1
|
Jin XQ, Li JL, Liu J, Chen LL, Liu C, Zhou YQ, Shi WP, Liang H, Guo WH, Yin DC. In situ synthesis of silver nanoparticles on silk: producing antibacterial fabrics. Bioprocess Biosyst Eng 2025; 48:725-736. [PMID: 40029393 DOI: 10.1007/s00449-025-03138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
Herein, we explored an effective method for preparing silver nanoparticles (Ag NPs)-coated antibacterial silk fabrics. In particular, using amino acids and cellulose from silk as reducing agents and silver nitrate as a precursor, Ag NPs were synthesised in situ on the surface of silk without requiring additional reducing agents and catalysts. The surface morphology and chemical composition of the involved samples were characterised using techniques such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Notably, silk and silk precursors (silkworm cocoons, silk fibers and sericin) could be used for in situ Ag NPs synthesis. Furthermore, the antibacterial properties of the samples were evaluated against Escherichia coli-a Gram-negative bacterium-as a model, demonstrating an impressive antibacterial rate of up to 99.91%. In addition, we investigated the water absorption behaviour of the samples at 25 °C by assessing their moisture regain, water retention value and vertical wick height. The results indicated that the Ag NPs coating did not damage the water absorption performance of the involved silk. Finally, we compared the fabric performance before and after treatment using a universal testing machine and colorimeter. The results showed that the mechanical properties of the fabrics with the Ag NPs coating did not substantially change with treatment, but the fabrics became more yellowish. Overall, this research has notable application potential in the field of antibacterial fabrics.
Collapse
Affiliation(s)
- Xiao-Qian Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jia-Lei Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jie Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Chan Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ya-Qing Zhou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wen-Pu Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Huan Liang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wei-Hong Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
2
|
Song Y, Zhu J, Lv Y, Liu H, Kang L, Shen F, Zhang C, Jiang W, Yu J, Wu D. Temperature-Triggered Reversible Adhesion Hydrogel with Responsive Drug Release, Mild Photothermal Therapy, and Biofilm Clearance for Skin Infection Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19417-19435. [PMID: 40127465 DOI: 10.1021/acsami.4c22647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Bacterial infection gives rise to a hypoxic, H2O2-abundant, and acidic local microenvironment at the site of inflammation, which prevents the healing of skin tissues. In this work, gelatin and oxidized carboxymethyl cellulose were developed as the framework of hydrogels. Tannic acid and 3-formylphenylboronic acid served as small-molecule anchors. Through the introduction of multiple dynamic cross-linkings, the hydrogel was endowed with various functions. These functions encompassed mechanical compatibility with the skin, reversible adhesion characteristics, and rapid self-healing capabilities. In addition, nanoflower-like MnO2 microparticles loaded with berberine hydrochloride were embedded. MnO2 has the ability not only to kill bacteria through the photothermal effect (PTT) but also to catalyze the decomposition of H2O2 and release oxygen, effectively improving the inflammatory microenvironment. Remarkably, based on the drug/PTT synergistic strategy, the hydrogel exhibited significant antibacterial activity and biofilm removal ability under mild conditions (<50 °C), avoiding thermal damage to healthy tissues. Consequently, the hydrogels demonstrate favorable biocompatibility, significant cell proliferation, migration, angiogenesis, collagen deposition, and tissue regeneration. Therefore, the multifunctional antimicrobial hydrogel is expected to be a skin-friendly medical dressing with enormous potential in the treatment of skin and soft tissue infections.
Collapse
Affiliation(s)
- Yi Song
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jie Zhu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yujie Lv
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Hao Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Le Kang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Fang Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Chenggong Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wencheng Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Dequn Wu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
3
|
Chi X, Ding J, Zhang Y, Chen Y, Han Y, Lin Y, Jiang J. Berberine protects against dysentery by targeting both Shigella filamentous temperature sensitive protein Z and host pyroptosis: Resolving in vitro-vivo effect discrepancy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156517. [PMID: 39986228 DOI: 10.1016/j.phymed.2025.156517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/29/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Berberine (BBR), an isoquinoline alkaloid, has been applied clinically to treat dysentery caused by Shigella for decades. Nevertheless, the precise mechanisms behind its anti-Shigella effect have not been fully elucidated. PURPOSE This study aims to investigate the mechanism of BBR on antibacterial activity against S. flexneri infection. METHODS We initially reproduced the mouse model of Shigella flexneri-induced dysentery, and then, assessed the therapeutic effect of BBR. In vitro, we measured the inhibitory effect of BBR against S. flexneri and the GTPase activity of FtsZ (filamentous temperature sensitive protein Z) using the minimum inhibitory concentration (MIC) test and an enzyme activity assay to investigate the bacteria-directed mechanisms. Subsequently, we utilized both the in vivo mouse model of dysentery and the in vitro macrophage infection model with S. flexneri to explore the host-directed anti-Shigella mechanisms of BBR. The canonical pyroptosis pathway mediated by caspase-1 and mitochondrial damage were examined by Western blot, immunofluorescence and RNA interference analysis. RESULTS Administration of BBR alleviated the symptoms of dysentery induced by S. flexneri infection. In vitro, BBR could inhibit the growth of S. flexneri by targeting the GTPase activity of FtsZ, thereby affecting bacterial cell division. Additionally, our in vivo findings revealed that BBR suppressed macrophage pyroptosis by inhibiting the expression of caspase-1 and subsequently the mitochondrial damage, which in turn reduced the intestinal inflammation and tissue damage. CONCLUSIONS Our results provide a novel mechanism of BBR's action, which targets both the bacterium and the host to exert its antibacterial effects. Furthermore, it also provides an explanation for the discrepancy between BBR's relatively modest antibacterial efficacy in vitro and its enhanced antibacterial effects in vivo, thus, giving support to its clinical use.
Collapse
Affiliation(s)
- Xiangyin Chi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinwen Ding
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Wu Y, Xie X, Luo G, Xie J, Ye X, Gu W, Mo A, Qian Z, Zhou C, Liao J. Photothermal sensitive nanocomposite hydrogel for infectious bone defects. Bone Res 2025; 13:22. [PMID: 39952965 PMCID: PMC11828901 DOI: 10.1038/s41413-024-00377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 02/17/2025] Open
Abstract
Infectious bone defects represent a substantial challenge in clinical practice, necessitating the deployment of advanced therapeutic strategies. This study presents a treatment modality that merges a mild photothermal therapy hydrogel with a pulsed drug delivery mechanism. The system is predicated on a hydrogel matrix that is thermally responsive, characteristic of bone defect sites, facilitating controlled and site-specific drug release. The cornerstone of this system is the incorporation of mild photothermal nanoparticles, which are activated within the temperature range of 40-43 °C, thereby enhancing the precision and efficacy of drug delivery. Our findings demonstrate that the photothermal response significantly augments the localized delivery of therapeutic agents, mitigating systemic side effects and bolstering efficacy at the defect site. The synchronized pulsed release, cooperated with mild photothermal therapy, effectively addresses infection control, and promotes bone regeneration. This approach signifies a considerable advancement in the management of infectious bone defects, offering an effective and patient-centric alternative to traditional methods. Our research endeavors to extend its applicability to a wider spectrum of tissue regeneration scenarios, underscoring its transformative potential in the realm of regenerative medicine.
Collapse
Affiliation(s)
- Yanting Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xi Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Guowen Luo
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiuwen Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wanrong Gu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Xu X, He Y, Liu J. Berberine: A multifaceted agent for lung cancer treatment-from molecular insight to clinical applications. Gene 2025; 934:149021. [PMID: 39427827 DOI: 10.1016/j.gene.2024.149021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Lung cancer is a major cause of cancer-related deaths worldwide, and it poses a significant threat to global health due to its high incidence and mortality rates. There is an urgent need for better prevention, early detection, and effective treatments for this disease. The treatment options for lung cancer depend on various factors such as the stage of the disease, the type of cancer, and the patient's overall health. Currently, the primary treatment strategies include surgery, chemotherapy, radiation therapy, targeted therapy, immunotherapy, and combination therapies. Berberine, a natural alkaloid found in medicinal plants, has demonstrated potential as an effective anti-cancer agent against lung cancer. The present study aims to summarize the evidence supporting Berberine's ability to inhibit the growth of lung cancer cells, induce apoptosis, and slow down tumor growth in both laboratory and animal studies. The study also shed light on the complex molecular mechanisms involved in its anti-tumor effects, including its impact on signaling pathways, DNA repair systems, and interaction with non-coding RNAs, all of which contribute to tumor suppression. Additionally, the synergistic effects of Berberine with other natural compounds and chemotherapy drugs are discussed. Overall, its multifaceted approach and proven effectiveness justify further research to develop Berberine into a viable treatment option for lung cancer patients. Abbreviations: BBR, Berberine; EMT, epithelial-mesenchymal transition; NSCLC, non-small cell lung cancer; ROS, reactive oxygen species; ASK1, Apoptosis Signal-regulating Kinase 1; JNK, c-Jun N-terminal kinase; BHC, Berberine Hydrochloride; DSB, double-strand breaks; CSN, COP9 signalosome; NIR, near-infrared; LLC, Lewis lung carcinoma; RTK, receptor tyrosine kinase; B-Phyt-LCNs, Berberine-Phytantriol liquid crystalline nanoparticles; ER, endoplasmic reticulum; Ber-LCNs, Berberine-loaded liquid crystalline nanoparticles; BNS, Berberine nanostructure; BER-CS-NPs, Berberine-loaded chitosan nanoparticles; B-Phyt-LCNs, Berberine-Phytantriol liquid crystalline nanoparticles; B-Phyt-LCNs, Berberine-loaded liquid crystalline nanoparticles; Ber-LCNs, Berberine-loaded liquid crystalline nanoparticles; B-ZnO NPs, Berberine-loaded zinc oxide nanoparticles; B-C60, Berberine-C60 complex; LTP, Low-Temperature Plasma.
Collapse
Affiliation(s)
- Xiaodan Xu
- Pharmacy Department of Qishan Hospital in Yantai City, Yantai, Shandong 264000, China
| | - Yuanyuan He
- Pharmacy Department of Qishan Hospital in Yantai City, Yantai, Shandong 264000, China
| | - Jungang Liu
- Yicheng Traditional Chinese Medical Science Hospital, Shandong, Zaozhuang 277300, China.
| |
Collapse
|
6
|
Hu Y, Wang D, Zhang Y, Chen S, Yang X, Zhu R, Wang C. A novel polysaccharide from blueberry leaves: Extraction, structural characterization, hypolipidemic and hypoglycaemic potentials. Food Chem 2024; 460:140493. [PMID: 39053284 DOI: 10.1016/j.foodchem.2024.140493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
In this study, the structural characterization, physicochemical properties, antioxidant, hypolipidemic, and hypoglycemic potentials of polysaccharide components (BLP-1, BLP-2, and BLP-3) purified from blueberry leaf polysaccharides (BLP) were investigated. Ion chromatography results showed that BLP-1, BLP-2, and BLP-3 contained rhamnose, arabinose, galactose, glucose, and glucuronic acid. In contrast to BLP-1, BLP-2 and BLP-3 included galacturonic acid. The methylation analysis results indicated that the backbones of BLP-1, BLP-2, and BLP-3 were mainly composed of glycosidic linkages of arabinose, galactose, and glucose, which was consistent with the results of the previously determined monosaccharide composition. The in-vitro antioxidant results showed that BLP-1, BLP-2, and BLP-3 possessed antioxidant activity with the highest scavenging of -OH radicals. Furthermore, BLP-1, BLP-2, and BLP-3 showed high bile acid-binding activity and α-amylase inhibitory activity, suggesting that they have the potentials of hypolipidemic and hypoglycemic. This study provides a reference for the utilization of blueberry leaf resources.
Collapse
Affiliation(s)
- Yexian Hu
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Dongsheng Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yan Zhang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Siyun Chen
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Xiangmin Yang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Rongan Zhu
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Chuyan Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China; Key Laboratory of Berry Processing and Resource Comprehensive Utilization, Hefei University, Hefei 230601, PR China.
| |
Collapse
|
7
|
Tong J, Vo QNQ, He X, Liu H, Zhou H, Park CH. Physically crosslinked chitosan/αβ-glycerophosphate hydrogels enhanced by surface-modified cyclodextrin: An efficient strategy for controlled drug release. Int J Biol Macromol 2024; 283:137163. [PMID: 39510462 DOI: 10.1016/j.ijbiomac.2024.137163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
This study reports physically crosslinked chitosan/αβ-glycerophosphate (CS/GP) hydrogels containing surface-modified cyclodextrin for efficient controlled drug release. Highly water-soluble β-cyclodextrin-grafted L-serine (CD-g-Ser) compounds were synthesized, and employed as an effective carrier of berberine hydrochloride (Ber) for CS/GP hydrogels. Various characterizations, including gelation time determination, scanning electron microscopy, and viscosity measurement, indicated that the introduction of CD-g-Ser led to increased crosslinking degree, improved temperature sensitivity, and shortened sol-gel phase transition time of the hydrogel. Meanwhile, the sustained release ability for Ber was achieved due to the hydrophobic association between cyclodextrin and Ber. It was observed that within 4 h, the hydrogel containing CD-g-Ser released 40 % of Ber, while the CS/GP hydrogel without CD-g-Ser released 65 % of Ber. Furthermore, in vitro bacteriostasis experiments confirmed the drug-loaded hydrogel had an excellent antibacterial effect against E. coli and S. aureus (diameter of the inhibition zone up to (16.4 and 34.7) mm, respectively), low hemolysis rate (<2 %), and high cell viability (>90 %). The findings indicate that the physical crosslinked CS hydrogel can be used as a new drug delivery system, and its excellent antibacterial effect makes it a potential wound dressing candidate.
Collapse
Affiliation(s)
- Jianan Tong
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Quang Nhat Quynh Vo
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Xichan He
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Hongyu Liu
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Huiyun Zhou
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Mechanical Design Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Advanced Mechanical Components Design & Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
8
|
Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, Dos Santos MR, Pereira CM, Santos HA. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv Transl Res 2024; 14:2845-2916. [PMID: 39003425 PMCID: PMC11385056 DOI: 10.1007/s13346-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Several efforts have been extensively accomplished for the amelioration of the cancer treatments using different types of new drugs and less invasives therapies in comparison with the traditional therapeutic modalities, which are widely associated with numerous drawbacks, such as drug resistance, non-selectivity and high costs, restraining their clinical response. The application of natural compounds for the prevention and treatment of different cancer cells has attracted significant attention from the pharmaceuticals and scientific communities over the past decades. Although the use of nanotechnology in cancer therapy is still in the preliminary stages, the application of nanotherapeutics has demonstrated to decrease the various limitations related to the use of natural compounds, such as physical/chemical instability, poor aqueous solubility, and low bioavailability. Despite the nanotechnology has emerged as a promise to improve the bioavailability of the natural compounds, there are still limited clinical trials performed for their application with various challenges required for the pre-clinical and clinical trials, such as production at an industrial level, assurance of nanotherapeutics long-term stability, physiological barriers and safety and regulatory issues. This review highlights the most recent advances in the nanocarriers for natural compounds secreted from plants, bacteria, fungi, and marine organisms, as well as their role on cell signaling pathways for anticancer treatments. Additionally, the clinical status and the main challenges regarding the natural compounds loaded in nanocarriers for clinical applications were also discussed.
Collapse
Affiliation(s)
- Tatiana Andreani
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Centre & Inov4Agro, Department of Biology, Faculty of Sciences of University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Khalil Elbadri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Claudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Thacilla Menezes
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mayara R Dos Santos
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carlos M Pereira
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
9
|
Xu N, Wu J, Wang W, Sun S, Sun M, Bian Y, Zhang H, Liu S, Yu G. Anti-tumor therapy of glycyrrhetinic acid targeted liposome co-delivery of doxorubicin and berberine for hepatocellular carcinoma. Drug Deliv Transl Res 2024; 14:2386-2402. [PMID: 38236508 DOI: 10.1007/s13346-023-01512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/19/2024]
Abstract
During the development of hepatocellular carcinoma (HCC), hepatic stellate cells undergo activation and transform into cancer-associated fibroblasts (CAFs) due to the influence of tumor cells. The interaction between CAFs and tumor cells can compromise the effectiveness of chemotherapy drugs and promote tumor proliferation, invasion, and metastasis. This study explores the potential of glycyrrhetinic acid (GA)-modified liposomes (lip-GA) as a strategy for co-delivery of berberine (Ber) and doxorubicin (Dox) to treat HCC. The characterizations of liposomes, including particle size, zeta potential, polydispersity index, stability and in vitro drug release, were investigated. The study evaluated the anti-proliferation and anti-migration effects of Dox&Ber@lip-GA on the Huh-7 + LX-2 cell model were through MTT and wound-healing assays. Additionally, the in vivo drug distribution and anti-tumor efficacy were investigated using the H22 + NIH-3T3-bearing mouse model. The results indicated that Dox&Ber@lip-GA exhibited a nanoscale particle size, accumulated specifically in the tumor region, and was efficiently taken up by tumor cells. Compared to other groups, Dox&Ber@lip-GA demonstrated higher cytotoxicity and lower migration rates. Additionally, it significantly reduced the deposition of extracellular matrix (ECM) and inhibited tumor angiogenesis, thereby suppressing tumor growth. In conclusion, Dox&Ber@lip-GA exhibited superior anti-tumor effects both in vitro and in vivo, highlighting its potential as an effective therapeutic strategy for combating HCC.
Collapse
Affiliation(s)
- Na Xu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Jingliang Wu
- School of Nursing, Weifang University of Science and Technology, Weifang, China.
| | - Weihao Wang
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Shujie Sun
- School of Nursing, Weifang University of Science and Technology, Weifang, China
| | - Mengmeng Sun
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Yandong Bian
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Huien Zhang
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Shuzhen Liu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Guohua Yu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China.
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China.
| |
Collapse
|
10
|
Mangla B, Kumar P, Ahamad Z, Javed S, Ahsan W, Aggarwal G. Development and evaluation of berberine-loaded bigel for the treatment of hyperpigmentation on B16F10 melanoma cell line. Nanomedicine (Lond) 2024; 19:1659-1673. [PMID: 39056145 PMCID: PMC11389747 DOI: 10.1080/17435889.2024.2370759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Aim: The aim of this study was to optimize, develop, characterize and evaluate a topical nanobigel (BG) formulation containing Berberine (BRB) that exhibits anti-melanogenic properties.Materials & methods: The Berberine-loaded bigel (BRB@BG) formulation was prepared by homogenously mixing the optimized hydrogel and oleogel. BRB@BG was characterized in vitro and cytotoxicity study was conducted to evaluate its effects on murine skin melanoma B16F10 cell lines.Results: The optimized BRB@BG exhibited uniform texture with nanometric size, desirable spreadability and extrudability, suitable for topical applications. Cytotoxicity studies revealed that BRB@BG had a lower IC50 value (4.84 μg/ml) on B16F10 cell lines compared with drug alone.Conclusion: In conclusion, the developed BRB@BG formulation showed good potential as safe and effective topical treatment for hyperpigmentation.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Pankaj Kumar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Zuber Ahamad
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Geeta Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| |
Collapse
|
11
|
Liu Z, Liu W, Han M, Wang M, Li Y, Yao Y, Duan Y. A comprehensive review of natural product-derived compounds acting on P2X7R: The promising therapeutic drugs in disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155334. [PMID: 38554573 DOI: 10.1016/j.phymed.2023.155334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
BACKGROUND The P2X7 receptor (P2X7R) is known to play a significant role in regulating various pathological processes associated with immune regulation, neuroprotection, and inflammatory responses. It has emerged as a potential target for the treatment of diseases. In addition to chemically synthesized small molecule compounds, natural products have gained attention as an important source for discovering compounds that act on the P2X7R. PURPOSE To explore the research progress made in the field of natural product-derived compounds that act on the P2X7R. METHODS The methods employed in this review involved conducting a thorough search of databases, include PubMed, Web of Science and WIKTROP, to identify studies on natural product-derived compounds that interact with P2X7R. The selected studies were then analyzed to categorize the compounds based on their action on the receptor and to evaluate their therapeutic applications, chemical properties, and pharmacological actions. RESULTS The natural product-derived compounds acting on P2X7R can be classified into three categories: P2X7R antagonists, compounds inhibiting P2X7R expression, and compounds regulating the signaling pathway associated with P2X7R. Moreover, highlight the therapeutic applications, chemical properties and pharmacological actions of these compounds, and indicate areas that require further in-depth study. Finally, discuss the challenges of the natural products-derived compounds exploration, although utilizing compounds from natural products for new drug research offers unique advantages, problems related to solubility, content, and extraction processes still exist. CONCLUSION The detailed information in this review will facilitate further development of P2X7R antagonists and potential therapeutic strategies for P2X7R-associated disorders.
Collapse
Affiliation(s)
- Zhenling Liu
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wenjin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhu Wang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
12
|
Xiang G, Yang L, Qin J, Wang S, Zhang Y, Yang S. Revealing the potential bioactive components and mechanism of Qianhua Gout Capsules in the treatment of gouty arthritis through network pharmacology, molecular docking and pharmacodynamic study strategies. Heliyon 2024; 10:e30983. [PMID: 38770346 PMCID: PMC11103544 DOI: 10.1016/j.heliyon.2024.e30983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Recent clinical studies have confirmed the effectiveness of Qianhua Gout Capsules (QGC) in the treatment of gouty arthritis (GA). However, the specific regulatory targets and mechanisms of action of QGC are still unclear. To address this gap, we utilized network pharmacology, molecular docking, and pharmacodynamic approaches to investigate the bioactive components and associated mechanisms of QGC in the treatment of GA. By employing UPLC-Q Exactive-MS, we identified the compounds present in QGC, with active ingredients defined as those with oral bioavailability ≥30 % and drug similarity ≥0.18. Subsequently, the targets of these active compounds were determined using the TCMSP database, while GA-related targets were identified from DisGeNET, GeneCards, TTD, OMIM, and DrugBank databases. Further analysis including PPI analysis, GO analysis, and KEGG pathway enrichment was conducted on the targets. Validation of the predicted results was performed using a GA rat model, evaluating pathological changes, inflammatory markers, and pathway protein expression. Our results revealed a total of 130 components, 44 active components, 16 potential shared targets, GO-enriched terms, and 47 signaling pathways related to disease targets. Key active ingredients included quercetin, kaempferol, β-sitosterol, luteolin, and wogonin. The PPI analysis highlighted five targets (PPARG, IL-6, MMP-9, IL-1β, CXCL-8) with the highest connectivity, predominantly enriched in the IL-17 signaling pathway. Molecular docking experiments demonstrated strong binding of CXCL8, IL-1β, IL-6, MMP9, and PPARG targets with the top five active compounds. Furthermore, animal experiments confirmed the efficacy of QGC in treating GA in rats, showing reductions in TNF-α, IL-6, and MDA levels, and increases in SOD levels in serum. In synovial tissues, QGC treatment upregulated CXCL8 and PPARG expression, while downregulating IL-1β, MMP9, and IL-6 expression. In conclusion, this study applied a network pharmacology approach to uncover the composition of QGC, predict its pharmacological interactions, and demonstrate its in vivo efficacy, providing insights into the anti-GA mechanisms of QGC. These findings pave the way for future investigations into the therapeutic mechanisms underlying QGC's effectiveness in the treatment of GA.
Collapse
Affiliation(s)
- Gelin Xiang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Jing Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Gamini Rajapakse RM, Horrocks BR, Gunarathna HMNP, Malikaramage AU, Egodawele MGSAMEWDDK, Herath WHMRNK, Sandakelum L, Bandara VMYSU, Bowatta WVNS, Susanthi Jayasinghe JM, Seneviratne VN, Ranatunga U, Perera LLK, Dassanayake SM, Udawatte CP. Computational analysis and experimental verification of donor-acceptor behaviour of berberine, and its co-oligomers and co-polymers with ethylenedıoxythıophene. Sci Rep 2023; 13:20186. [PMID: 37980445 PMCID: PMC10657409 DOI: 10.1038/s41598-023-47541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023] Open
Abstract
The donor-acceptor (D-A) type of conjugated polymers has emerged as the paradigm of the third generation of electronically conducting polymers demonstrating improved infrared activity and intrinsic electronic conductivity. Judicious selection of donor (D) and acceptor (A) monomers for copolymerization can further fine-tune these properties. Notably, for such refinement, natural compounds provide many conjugated molecules with various functional groups. Berberine cation (Ber+) found in Coscinium fenestratum has extensive conjugation and contains both an electron deficient isoquinolium A moiety and electron-rich D-type methylenedioxy and methoxy groups. The incorporation of natural products in electronic materials is a novel area of research which opens a wide scope for future electronic and optoelectronic devices. Investigation of their fundamental properties via computer simulations is therefore important. In this study, quantum chemical calculations are performed using density functional theory (DFT) to investigate the electronic and optical properties of oligomers of Ber+ and 3,4-ethylenedioxythiophene (EDOT) and to explore the possibilities for homo-polymerization of Ber+ and its copolymerization with EDOT. It has been revealed that homo-polymerization is not favoured but copolymerization with EDOT is possible. As such, Ber+ was copolymerized with EDOT and the copolymers formed by electro-polymerization are extensively characterised and the D-A behaviour of the copolymers verified. Furthermore, the theoretical predictions have been compared with the experimental data.
Collapse
Affiliation(s)
- R M Gamini Rajapakse
- Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - Benjamin R Horrocks
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - H M N P Gunarathna
- Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - A U Malikaramage
- Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | | | - W H M R N K Herath
- Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Lahiru Sandakelum
- Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - V M Y S U Bandara
- Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - W V N S Bowatta
- Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | | | - V N Seneviratne
- Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Udayana Ranatunga
- Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - L L K Perera
- Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - S M Dassanayake
- Department of Decision Sciences, University of Moratuwa, Katubedda, Moratuwa, Sri Lanka
| | - Chandana P Udawatte
- Department of Physical Science and Technology, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| |
Collapse
|
14
|
Yang B, Wu X, Zeng J, Song J, Qi T, Yang Y, Liu D, Mo Y, He M, Feng L, Jia X. A Multi-Component Nano-Co-Delivery System Utilizing Astragalus Polysaccharides as Carriers for Improving Biopharmaceutical Properties of Astragalus Flavonoids. Int J Nanomedicine 2023; 18:6705-6724. [PMID: 38026532 PMCID: PMC10656867 DOI: 10.2147/ijn.s434196] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Enhancing the dissolution, permeation and absorption of active components with low solubility and poor permeability is crucial for maximizing therapeutic efficacy and optimizing functionality. The objective of this study is to investigate the potential of natural polysaccharides as carriers to improve the biopharmaceutical properties of active components. METHODS In this study, we employed four representative flavonoids in Astragali Radix, namely Calycosin-7-O-β-D-glucoside (CAG), Ononin (ON), Calycosin (CA) and Formononetin (FMN), as a demonstration to evaluate the potential of Astragalus polysaccharides (APS) as carriers to improve the biopharmaceutical properties, sush as solubility, permeability, and absorption in vivo. In addition, the microstructure of the flavonoids-APS complexes was characterized, and the interaction mechanism between APS and flavonoids was investigated using multispectral technique and molecular dynamics simulation. RESULTS The results showed that APS can self-assemble into aggregates with a porous structure and large surface area in aqueous solutions. These aggregates can be loaded with flavonoids through weak intermolecular interactions, such as hydrogen bonding, thereby improving their gastrointestinal stability, solubility, permeability and absorption in vivo. CONCLUSION We discovered the self-assembly properties of APS and its potential as carriers. Compared with introducing external excipients, the utilization of natural polysaccharides in plants as carriers may have a unique advantage in enhancing dissolution, permeation and absorption.
Collapse
Affiliation(s)
- Bing Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaochun Wu
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jinjing Song
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Tianhao Qi
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Dingkun Liu
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yulin Mo
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Miao He
- College of Pharmacy, Dali University, Dali, Yunnan, People’s Republic of China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| |
Collapse
|
15
|
Marques C, Fernandes MH, Lima SAC. Elucidating Berberine's Therapeutic and Photosensitizer Potential through Nanomedicine Tools. Pharmaceutics 2023; 15:2282. [PMID: 37765251 PMCID: PMC10535601 DOI: 10.3390/pharmaceutics15092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Berberine, an isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been gaining interest due to anti-inflammatory and antioxidant activities, as well as neuro and cardiovascular protective effects in animal models. Recently, photodynamic therapy demonstrated successful application in many fields of medicine. This innovative, non-invasive treatment modality requires a photosensitizer, light, and oxygen. In particular, the photosensitizer can selectively accumulate in diseased tissues without damaging healthy cells. Berberine's physicochemical properties allow its use as a photosensitising agent for photodynamic therapy, enabling reactive oxygen species production and thus potentiating treatment efficacy. However, berberine exhibits poor aqueous solubility, low oral bioavailability, poor cellular permeability, and poor gastrointestinal absorption that hamper its therapeutic and photodynamic efficacy. Nanotechnology has been used to minimize berberine's limitations with the design of drug delivery systems. Different nanoparticulate delivery systems for berberine have been used, as lipid-, inorganic- and polymeric-based nanoparticles. These berberine nanocarriers improve its therapeutic properties and photodynamic potential. More specifically, they extend its half-life, increase solubility, and allow a high permeation and targeted delivery. This review describes different nano strategies designed for berberine delivery as well as berberine's potential as a photosensitizer for photodynamic therapy. To benefit from berberine's overall potential, nanotechnology has been applied for berberine-mediated photodynamic therapy.
Collapse
Affiliation(s)
- Célia Marques
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, LAQV, REQUIMTE, U. Porto, 4200-393 Porto, Portugal
| | - Sofia A. Costa Lima
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Duan Y, Xu P, Ge P, Chen L, Chen Y, Kankala RK, Wang S, Chen A. NIR-responsive carrier-free nanoparticles based on berberine hydrochloride and indocyanine green for synergistic antibacterial therapy and promoting infected wound healing. Regen Biomater 2023; 10:rbad076. [PMID: 37808956 PMCID: PMC10558098 DOI: 10.1093/rb/rbad076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 10/10/2023] Open
Abstract
Bacterial infections cause severe health conditions, resulting in a significant economic burden for the public health system. Although natural phytochemicals are considered promising anti-bacterial agents, they suffer from several limitations, such as poor water solubility and low bioavailability in vivo, severely restricting their wide application. Herein, we constructed a near-infrared (NIR)-responsive carrier-free berberine hydrochloride (BH, phytochemicals)/indocyanine green (ICG, photosensitizer) nanoparticles (BI NPs) for synergistic antibacterial of an infected wound. Through electrostatic interaction and π-π stacking, the hydrophobic BH and amphiphilic ICG are initially self-assembled to generate carrier-free nanoparticles. The obtained BI NPs demonstrated NIR-responsive drug release behavior and better photothermal conversion efficiency of up to 36%. In addition, BI NPs stimulated by NIR laser exhibited remarkable antibacterial activity, which realized the synergistic antibacterial treatment and promoted infected wound healing. In summary, the current research results provided a candidate strategy for self-assembling new BI NPs to treat bacterial infections synergistically.
Collapse
Affiliation(s)
- Youyu Duan
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Panyuan Ge
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Linfei Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ying Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| |
Collapse
|
17
|
Lai ZZ, Shen HH, Lee YM. Inhibitory effect of β-escin on Zika virus infection through the interruption of viral binding, replication, and stability. Sci Rep 2023; 13:10014. [PMID: 37340032 DOI: 10.1038/s41598-023-36871-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
β-Escin is a mixture of triterpenoid saponins extracted from horse chestnut seeds that have diverse pharmacological activities, including anti-inflammation, anti-edematous, venotonic, and antiviral effects. In the clinical setting, β-escin is primarily used to treat venous insufficiency and blunt trauma injuries. The anti-Zika virus (ZIKV) activity of β-escin has not been explored. This study investigated the antiviral efficacy of β-escin on ZIKV and dengue virus (DENV) in vitro and then elucidated the underlying mechanism. The inhibitory effects of β-escin on viral RNA synthesis, protein levels, and infection ability were determined using qRT-PCR, Western blotting, and immunofluorescence assays, respectively. To further characterize how β-escin interferes with the viral life cycle, the time-of-addition experiment was performed. An inactivation assay was performed to determine whether β-escin affects ZIKV virion stability. To broaden these findings, the antiviral effects of β-escin on different DENV serotypes were assessed using dose-inhibition and time-of-addition assays. The results showed that β-escin exhibits anti-ZIKV activity by decreasing viral RNA levels, protein expression, progeny yield, and virion stability. β-Escin inhibited ZIKV infection by disrupting viral binding and replication. Furthermore, β-escin demonstrated antiviral activities against four DENV serotypes in a Vero cell model and prophylactic protection against ZIKV and DENV infections.
Collapse
Affiliation(s)
- Zheng-Zong Lai
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, 114, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, 114, Taiwan
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Hsin-Hsuen Shen
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yen-Mei Lee
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, 114, Taiwan.
| |
Collapse
|
18
|
Hu JJ, Yu XZ, Zhang SQ, Zhang YX, Chen XL, Long ZJ, Hu HZ, Xie DH, Zhang WH, Chen JX, Zhang Q. Hydrogel with ROS scavenging effect encapsulates BR@Zn-BTB nanoparticles for accelerating diabetic mice wound healing via multimodal therapy. iScience 2023; 26:106775. [PMID: 37213227 PMCID: PMC10196962 DOI: 10.1016/j.isci.2023.106775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
The strategies for eliminating excess reactive oxygen species (ROS) or suppressing inflammatory responses on the wound bed have proven effective for diabetic wound healing. In this work, a zinc-based nanoscale metal-organic framework (NMOF) functions as a carrier to deliver natural product berberine (BR) to form BR@Zn-BTB nanoparticles, which was, in turn, further encapsulated by hydrogel with ROS scavenging ability to yield a composite system of BR@Zn-BTB/Gel (denoted as BZ-Gel). The results show that BZ-Gel exhibited the controlled release of Zn2+ and BR in simulated physiological media to efficiently eliminated ROS and inhibited inflammation and resulted in a promising antibacterial effect. In vivo experiments further proved that BZ-Gel significantly inhibited the inflammatory response and enhanced collagen deposition, as well as to re-epithelialize the skin wound to ultimately promote wound healing in diabetic mice. Our results indicate that the ROS-responsive hydrogel coupled with BR@Zn-BTB synergistically promotes diabetic wound healing.
Collapse
Affiliation(s)
- Jing-Jing Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Xue-Zhao Yu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Shu-Qin Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Yu-Xuan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Xiao-Lin Chen
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Zhu-Jun Long
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Hua-Zhong Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Deng-Hui Xie
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
- Corresponding author
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510663, China
- Corresponding author
| |
Collapse
|
19
|
Secerli J, Adatepe Ş, Altuntas S, Topal GR, Erdem O, Bacanlı M. In vitro toxicity of naringin and berberine alone, and encapsulated within PMMA nanoparticles. Toxicol In Vitro 2023; 89:105580. [PMID: 36893932 DOI: 10.1016/j.tiv.2023.105580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Phytochemical compounds, such as naringin and berberine, have been used for many years due to their antioxidant activities, and consequently, beneficial health effects. In this study, it was aimed to evaluate the antioxidant properties of naringin, berberine and poly(methylmethacrylate) (PMMA) nanoparticles (NPs) encapsulated with naringin or berberine and their possible cytotoxic, genotoxic, and apoptotic effects on mouse fibroblast (NIH/3 T3) and colon cancer (Caco-2) cells. According to the results of the study, it was found that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition antioxidant activity of naringin, berberine, and naringin or berberine encapsulated PMMA NPs, was significantly increased at higher tested concentrations due to the antioxidant effects of naringin, berberine and naringin or berberine encapsulated PMMA NPs. As a result of the cytotoxicity assay, after 24-, 48- and 72-h of exposure, all of the studied compounds caused cytotoxic effects in both cell lines. Genotoxic effects of studied compounds were not registered at lower tested concentrations. Based on these data, polymeric nanoparticles encapsulated with naringin or berberine may contribute to new treatment approaches for cancer, but further in vivo and in vitro research is required.
Collapse
Affiliation(s)
- Jülide Secerli
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Türkiye
| | - Şeyma Adatepe
- Department of Pharmaceutical Technology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Türkiye
| | - Sevde Altuntas
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Türkiye; Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Türkiye
| | - Gizem Rüya Topal
- Department of Pharmaceutical Technology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Türkiye
| | - Onur Erdem
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Türkiye
| | - Merve Bacanlı
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Türkiye.
| |
Collapse
|
20
|
Wang T, Yang XC, Ding Y, Zhang YJ, Ru YQ, Tan JJ, Xu F, Gao WW, Xia YM. Cuprous oxide-demethyleneberberine nanospheres for single near-infrared light-triggered photoresponsive-enhanced enzymatic synergistic antibacterial therapy. J Mater Chem B 2023; 11:1760-1772. [PMID: 36723366 DOI: 10.1039/d2tb02594a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, novel cuprous oxide-demethyleneberberine (Cu2O-DMB) nanomaterials are successfully synthesized for photoresponsive-enhanced enzymatic synergistic antibacterial therapy under near-infrared (NIR) irradiation (808 nm). Cu2O-DMB has a spherical morphology with a smaller nanosize and positive ζ potential, can trap bacteria through electrostatic interactions resulting in a targeting function. Cu2O-DMB nanospheres show both oxidase-like and peroxidase-like activities, and serve as a self-cascade platform, which can deplete high concentrations of GSH to produce O2˙- and H2O2, then H2O2 is transformed into ˙OH, without introducing exogenous H2O2. At the same time, Cu2O-DMB nanospheres become photoresponsive, producing 1O2 and having an efficient photothermal conversion effect upon NIR irradiation. The proposed mechanism is that the generated ROS (O2˙-, ˙OH and 1O2) and hyperthermia can have synergetic effects for killing bacteria. Moreover, hyperthermia is not only beneficial for destroying bacteria, but also effectively enhances the efficiency of ˙OH production and accelerates GSH oxidation. Upon NIR irradiation, Cu2O-DMB nanospheres exhibit excellent antibacterial ability against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AREC) with low cytotoxicity and bare bacterial resistance, destroy the bacterial membrane causing an efflux of proteins and disrupt the bacterial biofilm formation. Animal experiments show that the Cu2O-DMB + NIR group can efficiently treat MRSA infection and promote wound healing. These results suggest that Cu2O-DMB nanospheres are effective materials for combating bacterial infections highly efficiently and to aid the development of photoresponsive enzymatic synergistic antibacterial therapy.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiao-Chan Yang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yong Ding
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yu-Jiao Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yu-Qing Ru
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Jia-Jun Tan
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Fang Xu
- Key laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Ya-Mu Xia
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
21
|
Nemattalab M, Rohani M, Evazalipour M, Hesari Z. Formulation of Cinnamon (Cinnamomum verum) oil loaded solid lipid nanoparticles and evaluation of its antibacterial activity against Multi-drug Resistant Escherichia coli. BMC Complement Med Ther 2022; 22:289. [PMID: 36352402 PMCID: PMC9647953 DOI: 10.1186/s12906-022-03775-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Today, the increment in microbial resistance has guided the researches focus into new antimicrobial compounds or transmission systems. Escherichia coli (E. coli) is an opportunistic pathogen, producing a biofilm responsible for a wide range of nosocomial infections which are often difficult to eradicate with available antibiotics. On the other hand, Cinnamomum verum (cinnamon oil) (CO) is widely used as a natural antibacterial agent and Solid lipid nanoparticles (SLNs) are promising carriers for antibacterial compounds due to their lipophilic nature and ease of transmission through the bacterial cell wall. In this study, nanoparticles containing cinnamon oil (CO-SLN) were prepared by dual emulsion method and evaluated in terms of particle size, shape, entrapment efficiency (EE), transmission electron microscopy (TEM), oil release kinetics, and cell compatibility. The antibacterial activity of CO-SLN and CO against 10 drug-resistant E. coli strains was investigated. The anti-biofilm activity of CO-SLN on the selected pathogen was also investigated. Nanoparticles with an average size of 337.6 nm, and zeta potential of -26.6 mV were fabricated and their round shape was confirmed by TEM images. The antibacterial effects of CO-SLN and CO were reported with MIC Value of 60–75 µg/mL and 155–165 µg/mL and MBC value of 220–235 µg/ml and 540–560 µg/ml, respectively. On the other hand, CO-SLN with 1/2 MIC concentration had the greatest inhibition of biofilm formation in 24 h of incubation (55.25%). The data presented indicate that the MIC of CO-SLN has significantly reduced and it seems that SLN has facilitated and promoted CO transmission through the cell membrane.
Collapse
|
22
|
Cazzaniga M, Zonzini GB, Di Pierro F, Moricoli S, Bertuccioli A. Gut Microbiota, Metabolic Disorders and Breast Cancer: Could Berberine Turn Out to Be a Transversal Nutraceutical Tool? A Narrative Analysis. Int J Mol Sci 2022; 23:12538. [PMID: 36293390 PMCID: PMC9604377 DOI: 10.3390/ijms232012538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Metabolic disorders, mainly characterized as the marked alteration of the lipid and carbohydrate profile, in addition to the clinical presence of the direct consequences of these alterations, are pathological conditions that have considerably increased in prevalence in recent years. They are directly linked to the onset of various pathologies, including cancer, particularly breast cancer, and are hormone-responsive. Alongside the known conditions responsible for this scenario, such as nutrition and lifestyle in general, the importance of both the colonic microbiota and the various organs and systems is becoming increasingly evident. In fact, it is now evident that microbial dysbiosis plays a fundamental role in the onset of these metabolic disorders, and therefore how these conditions are indirectly responsible for the onset and progression of neoplasms. Indirect mechanisms such as an altered Firmicutes/Bacteroidetes ratio; the formation of metabolites such as short-chain fatty acids (SCFAs), in particular, butyrate, which is capable of acting as a tumor suppressor; and the glucuronidase activity of estroboloma (bacteria responsible for estrogen metabolism) are just some of the most important mechanisms that contribute to the history of breast cancer. It is therefore understandable that in clinical terms, it is essential to associate the modulation of metabolic disorders and the microbial conditions that contribute to generating them with common therapies, preferably using compounds and solutions that are effective and acceptable for the patient without side effects. Nutraceuticals such as berberine (active both in metabolic scenarios and in the microbiota) and interventions modulating the microbial structure such as the use of probiotics and prebiotics seem to be ideal solutions for these preventive and no-longer-ignorable strategies in the light of numerous data now present in the literature.
Collapse
Affiliation(s)
| | | | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | | | - Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
23
|
Preparation, physicochemical characterization, and bioactivity evaluation of berberine-entrapped albumin nanoparticles. Sci Rep 2022; 12:17431. [PMID: 36261663 PMCID: PMC9581884 DOI: 10.1038/s41598-022-21568-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid with several clinical therapeutic applications. Its low water solubility, absorption, and cellular bioavailability diminish BBR's therapeutic efficacy. In this study, BBR was encapsulated into bovine serum albumin nanoparticles (BSA NPs) core to reduce BBR limitations and enhance its clinical therapeutic properties. Several physicochemical characterization tools, such as Dynamic Light Scattering and Ultraviolet-Visible spectroscopic measurements, field emission transmission electron microscopy surface morphology, Fourier transforms infrared spectroscopy, thermal stability analysis, and releasing studies, were used to evaluate the BBR-BSA NPs. Compared to BBR, BBR-BSA nanoparticles demonstrated superior free radical scavenging and antioxidant capacities, anti-hemolytic and anticoagulant efficacies, and antimicrobial activities, as demonstrated by the findings of the in vitro studies. Furthermore, a stressed pancreatic rat model was induced using a high-fat, high-sucrose diet plus carbon tetrachloride injection. The in vivo results revealed that BBR-BSA NPs substantially restored peripheral glucose metabolism and insulin sensitivity. Oral administration of BBR-BSA NPs also improved pancreatic β-cells homeostasis, upregulated pancreatic antioxidant mechanisms, inhibited oxidants generation, and attenuated oxidative injury in the stressed pancreatic tissues. In conclusion, our in vitro and in vivo results confirmed that BBR-BSA NPs demonstrated more potent antioxidant properties and restored pancreatic homeostasis compared to BBR.
Collapse
|
24
|
Zhu SC, Shi MZ, Yu YL, Liu XG, Cao J. Simultaneous capture of hydrophilic and hydrophobic compounds from complex plants by biosurfactant-assisted mechanical amorphous dispersion extraction. J Chromatogr A 2022; 1678:463356. [PMID: 35905684 DOI: 10.1016/j.chroma.2022.463356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
A biosurfactant-assisted mechanical amorphous dispersion extraction (BA-MADE) procedure was established for the simultaneous capture of hydrophilic phenolic acids and hydrophobic tanshinones from Salvia miltiorrhiza. Single-factor experiments and the response surface methodology were used to optimize and analyze the crucial parameters for the method, such as the type and amount of amorphous-dispersion extractants, grinding time, extraction time and solid-to-liquid ratio. The optimized parameter values for the BA-MADE process were 407.02 mg of sodium chenodeoxycholate, a grinding time of 4.87 min, an extraction time of 4.92 min, and a solid-to-liquid ratio of 0.5:10 g/mL. The calibration curves of danshensu, rosmarinic acid, lithospermic acid, salvianolic acid B, salvianolic acid A, dihydrotanshinone I, cryptotanshinone, tanshinone I, and tanshinone II A exhibited good linearity in the range of 1-500 μg/mL (R2 ≥ 0.9990). The limits of detection of nine analytes ranged from 5.46 to 130 ng/mL, the relative standard deviations (RSDs) of intraday and interday precision were less than 1.95 and 3.56%, respectively, and the recoveries of the real sample were in the range of 85-113%, with RSD% below 3.21%. The BA-MADE method was compared with previously reported methods, such as heating reflux extraction, ultrasonic extraction and microwave-assisted micellar extraction, and the results demonstrated that the developed method has significant advantages in the simultaneous extraction of hydrophilic and hydrophobic active components from Salvia miltiorrhiza.
Collapse
Affiliation(s)
- Si-Chen Zhu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Min-Zhen Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Ling Yu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xun-Gao Liu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
25
|
Xiong RG, Huang SY, Wu SX, Zhou DD, Yang ZJ, Saimaiti A, Zhao CN, Shang A, Zhang YJ, Gan RY, Li HB. Anticancer Effects and Mechanisms of Berberine from Medicinal Herbs: An Update Review. Molecules 2022; 27:4523. [PMID: 35889396 PMCID: PMC9316001 DOI: 10.3390/molecules27144523] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer has been a serious public health problem. Berberine is a famous natural compound from medicinal herbs and shows many bioactivities, such as antioxidant, anti-inflammatory, antidiabetic, anti-obesity, and antimicrobial activities. In addition, berberine shows anticancer effects on a variety of cancers, such as breast, lung, gastric, liver, colorectal, ovarian, cervical, and prostate cancers. The underlying mechanisms of action include inhibiting cancer cell proliferation, suppressing metastasis, inducing apoptosis, activating autophagy, regulating gut microbiota, and improving the effects of anticancer drugs. This paper summarizes effectiveness and mechanisms of berberine on different cancers and highlights the mechanisms of action. In addition, the nanotechnologies to improve bioavailability of berberine are included. Moreover, the side effects of berberine are also discussed. This paper is helpful for the prevention and treatment of cancers using berberine.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Zhi-Jun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Yun-Jian Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu 610213, China;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| |
Collapse
|
26
|
Chiang C, Yang H, Zhu L, Chen C, Chen C, Zuo Y, Zheng D. The Epigenetic Regulation of Nonhistone Proteins by SETD7: New Targets in Cancer. Front Genet 2022; 13:918509. [PMID: 35812730 PMCID: PMC9256981 DOI: 10.3389/fgene.2022.918509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Epigenetic modifications are essential mechanism by which to ensure cell homeostasis. One such modification is lysine methylation of nonhistone proteins by SETD7, a mono-methyltransferase containing SET domains. SETD7 methylates over 30 proteins and is thus involved in various classical pathways. As such, SETD7 has been implicated in both the basic functions of normal tissues but also in several pathologies, such as cancers. In this review, we summarize the current knowledge of SETD7 substrates, especially transcriptional-related proteins and enzymes, and their putative roles upon SETD7-mediated methylation. We focus on the role of SETD7 in cancers, and speculate on the possible points of intervention and areas for future research.
Collapse
Affiliation(s)
- Chengyao Chiang
- Southern University of Science and Technology, Yantian Hospital, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - Heng Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - Lizhi Zhu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - Chunlan Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - Cheng Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - You Zuo
- Southern University of Science and Technology, Yantian Hospital, Shenzhen, China
- *Correspondence: You Zuo, ; Duo Zheng,
| | - Duo Zheng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
- *Correspondence: You Zuo, ; Duo Zheng,
| |
Collapse
|