1
|
Liu T, Zhang L. GDF11 Mitigates Neuropathic Pain via Regulation of Microglial Polarization and Neuroinflammation through TGF-βR1/SMAD2/NF-κB Pathway in Male Mice. J Neuroimmune Pharmacol 2025; 20:20. [PMID: 39939465 DOI: 10.1007/s11481-025-10172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Spinal microglial activation and the polarization towards the M1 phenotype are implicated in the pathological process of neuropathic pain. Extensive research has elucidated that growth and differentiation factor 11 (GDF11), a constituent of the transforming growth factor-β (TGF-β) superfamily, exerts inhibitory effects on macrophage activation and mitigates inflammatory responses via the activation of TGF-β receptor type I (TGF-βR1). Nonetheless, the influence of GDF11 on spinal microglial polarization and its role in neuropathic pain remains to be ascertained. In the present investigation, a neuropathic pain model was induced via a spared nerve injury (SNI) procedure on the sciatic nerve in male mice. The impact of GDF11 on microglial polarization and neuropathic pain in SNI-subjected mice was evaluated through pain behavior assessments, WB, IF, qRT-PCR, and ELISA. Our findings revealed a significant downregulation of spinal GDF11 and TGF-βR1 expression levels in microglia of mice subjected to SNI. Furthermore, GDF11 treatment notably reversed the mechanical allodynia and thermal hyperalgesia, inhibited M1 microglial polarization, and attenuated neuroinflammatory processes by modulating the SMAD2/NF-κB in SNI mice. However, the analgesic effects of GDF11 on pain hypersensitivity and its modulatory influence on spinal microglial polarization were abrogated by the application of a specific antagonist of TGF-βR1, or the TGF-βR1 siRNA. In summary, GDF11 effectively ameliorated mechanical allodynia and thermal hyperalgesia, suppressed M1 microglial polarization, and alleviated neuroinflammation via the regulation of the TGF-βR1/SMAD2/NF-κB pathway in mice with SNI. These findings suggest that GDF11 holds promise as a therapeutic modality for the management of neuropathic pain.
Collapse
Affiliation(s)
- Tianzhu Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longqing Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Hao P, Yang Z, So KF, Li X. A core scientific problem in the treatment of central nervous system diseases: newborn neurons. Neural Regen Res 2024; 19:2588-2601. [PMID: 38595278 PMCID: PMC11168522 DOI: 10.4103/nrr.nrr-d-23-01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
It has long been asserted that failure to recover from central nervous system diseases is due to the system's intricate structure and the regenerative incapacity of adult neurons. Yet over recent decades, numerous studies have established that endogenous neurogenesis occurs in the adult central nervous system, including humans'. This has challenged the long-held scientific consensus that the number of adult neurons remains constant, and that new central nervous system neurons cannot be created or renewed. Herein, we present a comprehensive overview of the alterations and regulatory mechanisms of endogenous neurogenesis following central nervous system injury, and describe novel treatment strategies that target endogenous neurogenesis and newborn neurons in the treatment of central nervous system injury. Central nervous system injury frequently results in alterations of endogenous neurogenesis, encompassing the activation, proliferation, ectopic migration, differentiation, and functional integration of endogenous neural stem cells. Because of the unfavorable local microenvironment, most activated neural stem cells differentiate into glial cells rather than neurons. Consequently, the injury-induced endogenous neurogenesis response is inadequate for repairing impaired neural function. Scientists have attempted to enhance endogenous neurogenesis using various strategies, including using neurotrophic factors, bioactive materials, and cell reprogramming techniques. Used alone or in combination, these therapeutic strategies can promote targeted migration of neural stem cells to an injured area, ensure their survival and differentiation into mature functional neurons, and facilitate their integration into the neural circuit. Thus can integration replenish lost neurons after central nervous system injury, by improving the local microenvironment. By regulating each phase of endogenous neurogenesis, endogenous neural stem cells can be harnessed to promote effective regeneration of newborn neurons. This offers a novel approach for treating central nervous system injury.
Collapse
Affiliation(s)
- Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kwok-Fai So
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
3
|
Li Q, Li H, Zhu L, Zhang L, Zheng X, Hao Z. Growth Differentiation Factor 11 Evokes Lung Injury, Inflammation, and Fibrosis in Mice through the Activin A Receptor Type II-Like Kinase, 53kDa-Smad2/3 Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2036-2058. [PMID: 39147236 DOI: 10.1016/j.ajpath.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Growth differentiation factor 11 (GDF11) belongs to the transforming growth factor beta superfamily and participates in various pathophysiological processes. Initially, GDF11 was suggested to act as a rejuvenator by improving age-related phenotypes of the heart, brain, and skeletal muscle in aged mice. Recent studies demonstrate that GDF11 also serves as an adverse risk factor for human frailty and diseases. However, the role of GDF11 in pulmonary fibrosis (PF) remains unclear. This study explored the role and signaling mechanisms of GDF11 in PF. GDF11 expression was markedly up-regulated in fibrotic lung tissues of both humans and mice. Intratracheal administration of commercial recombinant GDF11 caused lung injury, inflammation, and fibrogenesis in mice. Furthermore, adenovirus-mediated secretory expression of mature GDF11 was exacerbated, whereas full-length GDF11 or the GDF11 propeptide (GDF111-298) alleviated bleomycin-induced PF in mice. In in vitro experiments, GDF11 suppressed the growth of alveolar and bronchial epithelial cells (A549 and BEAS-2B) and human pulmonary microvascular endothelial cells, promoted fibroblast activation, and induced epithelial/endothelial-mesenchymal transition. These effects corresponded to the phosphorylation of Smad2/3, and blocking activin A receptor type II-like kinase, 53kDa (ALK5)-Smad2/3 signaling abolished the in vivo and in vitro effects of GDF11. In conclusion, these findings provide evidence that GDF11 acts as a potent injurious, proinflammatory, and profibrotic factor in the lungs via the ALK5-Smad2/3 pathway.
Collapse
Affiliation(s)
- Qian Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hanchao Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijuan Zhang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Zheng
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiming Hao
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Jin X, Guan W. Progress in the relationship between GDF11 and depression. Life Sci 2024; 341:122507. [PMID: 38378101 DOI: 10.1016/j.lfs.2024.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Annually, the frequency of morbidity in depression has increased progressively in response to life stressors, and there is an increasing trend toward younger morbidity. The pathogenesis of depression is complicated and includes factors such as genetic inheritance and variations in physiological functions induced by various environmental factors. Currently, drug therapy has wide adaptability in clinical practice and plays an important role in the treatment of patients with mild depression. However, the therapeutic effects of most antidepressants are typically not significant and are associated with considerable adverse effects and addiction. Therefore, it is imperative to identify the deeper mechanisms of depression and search for alternative drug targets. Growth differentiation factor 11 (GDF11) is described as an anti-ageing molecule that belongs to a member of the transforming growth factor β family. Additionally, the latest research findings suggested that GDF11 positively regulates neurogenesis and enhances neuronal activity, thereby attenuating depression-like behaviours. Although an increasing number of studies have focused on the multiple functions of GDF11 in skeletal dysplasia and carcinogenesis, its precise mechanism of action in depression remains unknown. Thus, in this review, we discuss the role of GDF11 and its mechanistic pathways in the pathogenesis of depression to develop novel therapies for depression.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Pharmacy, The Second People's Hospital of Nantong, Nantong, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
5
|
Tsai MJ, Fay LY, Liou DY, Chen Y, Chen YT, Lee MJ, Tu TH, Huang WC, Cheng H. Multifaceted Benefits of GDF11 Treatment in Spinal Cord Injury: In Vitro and In Vivo Studies. Int J Mol Sci 2022; 24:ijms24010421. [PMID: 36613862 PMCID: PMC9820576 DOI: 10.3390/ijms24010421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Traumatic spinal cord injury (SCI) initiates a series of cellular and molecular events that include both primary and secondary injury cascades. This secondary cascade provides opportunities for the delivery of therapeutic intervention. Growth differentiation factor 11 (GDF11), a member of the transforming growth factor-β (TGF-β) superfamily, regulates various biological processes in mammals. The effects of GDF11 in the nervous system were not fully elucidated. Here, we perform extensive in vitro and in vivo studies to unravel the effects of GDF11 on spinal cord after injury. In vitro culture studies showed that GDF11 increased the survival of both neuronal and oligodendroglial cells but decreased microglial cells. In stressed cultures, GDF11 effectively inhibited LPS stimulation and also protected neurons from ischemic damage. Intravenous GDF11 administration to rat after eliciting SCI significantly improved hindlimb functional restoration of SCI rats. Reduced neuronal connectivity was evident at 6 weeks post-injury and these deficits were markedly attenuated by GDF11 treatment. Furthermore, SCI-associated oligodendroglial alteration were more preserved by GDF11 treatment. Taken together, GDF11 infusion via intravenous route to SCI rats is beneficial, facilitating its therapeutic application in the future.
Collapse
Affiliation(s)
- May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Li-Yu Fay
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Dann-Ying Liou
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi Chen
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ya-Tzu Chen
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 41349, Taiwan
| | - Tsung-Hsi Tu
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wen-Cheng Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Henrich Cheng
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-2-28757718
| |
Collapse
|