1
|
Niu Y, Xu L, Qiao M, Wang Y. The anti-depression effect and mechanism of harmonious rosemary essential oil and its application in microcapsules. Mater Today Bio 2025; 31:101546. [PMID: 39990741 PMCID: PMC11847552 DOI: 10.1016/j.mtbio.2025.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/07/2024] [Accepted: 02/02/2025] [Indexed: 02/25/2025] Open
Abstract
Depression imposes a heavy burden on patients and society, and current antidepressants often cause side effects such as dryness in the mouth and constipation. The explorations about aromatic plant essential oils provide a new method for the treatment of depression, but the mechanisms of antidepressant effect of these oils are not deeply enough. Here, the rosemary essential oil analyzed by GC-O and GC-MS techniques, whose main aromatic compounds are determined as 1,8-cineole (OAV = 1869.27, AI = 9.4), linalool (OAV = 1668.90, AI = 5.4), and ethyl decanoate (OAV = 1169.09, AI = 6.9). The network pharmacology was employed to investigate the possible pathway of action for antidepressant effects of the rosemary essential oil, and Gface software that can capture facial expressions was used to harmony the aroma to make the oil more pleasant. Then, the harmonious essential oil was proved to have antidepressant effects. For addressing issues of strong volatility and oxidation susceptibility of essential oil, dendrimer-like γ-cyclodextrin was prepared and encapsulate the essential oil. The obtained microcapsule prolonged fragrance duration and presented good stability, which are applied in aromatherapy and daily care products. This study lays a theoretical and methodological foundation for essential oil efficacy research and provides new strategies for designing and producing functional products related to essential oils.
Collapse
Affiliation(s)
- Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Liyang Xu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Mengdong Qiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yamei Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
2
|
Lu Y, Yu X, Wang Z, Kong L, Jiang Z, Shang R, Zhong X, Lv S, Zhang G, Gao H, Yang N. Microbiota-gut-brain axis: Natural antidepressants molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156012. [PMID: 39260135 DOI: 10.1016/j.phymed.2024.156012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental health condition characterized by persistent depression, impaired cognition, and reduced activity. Increasing evidence suggests that gut microbiota (GM) imbalance is closely linked to the emergence and advancement of MDD, highlighting the potential significance of regulating the "Microbiota-Gut-Brain" (MGB) axis to impact the development of MDD. Natural products (NPs), characterized by broad biological activities, low toxicity, and multi-target characteristics, offer unique advantages in antidepressant treatment by regulating MGB axis. PURPOSE This review was aimed to explore the intricate relationship between the GM and the brain, as well as host responses, and investigated the mechanisms underlying the MGB axis in MDD development. It also explored the pharmacological mechanisms by which NPs modulate MGB axis to exert antidepressant effects and addressed current research limitations. Additionally, it proposed new strategies for future preclinical and clinical applications in the MDD domain. METHODS To study the effects and mechanism by which NPs exert antidepressant effects through mediating the MGB axis, data were collected from Web of Science, PubMed, ScienceDirect from initial establishment to March 2024. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as flavonoids,alkaloids,polysaccharides,saponins, terpenoids, can treat MDD by regulating the MGB axis. Its mechanism includes balancing GM, regulating metabolites and neurotransmitters such as SCAFs, 5-HT, BDNF, inhibiting neuroinflammation, improving neural plasticity, and increasing neurogenesis. CONCLUSIONS NPs display good antidepressant effects, and have potential value for clinical application in the prevention and treatment of MDD by regulating the MGB axis. However, in-depth study of the mechanisms by which antidepressant medications affect MGB axis will also require considerable effort in clinical and preclinical research, which is essential for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaowen Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhongling Wang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Linghui Kong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhenyuan Jiang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haonan Gao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
3
|
Sasaki K, Becker J, Ong J, Ciaghi S, Guldin LS, Savastano S, Fukumitsu S, Kuwata H, Szele FG, Isoda H. Rosemary extract activates oligodendrogenesis genes in mouse brain and improves learning and memory ability. Biomed Pharmacother 2024; 179:117350. [PMID: 39197189 DOI: 10.1016/j.biopha.2024.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Rosemary (Rosmarinus officinalis L.) is a rich source of dietary bioactive compounds such as rosmarinic acid and carnosol with a large repertoire of pharmacological properties, including anti-inflammatory and neuroprotective activities. In the present study, we investigated rosemary as a potential new therapeutic agent for cognitive function and other symptoms of aging. In this present study, we have aimed to investigate the effects of oral administration of rosemary extract (RME) on learning and memory in the context of other biomarkers-related cognitive function and neurotransmitter levels in senescent accelerated prone 8 (SAMP8) mouse, a model of accelerating aging and Alzheimer's disease. The Morris water maze (MWM) test showed improved spatial learning and memory behavior in RME treated SAMP8 mouse. Moreover, RME decreased Aβ42 and inflammatory cytokine levels and increased BDNF, Sirt1, and neurotransmitter levels in SAMP8 mouse. Whole-genome microarray analysis revealed that RME significantly increased gene expression related to oligodendrocyte differentiation, myelination, and ATP production in the hippocampus and decreased gene expression related to stress, neuroinflammation, and apoptosis. Also, in the SAMP8 hippocampus, RME significantly increased Olig1 and Olig2 expression. Altogether, our study is the first to report improvement of spatial learning and memory of RME, modulation of genes important for oligodendrogenesis, and Anti-neuroinflammatory effect by suppressing Aβ42 levels in mouse brain and thus highlights the prospects of RME in the treatment of cognitive dysfunction and aging.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan; AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, Tsukuba, Japan
| | - Jemima Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jun Ong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sabina Ciaghi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lynn S Guldin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sofia Savastano
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Satoshi Fukumitsu
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Japan
| | - Hidetoshi Kuwata
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan; AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, Tsukuba, Japan; Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
4
|
Xia N, Wang J, Guo Q, Duan J, Wang X, Zhou P, Li J, Tang T, Li T, Li H, Wu Z, Yang M, Sun J, Guo D, Chang X, Zhang X. Deciphering the antidepressant effects of Rosa damascena essential oil mediated through the serotonergic synapse signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118007. [PMID: 38492791 DOI: 10.1016/j.jep.2024.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.
Collapse
Affiliation(s)
- Ning Xia
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jie Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Qiuting Guo
- Xianyang Polytechnic Institute, Xianyang, 712000, Shaanxi, China
| | - Jiawei Duan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xuan Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Peijie Zhou
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jinkai Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Tiantian Tang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Taotao Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xing Chang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
| |
Collapse
|
5
|
Wakasugi D, Kondo S, Ferdousi F, Mizuno S, Yada A, Tominaga K, Takahashi S, Isoda H. A rare olive compound oleacein functions as a TrkB agonist and mitigates neuroinflammation both in vitro and in vivo. Cell Commun Signal 2024; 22:309. [PMID: 38835076 PMCID: PMC11151522 DOI: 10.1186/s12964-024-01691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Neuroinflammation is widely acknowledged as a characteristic feature of almost all neurological disorders and specifically in depression- and anxiety-like disorders. In recent years, there has been significant attention on natural compounds with potent anti-inflammatory effects due to their potential in mitigating neuroinflammation and neuroplasticity. METHODS In the present study, we aimed to evaluate the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. Our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response using human neuroblastoma cells (SH-SY5Y cells) and an in vivo model of depression induced by lipopolysaccharide (LPS)-mediated inflammation. RESULTS In SH-SY5Y cells, OC exhibited a significant dose-dependent increase in BDNF expression. This enhancement was absent when cells were co-treated with inhibitors of BDNF's receptor TrkB, as well as downstream molecules PI3K and MEK. Whole-transcriptomics analysis revealed that OC upregulated cell cycle-related genes under normal conditions, while downregulating inflammation-associated genes in LPS-induced conditions. Furthermore, surface plasmon resonance (SPR) assays demonstrated that OC exhibited a stronger and more stable binding affinity to TrkB compared to the positive control, 7,8-dihydroxyflavone. Importantly, bioluminescence imaging revealed that a single oral dose of OC significantly increased BDNF expression in the brains of Bdnf-IRES-AkaLuc mice. Furthermore, oral administration of OC at a dosage of 10 mg/kg body weight for 10 days significantly reduced immobility time in the tail suspension test compared to the LPS-treated group. RT-qPCR analysis revealed that OC significantly decreased the expression of pro-inflammatory cytokines Tnfα, Il6, and Il1β, while simultaneously enhancing Bdnf expression, as well as both pro and mature BDNF protein levels in mice hippocampus. These changes were comparable to those induced by the positive control antidepressant drug fluoxetine. Additionally, microarray analysis of mouse brains confirmed that OC could counteract LPS-induced inflammatory biological events. CONCLUSION Altogether, our study represents the first report on the potential antineuroinflammatory and antidepressant properties of OC via modulation of BDNF/TrkB neurotrophic activity. This finding underscores the potential of OC as a natural therapeutic agent for depression- and anxiety-related disorders.
Collapse
Affiliation(s)
- Daiki Wakasugi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Shinji Kondo
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center (LARC) in Transborder Medical Research Center (TMRC), Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Yada
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0821, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Ibaraki, 305-8565, Japan
| | - Kenichi Tominaga
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0821, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center (LARC) in Transborder Medical Research Center (TMRC), Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0821, Japan.
| |
Collapse
|
6
|
Zhu SL, Zhang HT, Du YY, Jiang Y, Wang SS, Ding WC, Feng L. Histological Features of Uterine Myometrial Dysfunction: Possible Involvement of Localized Inflammation. Curr Med Sci 2024; 44:633-641. [PMID: 38789820 DOI: 10.1007/s11596-024-2873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE The latest perspective suggests that elevated levels of inflammation and cytokines are implicated in atonic postpartum hemorrhage. Lipopolysaccharide (LPS) has been widely used to induce inflammation in animal models. Therefore, this study aimed to induce uterine inflammation using LPS to investigate whether local inflammation triggers dysfunction and atrophy in the myometrium, as well as the potential underlying molecular mechanisms involved. METHODS In vivo, an animal model was established by intraperitoneal injection of 300 μg/ kg LPS in rats on gestational day 21. Hematoxylin-eosin (H&E) staining and Masson staining were employed to determine morphological changes in the rat uterine smooth muscle. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory cytokines. Immunohistochemistry, tissue fluorescence, and Western blotting were conducted to assess the expression levels of the uterine contraction-related proteins Toll-like receptor 4 (TLR4) and the nuclear factor kappa-B (NF-κB) signaling pathway. In vitro, human uterine smooth muscle cells (HUtSMCs) were exposed to 2 μg/mL LPS to further elucidate the involvement of the TLR4/NF-κB signaling pathway in LPS-mediated inflammation. RESULTS In this study, LPS induced uterine myometrial dysfunction in rats, leading to a disorganized arrangement, a significant increase in collagen fiber deposition, and widespread infiltration of inflammatory cells. In both in vivo animal models and in vitro HUtSMCs, LPS elevated IL-6, IL-1β, and TNF-α levels while concurrently suppressing the expression of connexin 43 (Cx43) and oxytocin receptor (OXTR). Mechanistically, the LPS-treated group exhibited TLR4 activation, and the phosphorylation levels of p65 and IκBα were notably increased. CONCLUSION LPS triggered the TLR4/NF-κB signaling pathway, inducing an inflammatory response in the myometrium and leading to uterine myometrial dysfunction and uterine atony.
Collapse
Affiliation(s)
- Sheng-Lan Zhu
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Ting Zhang
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan-Yuan Du
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Jiang
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shao-Shuai Wang
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen-Cheng Ding
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ling Feng
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Vieira SF, Reis RL, Ferreira H, Neves NM. Plant-derived bioactive compounds as key players in the modulation of immune-related conditions. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09955-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe immune system is a complex and fundamental network for organism protection. A minimal unbalance in the host defense system homeostasis can originate severe repercussions in human health. Fundamentally, immune-related diseases can arise from its compromise (immunodeficiency diseases), overactivation against itself (autoimmune diseases) or harmless substances (allergies), and failure of eliminating the harmful agent (chronic inflammation). The notable advances and achievements in the immune system diseases pathophysiology have been allowing for a dramatic improvement of the available treatments. Nevertheless, they present some drawbacks, including the inappropriate benefit/risk ratio. Therefore, there is a strong and urgent need to develop effective therapeutic strategies. Nature is a valuable source of bioactive compounds that can be explored for the development of new drugs. Particularly, plants produce a broad spectrum of secondary metabolites that can be potential prototypes for innovative therapeutic agents. This review describes the immune system and the inflammatory response and examines the current knowledge of eight plants traditionally used as immunomodulatory medicines (Boswellia serrata, Echinacea purpurea, Laurus nobilis, Lavandula angustifolia, Olea europaea, Salvia officinalis, Salvia rosmarinus, and Taraxacum officinale). Moreover, the issues responsible for possible biologic readout inconsistencies (plant species, age, selected organ, developmental stage, growth conditions, geographical location, drying methods, storage conditions, solvent of extraction, and extraction method) will also be discussed. Furthermore, a detailed list of the chemical composition and the immunomodulatory mechanism of action of the bioactive compounds of the selected plant extracts are presented. This review also includes future perspectives and proposes potential new avenues for further investigation.
Collapse
|
8
|
Li T, Wang W, Guo Q, Li J, Tang T, Wang Y, Liu D, Yang K, Li J, Deng K, Wang F, Li H, Wu Z, Guo J, Guo D, Shi Y, Zou J, Sun J, Zhang X, Yang M. Rosemary (Rosmarinus officinalis L.) hydrosol based on serotonergic synapse for insomnia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116984. [PMID: 37532071 DOI: 10.1016/j.jep.2023.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/10/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosemary (Rosmarinus officinalis L.) has been widely used as a traditional remedy for insomnia, depression and anxiety in China and Western countries. Modern pharmacological studies have shown that rosemary has important applications in neurological disorders. However, the mechanism of action of rosemary hydrosol in the treatment of insomnia is not known. AIMS OF THE STUDY Insomnia is closely linked to anxiety and depression, and its pathogenesis is related to biology, psychology, and sociology. Rosemary is a natural plant that has been used to treat insomnia and depression and has good biological activity, but its material basis and mechanism for the treatment of insomnia are not clear. Here, we report on the role of aqueous extracts of rosemary in the treatment of insomnia. MATERIALS AND METHODS The study was based on network pharmacology, using a combination of RNA-sequencing, "quantity-effect" weighting coefficients, and pharmacodynamic experiments. DL-4-chlorophenylalanine (PCPA) was intraperitoneally injected into SD rats to replicate the insomnia model with a blank, model, diazepam, and rosemary hydrosol low-, medium-, and high-dose groups were set up for the experiment. The key pathways in the treatment of insomnia with rosemary hydrosol were analyzed by molecular docking, open field assay, ELISA, western-Blot, Rt-PCR, and immunohistochemical assay. RESULTS Rosemary hydrosol was analyzed by GC-MS to identify 19 components. 1579 differential genes were obtained by RNA-Seq analysis, 533 targets for rosemary hydrosol and 2705 targets for insomnia, and 29 key targets were obtained by intersection. The KEGG results were ranked by "quantity-effect" weighting coefficients, resulting in serotonergic synapse was the key pathway for the treatment of insomnia with rosemary hydrosol. Molecular docking results showed that 1,7,7-trimethylbicyclo[2.2.1] heptan-2-one, 3-methyl-4-isopropylphenol, caryophyllene, and citronellol of rosemary hydrosol acted synergistically to achieve a therapeutic effect on insomnia. Caryophyllene acts on the HTR1A target by upregulating 5-HT1AR, leading to increased 5-HT release, and upregulation of ADCY5, cAMP, PKA and GABAA at serotonergic synapses; citronellol upregulated ADCY5 and 1,7,7-trimethylbicyclo[2.2.1] heptan-2-one, and 3-methyl-4-isopropylphenol up-regulated GABAA to improve insomnia symptoms. In open-field experiments, ELISA kits (5-HT, GABA, and DA), Western-blotting, Rt-PCR and immunohistochemical assay experiments, insomnia rats in the low-, medium- and high-dose groups of rosemary hydrosol showed different degrees of improvement compared with the model group. CONCLUSIONS It was shown that rosemary hydrosol may exert its therapeutic effects on insomnia through serotonergic synapses by combining RNA-Seq, "quantity-effect" weighting coefficients network pharmacology and pharmacodynamic experiments. We have provided a preliminary theoretical study for the development of rosemary hydrosol additive into a beverage for the treatment of insomnia, but it needs to be studied in depth. This study was conducted in rats and the results have limitations and may not apply to humans.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Wenfei Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Qiuting Guo
- Xianyang Vocational Technical College, Xianyang, 712000, Shaanxi, China
| | - Jia Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Tiantian Tang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yujiao Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Ding Liu
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Kai Yang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Jiayi Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Kaixue Deng
- Shaanxi Jianchi Biological Pharmaceutical Co., Ltd, Xianyang, 712000, Shaanxi, China
| | - Fang Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jianbo Guo
- Shaanxi Province Food and Drug Safety Monitoring Key Laboratory, Shaanxi Institute of Food and Drug Control, Xi'an, 710000, Shaanxi, China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Junbo Zou
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
9
|
Oresanya IO, Orhan IE. Deciphering Neuroprotective Effect of Rosmarinus officinalis L. (syn. Salvia rosmarinus Spenn.) through Preclinical and Clinical Studies. Curr Drug Targets 2024; 25:330-352. [PMID: 38258779 DOI: 10.2174/0113894501255093240117092328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Rosmarinus officinalis L. (RO, rosemary) is a well-known medicinal, aromatic, and culinary herb with traditional use in European folk medicine against memory deficits and neurodegenerative disorders. This review highlights the different neuroprotective activities of RO investigated in both preclinical and clinical studies, as well as in silico molecular docking of bioactive compounds found in RO. The neuroprotective effect of RO was searched through databases including PubMed, Web of Science (WoS), Scopus, and Clinical Trials using the keywords "Rosmarinus officinalis, rosemary, neuroprotective effect, memory, cognitive dysfunction, Alzheimer's disease." RO, which is rich in secondary metabolites that have memory-enhancing potential, has displayed neuroprotection through different molecular mechanisms such as inhibition of cholinesterase, modulation of dopaminergic and oxytocinergic systems, mediation of oxidative and inflammatory proteins, involved in neuropathic pain, among others. RO extracts exhibited antidepressant and anxiolytic activities. Also, the plant has shown efficacy in scopolamine-, lipopolysaccharide-, AlCl3-, and H2O2-induced amnesia as well as amyloid-beta- and ibotenic acid-induced neurotoxicity and chronic constriction injury-related oxidative stress memory and cognitive impairments in animal models. A few clinical studies available supported the neuroprotective effects of RO and its constituents. However, more clinical studies are needed to confirm results from preclinical studies further and should include not only placebo-controlled studies but also studies including positive controls using approved drugs. Many studies underlined that constituents of RO may have the potential for developing drug candidates against Alzheimer's disease that possess high bioavailability, low toxicity, and enhanced penetration to CNS, as revealed from the experimental and molecular docking analysis.
Collapse
Affiliation(s)
- Ibukun O Oresanya
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Ilkay E Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No. 112, 06670 Ankara, Türkiye
| |
Collapse
|
10
|
Meng QT, Song WQ, Churilov LP, Zhang FM, Wang YF. Psychophysical therapy and underlying neuroendocrine mechanisms for the rehabilitation of long COVID-19. Front Endocrinol (Lausanne) 2023; 14:1120475. [PMID: 37842301 PMCID: PMC10570751 DOI: 10.3389/fendo.2023.1120475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
With the global epidemic and prevention of the COVID-19, long COVID-19 sequelae and its comprehensive prevention have attracted widespread attention. Long COVID-19 sequelae refer to that three months after acute COVID-19, the test of SARS-CoV-2 is negative, but some symptoms still exist, such as cough, prolonged dyspnea and fatigue, shortness of breath, palpitations and insomnia. Its pathological mechanism is related to direct viral damage, immunopathological response, endocrine and metabolism disorders. Although there are more effective methods for treating COVID-19, the treatment options available for patients with long COVID-19 remain quite limited. Psychophysical therapies, such as exercise, oxygen therapy, photobiomodulation, and meditation, have been attempted as treatment modalities for long COVID-19, which have the potential to promote recovery through immune regulation, antioxidant effects, and neuroendocrine regulation. Neuroendocrine regulation plays a significant role in repairing damage after viral infection, regulating immune homeostasis, and improving metabolic activity in patients with long COVID-19. This review uses oxytocin as an example to examine the neuroendocrine mechanisms involved in the psychophysical therapies of long COVID-19 syndrome and proposes a psychophysical strategy for the treatment of long COVID-19.
Collapse
Affiliation(s)
- Qing-Tai Meng
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wu-Qi Song
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Leonid P. Churilov
- Department of Experimental Tuberculosis, St. Petersburg State Research Institute of Phthisiopulmonology, Saint-Petersburg, Russia
| | - Feng-Min Zhang
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Zhou X, Zeng M, Huang F, Qin G, Song Z, Liu F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12601-5. [PMID: 37272939 DOI: 10.1007/s00253-023-12601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.
Collapse
Affiliation(s)
- Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
12
|
Fonseca ECM, Ferreira LR, Figueiredo PLB, Maia CDSF, Setzer WN, Da Silva JKR. Antidepressant Effects of Essential Oils: A Review of the Past Decade (2012-2022) and Molecular Docking Study of Their Major Chemical Components. Int J Mol Sci 2023; 24:ijms24119244. [PMID: 37298210 DOI: 10.3390/ijms24119244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 06/12/2023] Open
Abstract
Depression is a mental disorder that affects more than 300 million people worldwide. The medications available for treatment take a long time to exhibit therapeutic results and present several side effects. Furthermore, there is a decrease in the quality of life of people suffering from this affliction. Essential oils are traditionally used to relieve the symptoms of depression due to the properties of the constituents of these oils to cross the blood-brain barrier acting on depression-related biological receptors associated with reduced toxicity and side effects. In addition, compared to traditional drugs, they have several administration forms. This review provides a comprehensive assessment of studies on plants whose essential oil has exhibit antidepressant activity in the past decade and the mechanism of action of the major components and models tested. An additional in silico study was conducted with the frequent compounds in the composition of these essential oils, providing a molecular approach to the mechanism of action that has been reported in the past decade. This review is valuable for the development of potential antidepressant medications in addition to providing a molecular approach to the antidepressant mechanism of action of the major volatile compounds that have been reported in the past decade.
Collapse
Affiliation(s)
- Emily Christie M Fonseca
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Lanalice R Ferreira
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Pablo Luis B Figueiredo
- Laboratório de Química dos Produtos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém 66087-662, Brazil
| | - Cristiane do Socorro F Maia
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Joyce Kelly R Da Silva
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, Brazil
| |
Collapse
|
13
|
Dai Y, Guo J, Zhang B, Chen J, Ou H, He RR, So KF, Zhang L. Lycium barbarum (Wolfberry) glycopeptide prevents stress-induced anxiety disorders by regulating oxidative stress and ferroptosis in the medial prefrontal cortex. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154864. [PMID: 37182278 DOI: 10.1016/j.phymed.2023.154864] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/15/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Lycium barbarum (Wolfberry) extract has been shown to be effective in neuroprotection against aging or neural injury. Knowledge of its potential roles and biological mechanisms in relieving mental disorders, however, remains limited. PURPOSE To investigate the potency of Lycium barbarum glycopeptide (LbGp) in alleviating anxiety disorders and the related biological mechanisms. METHODS LbGp was administrated to mice subjected to 14 days of chronic restrain stress (CRS) via the intragastric route. The anxiolytic effect was evaluated by a battery of behavioral assays. The morphology of neurons and glial cells was evaluated, and cortical neuronal calcium transients were recorded in vivo. The molecular mechanism of LbGp was also investigated. RESULTS LbGp effectively relieved anxiety-like and depressive behaviors under CRS. Mechanistic studies further showed that LbGp treatment relieved oxidative stress and lipid peroxidation in the medial prefrontal cortex (mPFC). In particular, the ferroptosis pathway was inhibited by LbGp, revealing a previously unrecognized mechanism of the anxiolytic role of wolfberry extract. CONCLUSION In summary, our results supported the future development of LbGp to prevent or ameliorate stress-induced anxiety disorders. Our work provides a promising strategy for early intervention for pateitents with mental disorders by applying natural plant extracts.
Collapse
Affiliation(s)
- Yelin Dai
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Junxiu Guo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Borui Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Junlin Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Haibin Ou
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China; State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China.
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
14
|
Ferdousi F, Sasaki K, Fukumitsu S, Kuwata H, Nakajima M, Isoda H. A Descriptive Whole-Genome Transcriptomics Study in a Stem Cell-Based Tool Predicts Multiple Tissue-Specific Beneficial Potential and Molecular Targets of Carnosic Acid. Int J Mol Sci 2023; 24:ijms24098077. [PMID: 37175790 PMCID: PMC10179098 DOI: 10.3390/ijms24098077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Carnosic acid (CA) is a phenolic diterpene widely distributed in herbal plants, rosemary and sage. Although its medicinal properties, such as antioxidant, antimicrobial, and neuroprotective effects, have been well-documented, its relevant biochemical processes and molecular targets have not been fully explored yet. In the present study, we conducted an untargeted whole-genome transcriptomics analysis to investigate CA-induced early biological and molecular events in human amniotic epithelial stem cells (hAESCs) with the aim of exploring its multiple tissue-specific functionalities and potential molecular targets. We found that seven days of CA treatment in hAESCs could induce mesoderm-lineage-specific differentiation. Tissue enrichment analysis revealed that CA significantly enriched lateral plate mesoderm-originated cardiovascular and adipose tissues. Further tissue-specific PPI analysis and kinase and transcription factor enrichment analyses identified potential upstream regulators and molecular targets of CA in a tissue-specific manner. Gene ontology enrichment analyses revealed the metabolic, antioxidant, and antifibrotic activities of CA. Altogether, our comprehensive whole-genome transcriptomics analyses offer a thorough understanding of the possible underlying molecular mechanism of CA.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
| | - Satoshi Fukumitsu
- NIPPN Corporation, Tokyo 243-0041, Japan
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
| | | | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
- MED R&D Corporation, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- MED R&D Corporation, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
15
|
Rosemary as an adjunctive treatment in patients with major depressive disorder: A randomized, double‐blind, placebo‐controlled trial. Complement Ther Clin Pract 2022; 49:101685. [DOI: 10.1016/j.ctcp.2022.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
16
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
17
|
Malik N, Amber S, Zahid S. Rosmarinus officinalis and Methylphenidate Exposure Improves Cognition and Depression and Regulates Anxiety-Like Behavior in AlCl3-Induced Mouse Model of Alzheimer’s Disease. Front Pharmacol 2022; 13:943163. [PMID: 36034857 PMCID: PMC9411514 DOI: 10.3389/fphar.2022.943163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurological illness that causes severe cognitive impairment. AD patients also experience at least one of the neuropsychiatric symptoms including apathy, depression, and anxiety during the course of their life. Acetylcholine esterase inhibitors are the available treatment options to alleviate cognitive deficits, whereas methylphenidate (MPH), a psychostimulant, is considered for the treatment of apathy in AD patients. Rosmarinus officinalis, a perennial herb, has been potentially known to have antioxidant and anti-inflammatory properties. The present study investigated the potential effects of MPH and R. officinalis in comparison with the standard drug, Donepezil, on cognition, anxiety, and depression in the AlCl3-induced mouse model of AD. The animals were divided into eight groups (n = 8, each). The results revealed that the MPH- and R. officinalis-treated groups significantly improved memory impairment, whereas R. officinalis substantially reduced depression and anxiety as compared with other treatment groups. MPH treatment induced an antidepressant effect and increased anxiety-like behavior. Moreover, the AlCl3 exposure led to the formation of amyloid beta (Aβ) plaques in mice hippocampus; however, none of the tested drugs caused a significant reduction in amyloid burden at the selected doses. The present study suggested the potential of R. officinalis to improve memory as well as neuropsychiatric symptoms in AD. Although R. officinalis improved cognitive abilities, it did not reduce the amyloid plaque burden, which indicates that the memory-enhancing effects of R. officinalis are due to some alternate mechanism that needs to be explored further.
Collapse
|
18
|
Bonokwane MB, Lekhooa M, Struwig M, Aremu AO. Antidepressant Effects of South African Plants: An Appraisal of Ethnobotanical Surveys, Ethnopharmacological and Phytochemical Studies. Front Pharmacol 2022; 13:895286. [PMID: 35846999 PMCID: PMC9277359 DOI: 10.3389/fphar.2022.895286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
Globally, the search for safe and potent natural-based treatment for depression is receiving renewed interest given the numerous side-effects associated with many existing drugs. In South Africa, the use of plants to manage depression and related symptoms is fairly documented among different ethnic groups. In the current study, we reviewed existing ethnobotanical, ethnopharmacological and phytochemical studies on South African medicinal plants used to manage depression. Electronic databases were accessed for scientific literature that meets the inclusion criteria. Plants with ethnobotanical evidence were subjected to a further pharmacological review to establish the extent (if any) of their effectiveness as antidepressants. Critical assessment resulted in 20 eligible ethnobotanical records, which generated an inventory of 186 plants from 63 plant families. Due to the cultural differences observed in the definition of depression, or lack of definition in some cultures, most plants are reported to treat a wide range of atypical symptoms related to depression. Boophone disticha, Leonotis leonurus and Mentha longifolia were identified as the three most popular plants, with over eight mentions each from the ethnobotanical records. The dominant families were Asteraceae (24), Fabaceae (16), Amaryllidaceae (10), and Apocynaceae (10) which accounted for about 32% of the 186 plants. Only 27 (≈14.5%) of the plants have been screened for antidepressant activity using in vitro and in vivo models. Agapanthus campanulatus, Boophone disticha, Hypericum perforatum, Mondia whitei and Xysmalobium undulatum, represent the most studied plants. Phytochemical investigation on nine out of the 27 plants revealed 24 compounds with antidepressant-like effects. Some of these included buphanidrine and buphanamine which were isolated from the leaves of Boophone disticha, Δ9-tetrahydrocannabinol, cannabidiol and cannabichromene obtained from the buds of Cannabis sativa and carnosic acid, rosmarinic acid and salvigenin from Rosmarinus officinalis, A significant portion (≈85%) of 186 plants with ethnobotanical records still require pharmacological studies to assess their potential antidepressant-like effects. This review remains a valuable reference material that may guide future ethnobotanical surveys to ensure their robustness and validity as well as database to identify promising plants to screen for pharmacology efficacy.
Collapse
Affiliation(s)
- Melia Bokaeng Bonokwane
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Makhotso Lekhooa
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- *Correspondence: Makhotso Lekhooa, ; Adeyemi Oladapo Aremu,
| | - Madeleen Struwig
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Makhotso Lekhooa, ; Adeyemi Oladapo Aremu,
| |
Collapse
|
19
|
Optimizing the Method of Rosemary Essential Oils Extraction by Using Response Surface Methodology (RSM)-Characterization and Toxicological Assessment. SUSTAINABILITY 2022. [DOI: 10.3390/su14073927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rosemary (Rosmarinus officinalis L.) is a plant with needle-shaped leaves. It is mainly found in Mediterranean regions (Algeria, Morocco and Tunisia). Rosemary essential oil (EO) has several therapeutic virtues that were widely studied. However, the use of this EO is restricted due to its sensitivity to oxidation. Nanoencapsulation based on EO and polymers has been developed as one of the promising techniques to overcome this limitation. In this study, the emphasis was on optimizing the extraction and formulation of a food additive based on rosemary EO. In fact, the results showed that rosemary EO extraction depended on the parameters of the extraction process, and the optimum heating temperature and extraction time were determined using an experimental design methodology. The parameters for extraction were chosen as follows: heating temperature of 250 °C and a hydrodistillation time of 180 min. This optimization revealed that the maximum oil yield can be obtained. Rosemary EO was characterized by a dominance of 1,8-cineole, camphor, α-pinene, borneol and camphene as well as by high antioxidant and antibacterial capacities with low acute toxicity. The obtained formulation of a stable rosemary EO powder can be used as a food additive in several industrial applications.
Collapse
|