksandra Partyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
| | - Hanna Romanowicz
- Department of Pathology, Polish Mother Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (H.R.); (B.S.)
| | - Beata Smolarz
- Department of Pathology, Polish Mother Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (H.R.); (B.S.)
| | - Rafał Matkowski
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Lower Silesian Oncology, Pulmonology and Hematology Center, 53-413 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
- Department of Human Biology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| |
Collapse
|
3
|
Shawky H, Fayed DB, Abd El-Karim SS, Rezk H, Esawy MA, Farrag EK. Immunotherapeutic effects of de novo benzimidazole derivative and prebiotic bacterial levan against triple-negative breast tumors by harnessing the immune landscape to intercept the oncogenic transcriptome. Int J Biol Macromol 2025; 289:138844. [PMID: 39701264 DOI: 10.1016/j.ijbiomac.2024.138844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The current study aimed to investigate the therapeutic potential of a novel benzimidazole derivative (BMPE) and a prebiotic bacterial levan (LevAE) against triple-negative breast cancer (TNBC) in a 4T1-cell syngeneic mouse model and to elucidate the immunological and molecular mechanisms underlying the phenotypic changes observed in treated tumors. The metastatic TNBC model was successfully established by subcutaneous inoculation of 100 μL of 4T1 cell suspension (~6000 cells) in the mammary glands of adult female BALB/c mice after brief immunosuppression one day before cell implantation. The therapeutic efficacy of BMPE and LevAE was biochemically, immunologically, and immunohistochemically evaluated. Both compounds exhibited significant antitumor and antimetastatic effects through modulating the tumoral and systemic immune milieus and restoring the TME redox status, which ultimately suppressed the oncogenic transcriptome in the treated breast tumors. Compared to the reference drug (Doxorubicin), BMPE treatment resulted in nearly complete remission within 21 days of treatment, whereas LevAE was less convenient but produced a significant curative outcome. In light of these findings, BMPE and LevAE provide new paradigms for cancer immunotherapy.
Collapse
Affiliation(s)
- Heba Shawky
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Dalia B Fayed
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Somaia S Abd El-Karim
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Hamdy Rezk
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Ebtehal K Farrag
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| |
Collapse
|
4
|
Zhang P, Pei B, Yi C, Akanyibah FA, Mao F. The role of suppressor of cytokine signaling 3 in inflammatory bowel disease and its associated colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167578. [PMID: 39571630 DOI: 10.1016/j.bbadis.2024.167578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Inflammatory bowel disease (IBD) and colorectal cancer (CRC), as two of the major human intestinal diseases, provide challenges for the medical field. Suppressor of cytokine signaling 3 (SOCS3), a protein molecule that negatively regulates cytokine signaling through multiple pathways, is involved in the regulation of various inflammatory diseases and tumors. In IBD, SOCS3 acts on a variety of cells to repair mucosal damage and balance the immune response, including epithelial cells, macrophages, dendritic cells, neutrophils, and T cells. In CRC, SOCS3 is inextricably linked to tumor cell proliferation, invasion, metastasis, and drug resistance. Therefore, it is crucial to systematically investigate the pathogenic involvement of SOCS3 in IBD and CRC. This article reviews the mechanisms and pathways by which SOCS3 is involved in the inhibition of IBD and the mitigation of CRC, and details the therapeutic options for targeting SOCS3.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu, PR China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, PR China
| | - Francis Atim Akanyibah
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China
| | - Fei Mao
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
5
|
Jafarzadeh A, Zandvakili R, Jafarzadeh Z, Nemati M. Dysregulated expression of the suppressors of cytokine signaling (SOCS) contributes to the development of prostate cancer. Pathol Res Pract 2024; 262:155558. [PMID: 39213689 DOI: 10.1016/j.prp.2024.155558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Different types of cytokines, growth factors, or hormones present within the tumor microenvironment that can activate the JAK-STAT signaling pathway by binding to their specific cell surface receptors. The constitutive activation of the JAK-STAT pathway can promote uncontrolled cell proliferation and prevent apoptosis contributing to tumor development. Activation of the JAK-STAT pathway is controlled by several regulatory molecules, particularly the suppressor of cytokine signaling (SOCS) family consisting of eight members, which include SOCS1-SOCS7 and the cytokine-inducible SH2-containing (CIS) proteins. In prostate cancer cells, the irregular expression of the SOCS1-SOCS3, SOCS5-SOCS7 as well as CIS can similarly and differentially result in the initiation of various cellular signaling pathways (in particular JAK-STAT3, MAPK, ERK) that promote cell proliferation, migration, invasion and viability; cell cycle progression; epithelial-mesenchymal transition; angiogenesis; resistance to therapy; immune evasion; and chronic inflammation within the tumor microenvironment which lead to tumor progression, metastasis and poor prognosis. Epigenetic modifications, mainly due to DNA methylation, microRNAs, pro-inflammatory cytokines, growth factors and androgens can influence the expression of the SOCS molecules in prostate cancer cells. Using strategies to modulate, restore or enhance the expression of SOCS proteins, may help overcome treatment resistance and improve the efficacy of existing therapies. In this review, we provide a comprehensive explanation regarding SOCS dysregulation in prostate cancer to provide insights into the mechanisms underlying the dysregulation of SOCS proteins. This knowledge may pave the way for the development of novel therapeutic strategies to manage prostate cancer by restoring and modulating the expression of SOCS molecules.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
6
|
Valdebenito-Maturana B. The spatial and cellular portrait of transposable element expression during gastric cancer. Sci Rep 2024; 14:22727. [PMID: 39349689 PMCID: PMC11442604 DOI: 10.1038/s41598-024-73744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Gastric Cancer (GC) is a lethal malignancy, with urgent need for the discovery of novel biomarkers for its early detection. I previously showed that Transposable Elements (TEs) become activated in early GC (EGC), suggesting a role in gene expression. Here, I follow-up on that evidence using single-cell data from gastritis to EGC, and show that TEs are expressed and follow the disease progression, with 2,430 of them being cell populations markers. Pseudotemporal trajectory modeling revealed 111 TEs associated with the origination of cancer cells. Analysis of spatial data from GC also confirms TE expression, with 204 TEs being spatially enriched in the tumor regions and the tumor microenvironment, hinting at a role of TEs in tumorigenesis. Finally, a network of TE-mediated gene regulation was modeled, indicating that ~ 2,000 genes could be modulated by TEs, with ~ 500 of them already implicated in cancer. These results suggest that TEs might play a functional role in GC progression, and highlights them as potential biomarker for its early detection.
Collapse
|
7
|
Wu L, Liu Q, Li G, Shi W, Peng W. A cancer-associated fibroblasts related risk score (CAFscore) helps to guide prognosis and personal treatment for Glioblastoma. Discov Oncol 2024; 15:420. [PMID: 39254749 PMCID: PMC11387281 DOI: 10.1007/s12672-024-01314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Recent studies have identified the presence of cancer-associated fibroblasts (CAFs) within glioblastoma (GBM), yet their biological roles and underlying mechanisms remain poorly understood. This study aimed to construct a CAF-related prognostic model to guide patient prognosis and treatment strategies. METHOD We employed various bioinformatics methods, including enrichment analysis, Weighted Gene Co-expression Network Analysis (WGCNA), Lasso regression analysis, and machine learning techniques such as XGBoost and Random Forest, to develop a novel risk index termed CAFscore. Patients were stratified into high and low CAFscore groups for subsequent survival analysis. The area under the curve (AUC) and concordance index (C-index) for CAFscore were calculated and compared against other clinical characteristics and existing prognostic models. Drug sensitivity assessments were conducted using the Oncopredict package. Functional validation of key genes was performed through scratch and invasion assays in GBM cells. RESULTS Our analyses revealed four core CAF-related genes, leading to the establishment of CAFscore. Notably, patients in the high CAFscore group exhibited significantly reduced survival and exhibited enrichment in epithelial-mesenchymal transition (EMT) and inflammation response pathways. Furthermore, CAFscore showed a significant negative correlation with the sensitivity to irinotecan and its analogs, while demonstrating a positive correlation with sensitivity to 505,124 (a TGFβRI inhibitor). LRP10 emerged as a central gene within the CAFscore, displaying markedly elevated expression in GBM and a strong association with CAF infiltration. Silencing LRP10 significantly inhibited the invasive capabilities of GBM cells. CONCLUSION This study presented the first CAF related prognostic model (CAFscore) in GBM, and demonstrated that the model could effectively guide patient prognosis and potentially inform personalized treatment strategies. The core gene of CAFscore, LRP10, was significantly overexpressed in GBM and might play a pivotal role in regulating CAF infiltration as well as tumor invasion and metastasis, highlighting LRP10 as a promising therapeutic target for GBM management.
Collapse
Affiliation(s)
- Lili Wu
- Department of Encephalopathy, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, 466099, China
| | - Qinjian Liu
- Medical Affairs Section, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, 466099, China
| | - Guoyin Li
- Department of Encephalopathy, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, 466099, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466000, China
| | - Weidong Shi
- Department of Orthopedics, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, 466099, China.
| | - Weifeng Peng
- Department of Encephalopathy, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, 466099, China.
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466000, China.
| |
Collapse
|
8
|
Agca S, Kir S. The role of interleukin-6 family cytokines in cancer cachexia. FEBS J 2024; 291:4009-4023. [PMID: 38975832 DOI: 10.1111/febs.17224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Cachexia is a wasting syndrome that manifests in more than half of all cancer patients. Cancer-associated cachexia negatively influences the survival of patients and their quality of life. It is characterized by a rapid loss of adipose and skeletal muscle tissues, which is partly mediated by inflammatory cytokines. Here, we explored the crucial roles of interleukin-6 (IL-6) family cytokines, including IL-6, leukemia inhibitory factor, and oncostatin M, in the development of cancer cachexia. These cytokines have been shown to exacerbate cachexia by promoting the wasting of adipose and muscle tissues, activating mechanisms that enhance lipolysis and proteolysis. Overlapping effects of the IL-6 family cytokines depend on janus kinase/signal transducer and activator of transcription 3 signaling. We argue that the blockade of these cytokine pathways individually may fail due to redundancy and future therapeutic approaches should target common downstream elements to yield effective clinical outcomes.
Collapse
Affiliation(s)
- Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| |
Collapse
|
9
|
La Manna S, Cugudda A, Mercurio FA, Leone M, Fortuna S, Di Natale C, Lagreca E, Netti PA, Panzetta V, Marasco D. PEGylated SOCS3 Mimetics Encapsulated into PLGA-NPs as Selective Inhibitors of JAK/STAT Pathway in TNBC Cells. Int J Nanomedicine 2024; 19:7237-7251. [PMID: 39050870 PMCID: PMC11268778 DOI: 10.2147/ijn.s441205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction SOCS3 (suppressor of cytokine signaling 3) protein is a crucial regulator of cytokine-induced inflammation, and its administration has been shown to have therapeutic effects. Recently, we designed a chimeric proteomimetic of SOCS3, mimicking the interfacing regions of a ternary complex composed of SOCS3, JAK2 (Janus kinase 2) and gp130 (glycoprotein 130) proteins. The derived chimeric peptide, KIRCONG chim, demonstrated limited mimetic function owing to its poor water solubility. Methods We report investigations concerning a PEGylated variant of KIRCONG mimetic, named KIRCONG chim, bearing a PEG (Polyethylene glycol) moiety as a linker of noncontiguous SOCS3 regions. Its ability to bind to the catalytic domain of JAK2 was evaluated through MST (MicroScale Thermophoresis), as well as its stability in biological serum assays. The structural features of the cyclic compounds were investigated by CD (circular dichroism), nuclear magnetic resonance (NMR), and molecular dynamic (MD) studies. To evaluate the cellular effects, we employed a PLGA-nanoparticle as a delivery system after characterization using DLS and SEM techniques. Results KIRCONG chim PEG-revealed selective penetration into triple-negative breast cancer (TNBC) MDA-MB-231 cells with respect to the human breast epithelial cell line (MCF10A), acting as a potent inhibitor of STAT3 phosphorylation. Discussion Overall, the data indicated that miniaturization of the SOCS3 protein is a promising therapeutic approach for aberrant dysregulation of JAK/STAT during cancer progression.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| | - Alessia Cugudda
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR), Naples, 80131, Italy
| | - Sara Fortuna
- Italian Institute of Technology (IIT), Genova, 16152, Italy
| | - Concetta Di Natale
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Elena Lagreca
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Paolo Antonio Netti
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Valeria Panzetta
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| |
Collapse
|
10
|
Morelli M, Madonna S, Albanesi C. SOCS1 and SOCS3 as key checkpoint molecules in the immune responses associated to skin inflammation and malignant transformation. Front Immunol 2024; 15:1393799. [PMID: 38975347 PMCID: PMC11224294 DOI: 10.3389/fimmu.2024.1393799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
SOCS are a family of negative inhibitors of the molecular cascades induced by cytokines, growth factors and hormones. At molecular level, SOCS proteins inhibit the kinase activity of specific sets of receptor-associated Janus Activated Kinases (JAKs), thereby suppressing the propagation of intracellular signals. Of the eight known members, SOCS1 and SOCS3 inhibit activity of JAKs mainly induced by cytokines and can play key roles in regulation of inflammatory and immune responses. SOCS1 and SOCS3 are the most well-characterized SOCS members in skin inflammatory diseases, where their inhibitory activity on cytokine activated JAKs and consequent anti-inflammatory action has been widely investigated in epidermal keratinocytes. Structurally, SOCS1 and SOCS3 share the presence of a N-terminal domain containing a kinase inhibitory region (KIR) motif able to act as a pseudo-substrate for JAK and to inhibit its activity. During the last decades, the design and employment of SOCS1 and SOCS3-derived peptides mimicking KIR domains in experimental models of dermatoses definitively established a strong anti-inflammatory and ameliorative impact of JAK inhibition on skin inflammatory responses. Herein, we discuss the importance of the findings collected in the past on SOCS1 and SOCS3 function in the inflammatory responses associated to skin immune-mediated diseases and malignancies, for the development of the JAK inhibitor drugs. Among them, different JAK inhibitors have been introduced in the clinical practice for treatment of atopic dermatitis and psoriasis, and others are being investigated for skin diseases like alopecia areata and vitiligo.
Collapse
Affiliation(s)
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata - Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | | |
Collapse
|
11
|
Jeong IH, Yun JK, Jin JO, Hong JH, Lee JY, Lee GD, Lee PCW. E3 ligase SOCS3 regulates NOD2 expression by ubiquitin proteasome system in lung cancer progression. Cell Oncol (Dordr) 2024; 47:819-832. [PMID: 37910276 DOI: 10.1007/s13402-023-00896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
PURPOSE Despite lung cancer is one of the leading causes of cancer-related deaths, it remains hard to discover effective diagnostic and therapeutic approaches. Moreover, the five-year survival rate is relatively lower than other tumors. So urgent needs for finding a new theranostic target to treat lung cancer effectively. This study aims to present SOCS3 and NOD2 proteins as novel targets for diagnosis and therapy. METHODS We first confirmed SOCS3 expression level in patients' tissues. Then, we applied knockdown and overexpression of SOCS3 on lung cancer cell lines and performed proliferation, migration, and invasion assay. After that, we found NOD2 is a target of SOCS3 and introduced overexpression of NOD2 to A549 for verifying reduced tumorigenicity of lung cancer cells. RESULTS We identified protein expression level of SOCS3 was frequently higher in tumor tissues than adjacent normal tissues. Truly, overexpression of SOCS3 promoted proliferation, migration, and invasion capacity of lung cancer cells. We found that SOCS3 interacts with NOD2 and SOCS3 ubiquitinates NOD2 directly. Furthermore, lung cancer tissues with higher SOCS3 expression showed lower NOD2 expression. We confirmed overexpression of NOD2 leads to suppressed tumorigenicity of lung cancer cells, and these effects occurred through MAPK pathway. CONCLUSION Collectively, our work reveals novel roles of SOCS3 in lung tumorigenesis and proposes SOCS3 as a promising biomarker candidate for therapeutic and diagnostic target for lung cancer.
Collapse
Affiliation(s)
- In-Ho Jeong
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jae Kwang Yun
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jun-O Jin
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
| | - Ji Yeon Lee
- Division of Rheumatology, Department of Medicine, Seoul St. Mary's Hospital, Catholic University, Seoul, 06591, Korea.
| | - Geun Dong Lee
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
- Lung Cancer Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
- Lung Cancer Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
12
|
Zhao X, Chen K, Wang J, Qiu Y. Analysis of Prospective Genetic Indicators for Prenatal Exposure to Arsenic in Newborn Cord Blood of Using Machine Learning. Biol Trace Elem Res 2024; 202:2466-2473. [PMID: 37740142 DOI: 10.1007/s12011-023-03863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Using a machine learning methods, we aim to find biological effect biomarkers of prenatal arsenic exposure in newborn cord blood. From the Gene Expression Omnibus (GEO) database, two datasets (GSE48354 and GSE7967) pertaining to cord blood sequencing while exposed to arsenic were retrieved and merged for additional study. Using the "limma" package in the R, differentially expressed genes (DEGs) were eliminated. Machine learning techniques of the LASSO regression algorithm and SVM-RFE algorithm were used to find potential biological effect biomarkers for cord blood sequencing in pregnant women exposed to arsenic. To evaluate the efficacy of biomarkers, a receiver operating characteristic (ROC) curve was used. Furthermore, we investigated the proportion of invading immune cells in each sample using CIBERSORT, and we investigated the relationship between biomarkers and immune cells using the Spearman approach. Using LASSO regression and the SVM-RFE technique, 28 DEGs were discovered, and the main biomarkers of cord blood exposed to arsenic were discovered to be DENND2D, OLIG1, RGS18, CXCL16, DDIT4, FOS, G0S2, GPR183, JMJD6, and SOCS3. According to an immune infiltration analysis and correlation analysis, key biomarkers were substantially associated with the invading immune cells. Ten genes are important biomarkers of cord blood exposed to arsenic connected with infiltrating immune cells, and infiltrating immune cells may play important roles in cord blood exposed to arsenic, according to the study's findings.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan, CN 030001, China
| | - Kun Chen
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan, CN 030001, China
| | - Jing Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan, CN 030001, China
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan, CN 030001, China.
| |
Collapse
|
13
|
Ni J, Xi X, Xiao S, Xiao X. Tumor Cell-Derived Exosomal miR-191-5p Activates M2-Subtype Macrophages Through SOCS3 to Facilitate Breast Cancer. Mol Biotechnol 2024; 66:1314-1325. [PMID: 38270757 DOI: 10.1007/s12033-023-01034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
Differential activation of macrophages is associated with poor progression of breast cancer (BC). Many reports have elucidated the important involvement of exosomes produced by cancer cells in remodeling the macrophage activation phenotype to promote tumor expansion and invasion. However, the underlying mechanisms by which exosomes secreted by BC cells facilitate macrophage M2 polarization remain enigmatic and worth exploring. In this study, quantitative real-time PCR (RT-qPCR) was used to investigate miR-191-5p expression in BC tumor tissues and cells. Cell counting kit 8 (CCK-8), transwell, and flow cytometry were applied to assess the functional role of miR-191-5p in BC. Isolated nano-vesicles were identified using transmission electron microscopy and western blotting. We also observed that miR-191-5p was significantly elevated in BC clinical samples and that inhibition of miR-191-5p hindered the growth and metastasis of BC cells. Importantly, BC cells successfully accelerated macrophage M2-like polarization by directly transferring exosomes to macrophages, resulting in increased miR-191-5p levels in macrophages. Mechanistically, exosomal miR-191-5p directly inhibited the suppressors of cytokine signaling 3 (SOCS3) expression in macrophages and aggravated macrophage M2 polarization. Similarly, si-SOCS3 transfected macrophages boosted BC cell migration and invasion in a positive feedback manner. Overall, our results manifested a pro-growth and pro-metastatic role between the two cells by elucidating the crucial role of exosomal miR-191-5p in stimulating M2 macrophage polarization and mediating communication between BC cells and macrophages. These findings opened up new horizons for the development of BC therapeutic strategies.
Collapse
Affiliation(s)
- Jun Ni
- Department of Breast Surgery, People's Hospital of Ganzhou City, Ganzhou, 314000, Jiangxi, China
| | - Xun Xi
- Department of Breast Surgery, People's Hospital of Ganzhou City, Ganzhou, 314000, Jiangxi, China
| | - Sujian Xiao
- Department of Breast Surgery, People's Hospital of Ganzhou City, Ganzhou, 314000, Jiangxi, China
| | - Xigang Xiao
- Department of General Surgery, People's Hospital of Ganzhou City, No.16, Meiguan Road, Ganzhou, 314000, Jiangxi, China.
| |
Collapse
|
14
|
Jafarzadeh A, Jafarzadeh Z, Nemati M, Yoshimura A. The Interplay Between Helicobacter pylori and Suppressors of Cytokine Signaling (SOCS) Molecules in the Development of Gastric Cancer and Induction of Immune Response. Helicobacter 2024; 29:e13105. [PMID: 38924222 DOI: 10.1111/hel.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach and leads to the secretion of a vast range of cytokines by infiltrated leukocytes directing immune/inflammatory response against the bacterium. To regulate immune/inflammatory responses, suppressors of cytokine signaling (SOCS) proteins bind to multiple signaling components located downstream of cytokine receptors, such as Janus kinase (JAK), signal transducers and activators of transcription (STAT). Dysfunctional SOCS proteins in immune cells may facilitate the immune evasion of H. pylori, allowing the bacteria to induce chronic inflammation. Dysregulation of SOCS expression and function can contribute to the sustained H. pylori-mediated gastric inflammation which can lead to gastric cancer (GC) development. Among SOCS molecules, dysregulated expression of SOCS1, SOCS2, SOCS3, and SOCS6 were indicated in H. pylori-infected individuals as well as in GC tissues and cells. H. pylori-induced SOCS1, SOCS2, SOCS3, and SOCS6 dysregulation can contribute to the GC development. The expression of SOCS molecules can be influenced by various factors, such as epigenetic DNA methylation, noncoding RNAs, and gene polymorphisms. Modulation of the expression of SOCS molecules in gastric epithelial cells and immune cells can be considered to control gastric carcinogenesis as well as regulate antitumor immune responses, respectively. This review aimed to explain the interplay between H. pylori and SOCS molecules in GC development and immune response induction as well as to provide insights regarding potential therapeutic strategies modulating SOCS molecules.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Di Crosta M, Arena A, Benedetti R, Gilardini Montani MS, Cirone M. 5-AZA Upregulates SOCS3 and PTPN6/SHP1, Inhibiting STAT3 and Potentiating the Effects of AG490 against Primary Effusion Lymphoma Cells. Curr Issues Mol Biol 2024; 46:2468-2479. [PMID: 38534772 DOI: 10.3390/cimb46030156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Epigenetic modifications, including aberrant DNA methylation occurring at the promoters of oncogenes and oncosuppressor genes and histone modifications, can contribute to carcinogenesis. Aberrant methylation mediated by histone methylatransferases, alongside histones, can affect methylation of proteins involved in the regulation of pro-survival pathways such as JAK/STAT and contribute to their activation. In this study, we used DNA or histone demethylating agents, 5-Azacytidine (5-AZA) or DS-3201 (valemetostat), respectively, to treat primary effusion lymphoma (PEL) cells, alone or in combination with AG490, a Signal transducer and activator of transcription 3 (STAT3) inhibitor. Cell viability was investigated by trypan blue assay and FACS analysis. The molecular changes induced by 5-AZA and/or AG490 treatments were investigated by Western blot analysis, while cytokine release by PEL cells treated by these drugs was evaluated by Luminex. Statistical analyses were performed with Graphpad Prism® software (version 9) and analyzed by Student's t test or a nonparametric one-way ANOVA test. The results obtained in this study suggest that 5-AZA upregulated molecules that inhibit STAT3 tyrosine phosphorylation, namely Suppressor of Cytokine Signaling 3 (SOCS3) and tyrosine-protein phosphatase non-receptor type (PTPN) 6/Src homology region 2 domain-containing phosphatase-1 (SHP-1), reducing STAT3 activation and downregulating several STAT3 pro-survival targets in PEL cells. As this lymphoma is highly dependent on the constitutive activation of STAT3, 5-AZA impaired PEL cell survival, and when used in combination with AG490 JAK2/STAT3 inhibitor, it potentiated its cytotoxic effect. Differently from 5-AZA, the inhibition of the EZH1/2 histone methyltransferase by DS-3201, reported to contribute to STAT3 activation in other cancers, slightly affected STAT3 phosphorylation or survival in PEL cells, either alone or in combination with AG490. This study suggests that 5-AZA, by upregulating the expression level of SOCS3 and PTPN6/SHP1, reduced STAT3 activation and improved the outcome of treatment targeting this transcription factor in PEL cells.
Collapse
Affiliation(s)
- Michele Di Crosta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Andrea Arena
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Rossella Benedetti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | | | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
16
|
Yang J, Jiang H, Fu Q, Qin H, Li Y, Liu M. Blue light photobiomodulation induced apoptosis by increasing ROS level and regulating SOCS3 and PTEN/PI3K/AKT pathway in osteosarcoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 249:112814. [PMID: 37956614 DOI: 10.1016/j.jphotobiol.2023.112814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Blue light photobiomodulation (PBM) has attracted great attention in diminishing proliferation and inducing death of cancer cells recently. Osteosarcoma (OS) primarily occurring in children and adolescents, the limitations of drug resistance and limb salvage make it urgent to develop and identify new adjuvant therapeutic strategies. In this work, we attempted to research the anticancer effects and biological mechanisms of blue light PBM in human OS MG63 cells. The effects of various blue light parameters on MG63 cells indicated that suppressed cell proliferation and cell migration, induced cell apoptosis which are experimentally assessed using multiple assays including CCK, LDH, wound healing assay and Hoechst staining. Concurrently, the increases of ROS level and the inhibition of PI3K and AKT expression were identified under high-dose blue light PBM in MG63 cells. Meanwhile, SOCS3 is a major inducible anti-tumor molecule, we also found that blue light LED substantially promoted its expression. Thus, this study proposed that bule light PBM may be a hopeful therapeutic approach in OS clinical treatment in the future.
Collapse
Affiliation(s)
- Jiali Yang
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Qiqi Fu
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Yinghua Li
- Shanghai Fifth People's Hospital, Fudan University, 801th Heqing Road, Shanghai 200240, China
| | - Muqing Liu
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 28403, China.
| |
Collapse
|
17
|
Al-Asadi S, Mansour H, Ataimish AJ, Al-Kahachi R, Rampurawala J. MicroRNAs Regulate Tumorigenesis by Downregulating SOCS3 Expression: An In silico Approach. Bioinform Biol Insights 2023; 17:11779322231193535. [PMID: 37701630 PMCID: PMC10493049 DOI: 10.1177/11779322231193535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
Tumor microenvironment is characterized by the occurrence of significant changes due to disrupted signaling pathways that affect a broad spectrum of cellular activities such as proliferation, differentiation, signaling, invasiveness, migration, and apoptosis. Similarly, a downregulated suppressor of cytokine signaling 3 (SOCS3) promotes increased JAK/STAT function due to aberrant cytokine signaling, which results in increased cell proliferation, differentiation, and migration. Multiple carcinomas including breast cancer, prostate cancer, hepatocellular carcinoma, pancreatic cancer, and colorectal cancer involve the disruption of SOCS3 expression due to microRNA overexpression. MicroRNAs are small, conserved, and non-coding RNA molecules that regulate gene expression through post-transcriptional inhibition and mRNA destabilization. The aim of this study was to identify putative microRNAs that interact with SOCS3 and downregulate its expression. In this study, miRWalk, TargetScan, and miRDB were used to identify microRNAs that interact with SOCS3, whereas RNA22 was utilized to identify the binding sites of 238 significant microRNAs. The tertiary structures of shortlisted microRNAs and SOCS3 regions were predicted through MC Sym and RNAComposer, respectively. For molecular docking, HDOCK was used, which predicted 80 microRNA-messengerRNA complexes and the interactions of the top 5 shortlisted complexes were assessed. The complexes were shortlisted on the basis of least binding affinity score and maximum confidence score. This study identifies the interactions of known (miR-203a-5p) and novel (miR-6756-5p, miR-6732-5p, miR-1203, miR-6887-5p) microRNAs with SOCS3 regions due to their maximum interactions. Identifying the interactions of these microRNAs with SOCS3 will significantly advance the understanding of oncomiRs (miRNAs that are associated with cancer development) in tumor development due to their influence on SOCS3 expression. These insights will assist in future studies to understand the significance of miRNA-SOCS3-associated tumor development and progression.
Collapse
Affiliation(s)
- Sura Al-Asadi
- College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | - Hiba Mansour
- College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | | | - Rusul Al-Kahachi
- Department of Scholarships and Cultural Relationship, Republic of Iraq Ministry of Higher Education and Scientific Research, Baghdad, Iraq
| | | |
Collapse
|
18
|
Chaudhary RK, Patil P, Mateti UV, Alagundagi DB, Shetty V. Theranostic Potential of EFNB2 for Cetuximab Resistance in Head and Neck Cancer. Indian J Otolaryngol Head Neck Surg 2023; 75:1923-1936. [PMID: 37636764 PMCID: PMC10447808 DOI: 10.1007/s12070-023-03739-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/26/2023] [Indexed: 08/29/2023] Open
Abstract
Only 13% of head and neck cancer (HNC) patients respond to cetuximab therapy despite its target (EGFR) is expressed in about 80-90% of HNC patients. However, this problem remained unresolved till date despite of numerous efforts. Thus, the current study aimed to establish hub genes involved in cetuximab resistance via series of bioinformatics approach. The GSE21483 dataset was analysed for differentially expressed genes (DEGs) using GEO2R and enrichment analysis was carried out using DAVID. STRING 11.5 and Cytoscape 3.7.2 were used for protein-protein interactions and hub genes respectively. The significant hub genes (p < 0.05) were validated using ULCAN and Human protein atlas. Validated genes were further queried for tumor infiltration using TIMER2.0. Out of total 307 DEGs, 38 hub genes were identified of which IL1A, EFNB2, SPRR1A, ROBO1 and SOCS3 were the significant hub genes associated with both mRNA expression and overall survival. IL1A, ROBO1, and SOCS3 were found to be downregulated whereas EFNB2 and SPRR1A were found to be upregulated in our study. However, using UALCAN, we found that high expression of IL1A, EFNB2, SOCS3 negatively affects overall survival whereas high expression of SPRR1A and ROBO1 positively affects overall survival. Protein level for EFNB2 and SPRR1A expression was significant in tumor HNC tissue as compared to normal HNC tissue. EFNB2 was found to be a key regulator of CTX resistance among HNC patients. Targeting EFNB2 and associated PPI circuits might improve the response rate to CTX. Thus, EFNB2 has potential to be theranostic marker for CTX resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s12070-023-03739-9.
Collapse
Affiliation(s)
- Raushan Kumar Chaudhary
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Prakash Patil
- Central Research Laboratory, K.S. Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Uday Venkat Mateti
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Dhananjay B. Alagundagi
- Central Research Laboratory, K.S. Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Vijith Shetty
- Department of Medical Oncology, K.S. Hegde Medical Academy (KSHEMA), Justice K.S. Hegde Charitable Hospital, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| |
Collapse
|
19
|
Dai L, Han Y, Yang Z, Zeng Y, Liang W, Shi Z, Tao Y, Liang X, Liu W, Zhou S, Xing Z, Hu W, Wang X. Identification and validation of SOCS1/2/3/4 as potential prognostic biomarkers and correlate with immune infiltration in glioblastoma. J Cell Mol Med 2023. [PMID: 37315184 PMCID: PMC10399539 DOI: 10.1111/jcmm.17807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Suppressor of cytokine signalling (SOCS) 1/2/3/4 are involved in the occurrence and progression of multiple malignancies; however, their prognostic and developmental value in patients with glioblastoma (GBM) remains unclear. The present study used TCGA, ONCOMINE, SangerBox3.0, UALCAN, TIMER2.0, GENEMANIA, TISDB, The Human Protein Atlas (HPA) and other databases to analyse the expression profile, clinical value and prognosis of SOCS1/2/3/4 in GBM, and to explore the potential development mechanism of action of SOCS1/2/3/4 in GBM. The majority of analyses showed that SOCS1/2/3/4 transcription and translation levels in GBM tissues were significantly higher than those in normal tissues. qRT-PCR, western blotting (WB) and immunohistochemical staining were used to verify that SOCS3 was expressed at higher mRNA and protein levels in GBM than in normal tissues or cells. High SOCS1/2/3/4 mRNA expression was associated with poor prognosis in patients with GBM, especially SOCS3. SOCS1/2/3/4 were highly contraindicated, which had few mutations, and were not associated with clinical prognosis. Furthermore, SOCS1/2/3/4 were associated with the infiltration of specific immune cell types. In addition, SOCS3 may affect the prognosis of patients with GBM through JAK/STAT signalling pathway. Analysis of the GBM-specific protein interaction (PPI) network showed that SOCS1/2/3/4 were involved in multiple potential carcinogenic mechanisms of GBM. In addition, colony formation, Transwell, wound healing and western blotting assays revealed that inhibition of SOCS3 decreased the proliferation, migration and invasion of GBM cells. In conclusion, the present study elucidated the expression profile and prognostic value of SOCS1/2/3/4 in GBM, which may provide potential prognostic biomarkers and therapeutic targets for GBM, especially SOCS3.
Collapse
Affiliation(s)
- Lirui Dai
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Yongjie Han
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Zhuo Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Yuling Zeng
- Department of Blood Transfusion, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wulong Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Zimin Shi
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Yiran Tao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Xianyin Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Wanqing Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Shaolong Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| |
Collapse
|
20
|
Yang X, Tian M, Lin Y, Li L, Sun X, Zhang Z, Kang M, Lin J. Characterization of the Roles of Suppressor of Cytokine Signaling-3 in Esophageal Carcinoma. Hum Gene Ther 2023; 34:495-517. [PMID: 36932739 DOI: 10.1089/hum.2022.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
This study was aimed to analyze the diagnostic, therapeutic, and prognostic value of the suppressor of cytokine signaling 3 (SOCS3) in pancancer, especially in esophageal carcinoma (ESCA), and investigate the role of SOCS3 in the tumorigenesis and progression of ESCA. We used a variety of bioinformatics methods to explore the expression of SOCS3 in 33 kinds of cancers and evaluate its potential role in the pathogenesis, prognosis, immune microenvironment, immune evasion, and therapeutic response of cancers. The results indicated that SOCS3 was upregulated in 10 cancers, downregulated in 12 cancers, and upregulated in ESCA. Mutation and amplification were the main causes of abnormal expression of SOCS3 in pancancer. In ESCA, expression of SOCS3 was negatively correlated with methylation. The analysis showed that ESCA patients with low SOCS3 levels had better overall survival. Furthermore, the SOCS3 level was positively related to the ESTIMATE score, immune score, stromal score, and negatively related to tumor purity. In ESCA, a significant association was found between SOCS3 and several immune checkpoint genes. In addition, SOCS3 was associated with sensitivity to 59 drugs. Next, the role of SOCS3 in ESCA was investigated in ECA109, EC9706 cells, and in xenografted mouse model. SOCS3 was confirmed to be upregulated in ESCA cells. Knockdown of SOCS3 decreased the proliferation, migration, and invasion of ESCA cells while increasing apoptosis. Meanwhile, downregulation of SOCS3 activated the nuclear factor kappa-B signaling pathway and inhibited ESCA tumorigenesis in vivo. In conclusion, high SOCS3 expression is closely related to the occurrence and progression of ESCA and can be used as a therapeutic target and prognostic biomarker for ESCA.
Collapse
Affiliation(s)
- Xiaojie Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Mengyue Tian
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences; Fujian Medical University, Fuzhou, China
| | - Yukang Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Liming Li
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Zhenyang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Jiangbo Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Izraely S, Ben-Menachem S, Malka S, Sagi-Assif O, Bustos MA, Adir O, Meshel T, Chelladurai M, Ryu S, Ramos RI, Pasmanik-Chor M, Hoon DSB, Witz IP. The Vicious Cycle of Melanoma-Microglia Crosstalk: Inter-Melanoma Variations in the Brain-Metastasis-Promoting IL-6/JAK/STAT3 Signaling Pathway. Cells 2023; 12:1513. [PMID: 37296634 PMCID: PMC10253015 DOI: 10.3390/cells12111513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Previous studies from our lab demonstrated that the crosstalk between brain-metastasizing melanoma cells and microglia, the macrophage-like cells of the central nervous system, fuels progression to metastasis. In the present study, an in-depth investigation of melanoma-microglia interactions elucidated a pro-metastatic molecular mechanism that drives a vicious melanoma-brain-metastasis cycle. We employed RNA-Sequencing, HTG miRNA whole transcriptome assay, and reverse phase protein arrays (RPPA) to analyze the impact of melanoma-microglia interactions on sustainability and progression of four different human brain-metastasizing melanoma cell lines. Microglia cells exposed to melanoma-derived IL-6 exhibited upregulated levels of STAT3 phosphorylation and SOCS3 expression, which, in turn, promoted melanoma cell viability and metastatic potential. IL-6/STAT3 pathway inhibitors diminished the pro-metastatic functions of microglia and reduced melanoma progression. SOCS3 overexpression in microglia cells evoked microglial support in melanoma brain metastasis by increasing melanoma cell migration and proliferation. Different melanomas exhibited heterogeneity in their microglia-activating capacity as well as in their response to microglia-derived signals. In spite of this reality and based on the results of the present study, we concluded that the activation of the IL-6/STAT3/SOCS3 pathway in microglia is a major mechanism by which reciprocal melanoma-microglia signaling engineers the interacting microglia to reinforce the progression of melanoma brain metastasis. This mechanism may operate differently in different melanomas.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Sapir Malka
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Matias A. Bustos
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Orit Adir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Maharrish Chelladurai
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Suyeon Ryu
- Department of Genome Sequencing, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Romela I. Ramos
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Isaac P. Witz
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| |
Collapse
|
22
|
Liu B, Yao X, Zhang C, Liu Y, Wei L, Huang Q, Wang M, Zhang Y, Hu D, Wu W. PTK6 inhibits autophagy to promote uveal melanoma tumorigenesis by binding to SOCS3 and regulating mTOR phosphorylation. Cell Death Dis 2023; 14:55. [PMID: 36690663 PMCID: PMC9870980 DOI: 10.1038/s41419-023-05590-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Autophagy dysfunction is one of the common causes of tumor formation and plays an important role in uveal melanoma (UM). However, little is known about the regulatory mechanisms of autophagy in UM. Here, we show that PTK6 can promote the proliferation, migration, and invasion of UM cells by inhibiting autophagy. SOCS3 can inhibit the proliferation, migration, and invasion of UM cells. Overexpression of SOCS3 can partially rescue the PTK6-induced promotion of UM cell proliferation, migration, and invasion. Mechanistically, PTK6 can bind to SOCS3, and SOCS3 can downregulate the expression of PTK6. Furthermore, PTK6 can upregulate the phosphorylation of mTOR to inhibit autophagy. Taken together, our findings demonstrate the functions of PTK6 and SOCS3 in UM cells and targeting the SOCS3-PTK6 signaling axis might be a novel and promising therapeutic strategy for patients with UM.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yufen Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Li Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Qinying Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Mengting Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yanchen Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Danning Hu
- Tissue Culture Center, The New York Eye and Ear Infirmary, New York Medical College, Valhalla, New York, USA
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
23
|
A zebrafish HCT116 xenograft model to predict anandamide outcomes on colorectal cancer. Cell Death Dis 2022; 13:1069. [PMID: 36564370 PMCID: PMC9789132 DOI: 10.1038/s41419-022-05523-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Colon cancer is one of the leading causes of death worldwide. In recent years, cannabinoids have been extensively studied for their potential anticancer effects and symptom management. Several in vitro studies reported anandamide's (AEA) ability to block cancer cell proliferation and migration, but evidence from in vivo studies is still lacking. Thus, in this study, the effects of AEA exposure in zebrafish embryos transplanted with HCT116 cells were evaluated. Totally, 48 hpf xenografts were exposed to 10 nM AEA, 10 nM AM251, one of the cannabinoid 1 receptor (CB1) antagonist/inverse agonists, and to AEA + AM251, to verify the specific effect of AEA treatment. AEA efficacy was evaluated by confocal microscopy, which demonstrated that these xenografts presented a smaller tumor size, reduced tumor angiogenesis, and lacked micrometastasis formation. To gain deeper evidence into AEA action, microscopic observations were completed by molecular analyses. RNA seq performed on zebrafish transcriptome reported the downregulation of genes involved in cell proliferation, angiogenesis, and the immune system. Conversely, HCT116 cell transcripts resulted not affected by AEA treatment. In vitro HCT116 culture, in fact, confirmed that AEA exposure did not affect cell proliferation and viability, thus suggesting that the reduced tumor size mainly depends on direct effects on the fish rather than on the transplanted cancer cells. AEA reduced cell proliferation and tumor angiogenesis, as suggested by socs3 and pcnp mRNAs and Vegfc protein levels, and exerted anti-inflammatory activity, as indicated by the reduction of il-11a, mhc1uba, and csf3b mRNA. Of note, are the results obtained in groups exposed to AM251, which presence nullifies AEA's beneficial effects. In conclusion, this study promotes the efficacy of AEA in personalized cancer therapy, as suggested by its ability to drive tumor growth and metastasis, and strongly supports the use of zebrafish xenograft as an emerging model platform for cancer studies.
Collapse
|
24
|
Sorrentino C, D'Antonio L, Ciummo SL, Fieni C, Landuzzi L, Ruzzi F, Vespa S, Lanuti P, Lotti LV, Lollini PL, Di Carlo E. CRISPR/Cas9-mediated deletion of Interleukin-30 suppresses IGF1 and CXCL5 and boosts SOCS3 reducing prostate cancer growth and mortality. J Hematol Oncol 2022; 15:145. [PMID: 36224639 PMCID: PMC9559017 DOI: 10.1186/s13045-022-01357-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metastatic prostate cancer (PC) is a leading cause of cancer death in men worldwide. Targeting of the culprits of disease progression is an unmet need. Interleukin (IL)-30 promotes PC onset and development, but whether it can be a suitable therapeutic target remains to be investigated. Here, we shed light on the relationship between IL30 and canonical PC driver genes and explored the anti-tumor potential of CRISPR/Cas9-mediated deletion of IL30. METHODS PC cell production of, and response to, IL30 was tested by flow cytometry, immunoelectron microscopy, invasion and migration assays and PCR arrays. Syngeneic and xenograft models were used to investigate the effects of IL30, and its deletion by CRISPR/Cas9 genome editing, on tumor growth. Bioinformatics of transcriptional data and immunopathology of PC samples were used to assess the translational value of the experimental findings. RESULTS Human membrane-bound IL30 promoted PC cell proliferation, invasion and migration in association with STAT1/STAT3 phosphorylation, similarly to its murine, but secreted, counterpart. Both human and murine IL30 regulated PC driver and immunity genes and shared the upregulation of oncogenes, BCL2 and NFKB1, immunoregulatory mediators, IL1A, TNF, TLR4, PTGS2, PD-L1, STAT3, and chemokine receptors, CCR2, CCR4, CXCR5. In human PC cells, IL30 improved the release of IGF1 and CXCL5, which mediated, via autocrine loops, its potent proliferative effect. Deletion of IL30 dramatically downregulated BCL2, NFKB1, STAT3, IGF1 and CXCL5, whereas tumor suppressors, primarily SOCS3, were upregulated. Syngeneic and xenograft PC models demonstrated IL30's ability to boost cancer proliferation, vascularization and myeloid-derived cell infiltration, which were hindered, along with tumor growth and metastasis, by IL30 deletion, with improved host survival. RNA-Seq data from the PanCancer collection and immunohistochemistry of high-grade locally advanced PCs demonstrated an inverse association (chi-squared test, p = 0.0242) between IL30 and SOCS3 expression and a longer progression-free survival of patients with IL30NegSOCS3PosPC, when compared to patients with IL30PosSOCS3NegPC. CONCLUSIONS Membrane-anchored IL30 expressed by human PC cells shares a tumor progression programs with its murine homolog and, via juxtacrine signals, steers a complex network of PC driver and immunity genes promoting prostate oncogenesis. The efficacy of CRISPR/Cas9-mediated targeting of IL30 in curbing PC progression paves the way for its clinical use.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Luigi D'Antonio
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Ruzzi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Simone Vespa
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Pier Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy.
| |
Collapse
|
25
|
Sirtuin 6 maintains epithelial STAT6 activity to support intestinal tuft cell development and type 2 immunity. Nat Commun 2022; 13:5192. [PMID: 36057627 PMCID: PMC9440928 DOI: 10.1038/s41467-022-32846-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/19/2022] [Indexed: 02/08/2023] Open
Abstract
Dynamic regulation of intestinal epithelial cell (IEC) differentiation is crucial for both homeostasis and the response to helminth infection. SIRT6 belongs to the NAD+-dependent deacetylases and has established diverse roles in aging, metabolism and disease. Here, we report that IEC Sirt6 deletion leads to impaired tuft cell development and type 2 immunity in response to helminth infection, thereby resulting in compromised worm expulsion. Conversely, after helminth infection, IEC SIRT6 transgenic mice exhibit enhanced epithelial remodeling process and more efficient worm clearance. Mechanistically, Sirt6 ablation causes elevated Socs3 expression, and subsequently attenuated tyrosine 641 phosphorylation of STAT6 in IECs. Notably, intestinal epithelial overexpression of constitutively activated STAT6 (STAT6vt) in mice is sufficient to induce the expansion of tuft and goblet cell linage. Furthermore, epithelial STAT6vt overexpression remarkedly reverses the defects in intestinal epithelial remodeling caused by Sirt6 ablation. Our results reveal a novel function of SIRT6 in regulating intestinal epithelial remodeling and mucosal type 2 immunity in response to helminth infection. Host defense against helminth infection is mediated by mucosal type 2 immunity. Using gain- and loss-of-function mouse models, and mouse intestinal organoids, Xiong et al. show that SIRT6 modulates tuft and goblet cell expansion in intestinal epithelium by activating STAT6 to maintain type 2 mucosal immunity in response to helminth infection.
Collapse
|
26
|
Identification of Ubiquitin-Related Gene-Pair Signatures for Predicting Tumor Microenvironment Infiltration and Drug Sensitivity of Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14143478. [PMID: 35884544 PMCID: PMC9317993 DOI: 10.3390/cancers14143478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Lung adenocarcinoma (LUAD) has a high mortality and incidence rate. The therapeutic efficacy of LUAD varies with the individual heterogeneity of the tumor microenvironment (TME). It is necessary to explore more biomarkers and targets to improve the prognosis of patients. Ubiquitination pathways are involved in the biological process of regulating the anti-tumor immunity of immune cells and immunosuppression of tumor cells in the TME of patients. In this study, we clarified the characteristics of ubiquitin-related gene pairs (UbRGPs) and identified the relationship between the status of the TME and UbRGPs of patients with LUAD. A prognostic signature based on six UbRGPs was established, which performed well in predicting the immune infiltration and tumor mutation burden (TMB) in the TME and the response of LUAD to immuno-, chemo-, and targeted therapy. In conclusion, the UbRGPs signature is an independent prognostic indicator and has great potential in assisting the clinical therapy for patients with LUAD. Abstract Lung adenocarcinoma (LUAD) is a common pathological type of lung cancer worldwide, and new biomarkers are urgently required to guide more effective individualized therapy for patients. Ubiquitin-related genes (UbRGs) partially participate in the initiation and progression of lung cancer. In this study, we used ubiquitin-related gene pairs (UbRGPs) in tumor tissues to access the function of UbRGs in overall survival, immunocyte infiltration, and tumor mutation burden (TMB) of patients with LUAD from The Cancer Genome Atlas (TCGA) database. In addition, we constructed a prognostic signature based on six UbRGPs and evaluated its performance in an internal (TCGA testing set) and an external validation set (GSE13213). The prognostic signature revealed that risk scores were negatively correlated with the overall survival, immunocyte infiltration, and expression of immune checkpoint inhibitor-related genes and positively correlated with the TMB. Patients in the high-risk group showed higher sensitivity to partially targeted and chemotherapeutic drugs than those in the low-risk group. This study contributes to the understanding of the characteristics of UbRGPs in LUAD and provides guidance for effective immuno-, chemo-, and targeted therapy.
Collapse
|
27
|
Yao Y, Kong X, Liu R, Xu F, Liu G, Sun C. Development of a Novel Immune-Related Gene Prognostic Index for Breast Cancer. Front Immunol 2022; 13:845093. [PMID: 35558081 PMCID: PMC9086776 DOI: 10.3389/fimmu.2022.845093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/28/2022] [Indexed: 01/05/2023] Open
Abstract
Objective To construct an immune-related gene prognostic index (IRGPI) for breast cancer (BC) and investigate its prognostic specificity and the molecular and immune characteristics. Methods BC hub genes were identified from The Cancer Genome Atlas and immune-related databases using weighted gene co-expression network analysis (WGCNA). IRGPI was constructed using univariate, LASSO, and multivariate regression analyses, and was validated with GSE58812 and GSE97342 in the Gene Expression Omnibus database (GEO). At the same time, we evaluated the predictive ability of IRGPI for different BC subtypes. Subsequently, the molecular and immune characteristics, clinical relevance, and benefits of immune checkpoint inhibitor treatment were analyzed for different IRGPI subgroups. Results IRGPI consisted of six genes: SOCS3, TCF7L2, TSLP NPR3, ANO6, and HMGB3. The IRGPI 1-, 5-, and 10-years area under curve (AUC) values were 0.635, 0.752, and 0.753, respectively, indicating that IRGPI has good potential in predicting the long-term survival of BC patients, consistent with the results in the GEO cohort. IRGPI showed good predictive power in four different breast cancer subtypes: ER positive, PR positive, HER2 positive and triple-negative (P<0.01). Compared with the low-IRGPI group, the high-IRGPI group had a worse prognosis and a lower degree of immune infiltrating cells (p < 0.05). IRGPI showed specificity in distinguishing age, TNM stage, ER, and HER2 statuses, and our study found that the high-IRGPI group had low tumor immune dysfunction and exclusion (TIDE), microsatellite instability (MSI), and T cell dysfunction scores (p < 0.05). In addition, compared with the TIDE and TIS models, showed that the AUCs of IRGPI were better during the 5-year follow-up. Conclusion IRGPI can be used as an independent prognostic indicator of breast cancer, providing a method for monitoring the long-term treatment of BC.
Collapse
Affiliation(s)
- Yan Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinru Kong
- Innovative Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gongxi Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- Innovative Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
28
|
Dai L, Tao Y, Shi Z, Liang W, Hu W, Xing Z, Zhou S, Guo X, Fu X, Wang X. SOCS3 Acts as an Onco-immunological Biomarker With Value in Assessing the Tumor Microenvironment, Pathological Staging, Histological Subtypes, Therapeutic Effect, and Prognoses of Several Types of Cancer. Front Oncol 2022; 12:881801. [PMID: 35600392 PMCID: PMC9122507 DOI: 10.3389/fonc.2022.881801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) family contains eight members, including SOCS1–7 and CIS, and SOCS3 has been shown to inhibit cytokine signal transduction in various signaling pathways. Although several studies have currently shown the correlations between SOCS3 and several types of cancer, no pan-cancer analysis is available to date. We used various computational tools to explore the expression and pathogenic roles of SOCS3 in several types of cancer, assessing its potential role in the pathogenesis of cancer, in tumor immune infiltration, tumor progression, immune evasion, therapeutic response, and prognostic. The results showed that SOCS3 was downregulated in most The Cancer Genome Atlas (TCGA) cancer datasets but was highly expressed in brain tumors, breast cancer, esophageal cancer, colorectal cancer, and lymphoma. High SOCS3 expression in glioblastoma multiforme (GBM) and brain lower-grade glioma (LGG) were verified through immunohistochemical experiments. GEPIA and Kaplan–Meier Plotter were used, and this bioinformatics analysis showed that high SOCS3 expression was associated with a poor prognosis in the majority of cancers, including LGG and GBM. Our analysis also indicated that SOCS3 may be involved in tumor immune evasion via immune cell infiltration or T-cell exclusion across different types of cancer. In addition, SOCS3 methylation was negatively correlated with mRNA expression levels, worse prognoses, and dysfunctional T-cell phenotypes in various types of cancer. Next, different analytical methods were used to select genes related to SOCS3 gene alterations and carcinogenic characteristics, such as STAT3, SNAI1, NFKBIA, BCL10, TK1, PGS1, BIRC5, TMC8, and AFMID, and several biological functions were identified between them. We found that SOCS3 was involved in cancer development primarily through the JAK/STAT signaling pathway and cytokine receptor activity. Furthermore, SOCS3 expression levels were associated with immunotherapy or chemotherapy for numerous types of cancer. In conclusion, this study showed that SOCS3 is an immune-oncogenic molecule that may possess value as a biomarker for diagnosis, treatment, and prognosis of several types of cancer in the future.
Collapse
Affiliation(s)
- Lirui Dai
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Yiran Tao
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Zimin Shi
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Wulong Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Zhe Xing
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Shaolong Zhou
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuyang Guo
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Xudong Fu
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Xinjun Wang
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
- *Correspondence: Xinjun Wang,
| |
Collapse
|
29
|
La Manna S, Leone M, Mercurio FA, Florio D, Marasco D. Structure-Activity Relationship Investigations of Novel Constrained Chimeric Peptidomimetics of SOCS3 Protein Targeting JAK2. Pharmaceuticals (Basel) 2022; 15:ph15040458. [PMID: 35455455 PMCID: PMC9031227 DOI: 10.3390/ph15040458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Abstract
SOCS3 (suppressor of cytokine signaling 3) protein suppresses cytokine-induced inflammation and its deletion in neurons or immune cells increases the pathological growth of blood vessels. Recently, we designed several SOCS3 peptidomimetics by assuming as template structures the interfacing regions of the ternary complex constituted by SOCS3, JAK2 (Janus Kinase 2) and gp130 (glycoprotein 130) proteins. A chimeric peptide named KIRCONG chim, including non-contiguous regions demonstrated able to bind to JAK2 and anti-inflammatory and antioxidant properties in VSMCs (vascular smooth muscle cells). With the aim to improve drug-like features of KIRCONG, herein we reported novel cyclic analogues bearing different linkages. In detail, in two of them hydrocarbon cycles of different lengths were inserted at positions i/i+5 and i/i+7 to improve helical conformations of mimetics. Structural features of cyclic compounds were investigated by CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance) spectroscopies while their ability to bind to catalytic domain of JAK2 was assessed through MST (MicroScale Thermophoresis) assay as well as their stability in biological serum. Overall data indicate a crucial role exerted by the length and the position of the cycle within the chimeric structure and could pave the way to the miniaturization of SOCS3 protein for therapeutic aims.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, Research Center on Bioactive Peptides (CIRPEB), University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.)
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR), 80145 Naples, Italy; (M.L.); (F.A.M.)
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging (CNR), 80145 Naples, Italy; (M.L.); (F.A.M.)
| | - Daniele Florio
- Department of Pharmacy, Research Center on Bioactive Peptides (CIRPEB), University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.)
| | - Daniela Marasco
- Department of Pharmacy, Research Center on Bioactive Peptides (CIRPEB), University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.)
- Correspondence: ; Tel.: +39-0812534607
| |
Collapse
|
30
|
Dai L, Li Z, Liang W, Hu W, Zhou S, Yang Z, Tao Y, Hou X, Xing Z, Mao J, Shi Z, Wang X. SOCS proteins and their roles in the development of glioblastoma. Oncol Lett 2021; 23:5. [PMID: 34820004 PMCID: PMC8607235 DOI: 10.3892/ol.2021.13123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary brain tumor in adults. GBM is characterized by a high degree of malignancy and aggressiveness, as well as high morbidity and mortality rates. GBM is currently treatable via surgical resection, chemotherapy and radiotherapy, but the prognosis of patients with GBM is poor. The suppressor of cytokine signaling (SOCS) protein family comprises eight members, including SOCS1-SOCS7 and cytokine-inducible SH2-containing protein. SOCS proteins regulate the biogenesis of GBM via the JAK/STAT and NF-κB signaling pathways. Driven by NF-κB, the expression of SOCS proteins can serve as a negative regulator of the JAK/STAT signaling pathway and exerts a potential inhibitory effect on GBM. In GBM, E3 ubiquitin ligase is involved in the regulation of cellular functions, such as the receptor tyrosine kinase (RTK) survival signal, in which SOCS proteins negatively regulate RTK signaling, and kinase overexpression or mutation can lead to the development of malignancies. Moreover, SOCS proteins affect the proliferation and differentiation of GBM cells by regulating the tumor microenvironment. SOCS proteins also serve specific roles in GBM of different grades and different isocitrate dehydrogenase mutation status. The aim of the present review was to describe the biogenesis and function of the SOCS protein family, the roles of SOCS proteins in the microenvironment of GBM, as well as the role of this protein family and E3 ubiquitin ligases in GBM. Furthermore, the role of SOCS proteins as diagnostic and prognostic markers in GBM and their potential role as GBM therapeutics were explored.
Collapse
Affiliation(s)
- Lirui Dai
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zian Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Wulong Liang
- Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Weihua Hu
- Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Shaolong Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zhuo Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Yiran Tao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Xuelei Hou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Jianchao Mao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zimin Shi
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|