1
|
Zhao X, Xu D, Luo J. Efficacy of Bone Morphogenetic Protein-2 Peptide-Modified Nano-Hydroxyapatite Alginate Hydrogel in Vertebral Bone Defect Repair. J Craniofac Surg 2025:00001665-990000000-02421. [PMID: 39998867 DOI: 10.1097/scs.0000000000010996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/21/2024] [Indexed: 02/27/2025] Open
Abstract
For the effective treatment of vertebral bone defects (BDs), the authors constructed an innovative hydroxyapatite (HAP) nanoparticle-hyaluronic acid (HA)-alginate (ALG) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2). The particle size of HAP was around 80 to 100 nm, and its addition markedly reduced the swelling rate and degradability of the HA-ALG scaffold while enhancing its compression resistance, enabling it to better support the BD site and provide a good proliferation environment for osteoblasts. Furthermore, HAP-HA-ALG effectively extended the half-life of rhBMP-2 by nearly 50-fold, allowing it to exert its osteogenic effects more consistently. In cellular experiments, the authors found that rhBMP-2@HAP-HA-ALG significantly enhanced the activity and migration ability of bone marrow mesenchymal stromal cells, as well as the expression level of related osteogenic proteins in cells, which better exerted osteoinductive and osteoconductive functions. In animal tests, rhBMP-2@HAP-HA-ALG could better facilitate the generation of new bone and bone trabecula at BD sites and markedly enhance the bone density level, thus shortening the repair time of BDs. Therefore, rhBMP-2@HAP-HA-ALG shows great potential in the restoration of vertebral BDs.
Collapse
Affiliation(s)
- Xuchen Zhao
- Department of Orthopaedics, Ningbo No. 7 Hospital
| | - Dingli Xu
- Department of Orthopaedics, Ningbo No. 7 Hospital
| | - Jianguang Luo
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Bertolucci V, Ninomiya AF, Longato GB, Kaneko LO, Nonose N, Scariot PPM, Messias LHD. Bioactive Compounds from Propolis on Bone Homeostasis: A Narrative Review. Antioxidants (Basel) 2025; 14:81. [PMID: 39857415 PMCID: PMC11762496 DOI: 10.3390/antiox14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
This narrative review explores the potential effects of Propolis and its bioactive compounds on bone health. Propolis, a resinous product collected by bees, is renowned for its antimicrobial, anti-inflammatory, and antioxidant properties. Recent research emphasizes its positive role in osteogenesis, primarily through the modulation of osteoclast and osteoblast activity via molecular pathways. Key mechanisms include reducing inflammatory cytokines, protecting against oxidative stress, and upregulating growth factor essential for bone formation. While compounds such as Caffeic Acid Phenethyl Ester, Apigenin, Quercetin, and Ferulic Acid have been well-documented, emerging evidence points to the significant roles of less-studied compounds like Pinocembrin, Kaempferol, p-Coumaric acid, and Galangin. This review synthesizes the current literature, focusing on the mechanisms by which these bioactive compounds influence osteogenesis. Firstly, it explores the techniques for characterizing bioactive compounds presented in propolis, the chemogeographic variations in its composition, and the effects of both crude extracts and isolated compounds on bone tissue, offering a comprehensive analysis of recent findings across different experimental models. Further, it discusses the effects of Propolis compounds on bone health. In summary, these compounds modulate signaling pathways, including nuclear factor kappa beta, wingless-related integration site, mitogen-activated protein kinase, vascular endothelial growth factor, and reactive oxygen species. These pathways influence the receptor activator of nuclear factor kappa-β/receptor activator of nuclear factor kappa-β ligand/osteoprotegerin system, fostering bone cell differentiation. This regulation mitigates excessive osteoclast formation, stimulates osteoblast activity, and ultimately contributes to the restoration of bone homeostasis by maintaining a balanced bone remodeling process.
Collapse
Affiliation(s)
- Vanessa Bertolucci
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - André Felipe Ninomiya
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Giovanna Barbarini Longato
- Research Laboratory in Molecular Pharmacology of Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil;
| | - Luisa Oliveira Kaneko
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Nilson Nonose
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Pedro Paulo Menezes Scariot
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| |
Collapse
|
3
|
Jafarbeglou M, Meimandi-Parizi A, Derakhshandeh A, Khodakaram-Tafti A, Bigham-Sadegh A, Arkan P, Jafarbeglou M. Silk fibroin/chitosan thiourea hydrogel scaffold with vancomycin and quercetin-loaded PLGA nanoparticles for treating chronic MRSA osteomyelitis in rats. Int J Pharm 2024; 666:124826. [PMID: 39401582 DOI: 10.1016/j.ijpharm.2024.124826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Chronic osteomyelitis presents significant treatment challenges, necessitating an efficient system for infection elimination and bone repair. This study developed a natural hydrogel scaffold using silk fibroin (SF) and chitosan thiourea (CST), incorporating vancomycin (VC) and quercetin (QC) loaded PLGA nanoparticles (NPs) for dual-purpose treatment. SF/CST hydrogel scaffolds exhibited homogeneous porosity and smaller interconnected pore size than pure SF and pure CST hydrogel scaffolds. Optimal PLGA/QC NPs measured 206 nm in size, displayed spherical morphology, had uniform distribution, and achieved 87 % QC loading. The release study showed sustained long-term release of VC and QC from the hydrogel scaffolds for over 20 days. Biocompatibility tests indicated that hydrogel scaffolds promoted osteoblast adhesion without cytotoxicity, with QC-containing scaffolds enhancing osteoblast growth. Antibacterial tests confirmed retained VC activity against methicillin-resistant Staphylococcus aureus (MRSA) in SF/CST. An experimental study assessed the efficacy of the hydrogel scaffolds in a MRSA-infected rat osteomyelitis model. Radiographic scores demonstrated a significant reduction for SF/CST-VC-PLGA/QC NPs compared to control, indicating reduced osteomyelitis effects. Macroscopic evaluations showed notable reductions in gross pathological effects for VC-containing groups. Histopathological assessments revealed significantly lower osteomyelitis scores and higher healing scores in the SF/CST-VC-PLGA/QC NPs, with reduced inflammatory cell infiltration and more organized connective tissue formation. In conclusion, SF/CST-VC-PLGA/QC NPs is an effective dual drug delivery system for osteomyelitis treatment, demonstrating significant antibacterial activity, enhanced bone regeneration, and reduced infection rate.
Collapse
Affiliation(s)
- Majid Jafarbeglou
- Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Abdolhamid Meimandi-Parizi
- Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Abdollah Derakhshandeh
- Division of Microbiology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Azizollah Khodakaram-Tafti
- Division of Pathology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Bigham-Sadegh
- Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Maryam Jafarbeglou
- Department of Nanotechnology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
4
|
Feng Y, Dang X, Zheng P, Liu Y, Liu D, Che Z, Yao J, Lin Z, Liao Z, Nie X, Liu F, Zhang Y. Quercetin in Osteoporosis Treatment: A Comprehensive Review of Its Mechanisms and Therapeutic Potential. Curr Osteoporos Rep 2024; 22:353-365. [PMID: 38652430 DOI: 10.1007/s11914-024-00868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide a theoretical basis and insights for quercetin's clinical application in the prevention and treatment of osteoporosis (OP), analyzing its roles in bone formation promotion, bone resorption inhibition, anti-inflammation, antioxidant effects, and potential mechanisms. RECENT FINDINGS OP, a prevalent bone disorder, is marked by reduced bone mineral density and impaired bone architecture, elevating the risk of fractures in patients. The primary approach to OP management is pharmacotherapy, with quercetin, a phytochemical compound, emerging as a focus of recent interest. This natural flavonoid exerts regulatory effects on bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts and promotes bone health and metabolic equilibrium via anti-inflammatory and antioxidative pathways. Although quercetin has demonstrated significant potential in regulating bone metabolism, there is a need for further high-quality clinical studies focused on medicinal quercetin.
Collapse
Affiliation(s)
- Yanchen Feng
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pan Zheng
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yali Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhiying Che
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jianping Yao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zixuan Lin
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xingyuan Nie
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Feixiang Liu
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China.
| | - Yunke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, 450003, China.
| |
Collapse
|
5
|
Huiwen W, Shuai L, Jia X, Shihao D, Kun W, Runhuai Y, Haisheng Q, Jun L. 3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects. J Biol Eng 2024; 18:22. [PMID: 38515148 PMCID: PMC10956317 DOI: 10.1186/s13036-024-00416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
The repair of bone defects remains a major challenge in the clinic, and treatment requires bone grafts or bone replacement materials. Existing biomaterials have many limitations and cannot meet the various needs of clinical applications. To treat bone defects, we constructed a nanohydroxyapatite (nHA)/methylacrylylated silk fibroin (MASF) composite biological scaffold using photocurable 3D printing technology. In this study, scanning electron microscopy (SEM) was used to detect the changes in the morphological structure of the composite scaffold with different contents of nanohydroxyapatite, and FTIR was used to detect the functional groups and chemical bonds in the composite scaffold to determine the specific components of the scaffold. In in vitro experiments, bone marrow mesenchymal stem cells from SD rats were cocultured with scaffolds soaking solution, and the cytotoxicity, cell proliferation, Western blot analysis, Quantitative real-time PCR analysis, bone alkaline phosphatase activity and alizarin red staining of scaffolds were detected to determine the biocompatibility of scaffolds and the effect of promoting proliferation and osteogenesis of bone marrow mesenchymal stem cells in vitro. In the in vivo experiment, the skull defect was constructed by adult SD rats, and the scaffold was implanted into the skull defect site. After 4 weeks and 8 weeks of culture, the specific osteogenic effect of the scaffold in the skull defect site was detected by animal micro-CT, hematoxylin and eosin (HE) staining and Masson's staining. Through the analysis of the morphological structure of the scaffold, we found that the frame supported good retention of the lamellar structure of silk fibroin, when mixed with nHA, the surface of the stent was rougher, the cell contact area increased, and cell adhesion and lamellar microstructure for cell migration and proliferation of the microenvironment provided a better space. FTIR results showed that the scaffold completely retained the β -folded structure of silk fibroin, and the scaffold composite was present without obvious impurities. The staining results of live/dead cells showed that the constructed scaffolds had no significant cytotoxicity, and thw CCK-8 assay also showed that the constructed scaffolds had good biocompatibility. The results of osteogenic induction showed that the scaffold had good osteogenic induction ability. Moreover, the results also showed that the scaffold with a MASF: nHA ratio of 1: 0.5 (SFH) showed better osteogenic ability. The micro-CT and bone histometric results were consistent with the in vitro results after stent implantation, and there was more bone formation at the bone defect site in the SFH group.This research used photocurable 3D printing technology to successfully build an osteogenesis bracket. The results show that the constructed nHA/MASF biological composite material, has good biocompatibility and good osteogenesis function. At the same time, in the microenvironment, the material can also promote bone defect repair and can potentially be used as a bone defect filling material for bone regeneration applications.
Collapse
Affiliation(s)
- Wu Huiwen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Liang Shuai
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xie Jia
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Deng Shihao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wei Kun
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yang Runhuai
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Qian Haisheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Li Jun
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
6
|
Gao W, Cheng T, Tang Z, Zhang W, Xu Y, Han M, Zhou G, Tao C, Xu N, Xia H, Sun W. Enhancing cartilage regeneration and repair through bioactive and biomechanical modification of 3D acellular dermal matrix. Regen Biomater 2024; 11:rbae010. [PMID: 38414795 PMCID: PMC10898337 DOI: 10.1093/rb/rbae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 02/29/2024] Open
Abstract
Acellular dermal matrix (ADM) shows promise for cartilage regeneration and repair. However, an effective decellularization technique that removes cellular components while preserving the extracellular matrix, the transformation of 2D-ADM into a suitable 3D scaffold with porosity and the enhancement of bioactive and biomechanical properties in the 3D-ADM scaffold are yet to be fully addressed. In this study, we present an innovative decellularization method involving 0.125% trypsin and 0.5% SDS and a 1% Triton X-100 solution for preparing ADM and converting 2D-ADM into 3D-ADM scaffolds. These scaffolds exhibit favorable physicochemical properties, exceptional biocompatibility and significant potential for driving cartilage regeneration in vitro and in vivo. To further enhance the cartilage regeneration potential of 3D-ADM scaffolds, we incorporated porcine-derived small intestinal submucosa (SIS) for bioactivity and calcium sulfate hemihydrate (CSH) for biomechanical reinforcement. The resulting 3D-ADM+SIS scaffolds displayed heightened biological activity, while the 3D-ADM+CSH scaffolds notably bolstered biomechanical strength. Both scaffold types showed promise for cartilage regeneration and repair in vitro and in vivo, with considerable improvements observed in repairing cartilage defects within a rabbit articular cartilage model. In summary, this research introduces a versatile 3D-ADM scaffold with customizable bioactive and biomechanical properties, poised to revolutionize the field of cartilage regeneration.
Collapse
Affiliation(s)
- Wei Gao
- Qingdao Medical College of Qingdao University, Qingdao, 266071, China
| | - Tan Cheng
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
| | - Zhengya Tang
- Department of Plastic surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Wenqiang Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University, Jinan, 266299, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Min Han
- Department of Orthopedic Surgery, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Guangdong Zhou
- Department of Plastic surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Chunsheng Tao
- Department of Orthopaedics, Ninety-seventh Hospital of the Chinese People's Liberation Army Navy, Qingdao, 266071, China
| | - Ning Xu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Orthopedic Surgery, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Huitang Xia
- Department of Plastic Surgery & Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University, Jinan, 266299, China
| | - Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Shushan, Hefei, 230022, China
| |
Collapse
|
7
|
Shabir I, Kumar Pandey V, Shams R, Dar AH, Dash KK, Khan SA, Bashir I, Jeevarathinam G, Rusu AV, Esatbeyoglu T, Pandiselvam R. Promising bioactive properties of quercetin for potential food applications and health benefits: A review. Front Nutr 2022; 9:999752. [PMID: 36532555 PMCID: PMC9748429 DOI: 10.3389/fnut.2022.999752] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 07/22/2023] Open
Abstract
Naturally occurring phytochemicals with promising biological properties are quercetin and its derivatives. Quercetin has been thoroughly studied for its antidiabetic, antibacterial, anti-inflammatory, anti-Alzheimer's, anti-arthritic, antioxidant, cardiovascular, and wound-healing properties. Anticancer activity of quercetin against cancer cell lines has also recently been revealed. The majority of the Western diet contains quercetin and its derivatives, therefore consuming them as part of a meal or as a food supplement may be sufficient for people to take advantage of their preventive effects. Bioavailability-based drug-delivery systems of quercetin have been heavily studied. Fruits, seeds, vegetables, bracken fern, coffee, tea, and other plants all contain quercetin, as do natural colors. One naturally occurring antioxidant is quercetin, whose anticancer effects have been discussed in detail. It has several properties that could make it an effective anti-cancer agent. Numerous researches have shown that quercetin plays a substantial part in the suppression of cancer cells in the breast, colon, prostate, ovary, endometrial, and lung tumors. The current study includes a concise explanation of quercetin's action mechanism and potential health applications.
Collapse
Affiliation(s)
- Irtiqa Shabir
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Pulwama, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, Uttar Pradesh, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Pulwama, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Pulwama, India
| | - Iqra Bashir
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Kashmir, India
| | - G. Jeevarathinam
- Department of Food Technology, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - R. Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala, India
| |
Collapse
|
8
|
Jeong CH, Kim J, Kim HS, Lim SY, Han D, Huser AJ, Lee SB, Gim Y, Ji JH, Kim D, Aldosari AM, Yun K, Kwak YH. Acceleration of bone formation by octacalcium phosphate composite in a rat tibia critical-sized defect. J Orthop Translat 2022; 37:100-112. [PMID: 36262961 PMCID: PMC9574596 DOI: 10.1016/j.jot.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background The osteogenic capabilities and biodegradability of octacalcium phosphate (OCP) composites make them unique. Despite the excellent characteristics of OCP, their use is limited due to handling difficulties. In this study, we aimed to evaluate and compare three types of OCPs (cemented OCP (C-OCP), C-OCP with collagen (OCP/Col), and synthetic OCP (S-OCP) with alginate (OCP/Alg)) versus commercially available β-tricalcium phosphate (β-TCP) regarding their potential to accelerate bone formation in defective rat tibias. Methods The specimens with OCP composite were manufactured into 5 mm cubes and inserted into the segmental defects of rat tibias fixed with an external fixator. In addition, 3 mm-hole defects in rat tibias were evaluated to compare the graft material properties in different clinical situations. Serial X-ray studies were evaluated weekly and the tibias were harvested at postoperative 6 weeks or 8 weeks for radiologic evaluation. Histological and histomorphometric analyses were performed to evaluate the acceleration of bone formation. Results In the critical-defect model, OCP/Alg showed bone bridges between segmentally resected bone ends that were comparable to those of β-TCP. However, differences were observed in the residual graft materials. Most β-TCP was maintained until 8 weeks postoperatively; however, OCP/Alg was more biodegradable. In addition calcification in the β-TCP occurred at the directly contacted area between graft particles and bony ingrowth was observed in the region adjacent resected surface of tibia. In contrast, no direct bony ingrowth was observed in OCP-based materials, but osteogenesis induced from resected surface of tibia was more active. In the hole-defect model, OCP/Col accelerated bone formation. β-TCP and OCP/Alg showed similar patterns with relatively higher biodegradability. In histology, among the OCP-based materials, directly contacted new bone was formed only in OCP/Alg group. The new bone formation in the periphery area of graft materials was much more active in the OCP-based materials, and the newly formed bone showed a thicker trabecular and more mature appearance than the β-TCP group. Conclusions In this study, OCP/Alg was equivalent to β-TCP in the acceleration of bone formation with better biodegradability appropriate for clinical situations in different circumstances. Our OCP/Col composite showed fast degradation, which makes it unsuitable for use in mechanical stress conditions in clinical orthopedic settings. The Translational Potential of this Article In our research, we compared our various manufactured OCP composites to commercially available β-TCP in critical-defect rat tibia model. OCP/Col showed acceleration in hole-defect model as previous studies in dental field but in our critical-sized defect model it resorbed fast without acceleration of bony union. OCP/Alg showed matched results compared to β-TCP and relatively fast resorption so we showed market value in special clinical indication depending on treatment strategy. This is the first OCP composite study in orthopaedics with animal critical-sized tibia bone study and further study should be considered for clinical application based on this study.
Collapse
Affiliation(s)
- Cheol-Hee Jeong
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jooseong Kim
- Department of Biomedical Engineering, Yeungnam University, Daegu, Republic of Korea.,HudensBio Co., Ltd., Gwangju, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Song-Yi Lim
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, South Korea
| | - Dawool Han
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Aaron J Huser
- Paley Advanced Limb Lengthening Institutute, St. Mary's Hospital, West Palm Beach, FL, USA
| | - Sang Bae Lee
- Center for Testing and Evaluation of Dental Biomaterials, Ministry of Food and Drug Safety Recognition Laboratory, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yeonji Gim
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, South Korea
| | - Jeong Hyun Ji
- Department of Laboratory Animal Resources, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Dohun Kim
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, South Korea
| | - Amaal M Aldosari
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, South Korea.,Department of Orthopedic Surgery, Al Noor Specialist Hospital, Makkah, Saudi Arabia
| | - Kyelim Yun
- HudensBio Co., Ltd., Gwangju, Republic of Korea
| | - Yoon Hae Kwak
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Liu S, Fu H, Lv Y, Jiao J, Guo R, Yang Y, Dong W, Mi H, Wang M, Liu M, Li R. α-Hemihydrate calcium sulfate/n-hydroxyapatite combined with metformin promotes osteogenesis in vitro and in vivo. Front Bioeng Biotechnol 2022; 10:899157. [PMID: 36246380 PMCID: PMC9563001 DOI: 10.3389/fbioe.2022.899157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to examine the effects of loading different concentrations of metformin onto an α-hemihydrate calcium sulfate/nano-hydroxyapatite (α-CSH/nHA) composite. The material characteristics, biocompatibility, and bone formation were compared as functions of the metformin concentration. X-ray diffraction results indicated that the metformin loading had little influence on the phase composition of the composite. The hemolytic potential of the composite was found to be low, and a CCK-8 assay revealed only weak cytotoxicity. However, the metformin-loaded composite was found to enhance the osteogenic ability of MC3T3-E1 cells, as revealed by alkaline phosphate and alizarin red staining, real-time PCR, and western blotting, and the optimal amount was 500 µM. RNA sequencing results also showed that the composite material increased the expression of osteogenic-related genes. Cranial bone lacks muscle tissue, and the low blood supply leads to poor bone regeneration. As most mammalian cranial and maxillofacial bones are membranous and of similar embryonic origin, the rat cranial defect model has become an ideal animal model for in vivo experiments in bone tissue engineering. Thus, we introduced a rat cranial defect with a diameter of 5 mm as an experimental defect model. Micro-computed tomography, hematoxylin and eosin staining, Masson staining, and immunohistochemical staining were used to determine the effectiveness of the composite as a scaffold in a rat skull defect model. The composite material loaded with 500 µM of metformin had the strongest osteoinduction ability under these conditions. These results are promising for the development of new methods for repairing craniofacial bone defects.
Collapse
Affiliation(s)
- Sirui Liu
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Haojie Fu
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Lv
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jing Jiao
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runying Guo
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou, Zhengzhou, Henan, China
| | - Wenhang Dong
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyan Mi
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meiyue Wang
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mengzhe Liu
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Li
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Rui Li,
| |
Collapse
|
10
|
Wu Y, Liu Y, Xu Y, Zheng A, Du J, Cao L, Shi J, Jiang X. Bioactive natural compounds as potential medications for osteogenic effects in a molecular docking approach. Front Pharmacol 2022; 13:955983. [PMID: 36091759 PMCID: PMC9449150 DOI: 10.3389/fphar.2022.955983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Bone defect repair and fracture healing are critical challenges in clinical treatments. Bioactive natural compounds are potential resources for medications for osteogenic effects. We have identified icariin, the effective ingredient of Epimedium pubescens, to promote osteogenic differentiation of bone mesenchymal stem cells (BMSCs) and repair bone defects. To explore more natural compounds with the potential modality for bone repair, in the present study, we employed an icariin-induced gene expression pattern as an osteogenic model and screened the Connectivity Map database for small molecules with gene expression signatures similar to this model. We verified the effectiveness of this molecule docking approach by introducing hydroxycholesterol, the second highest score of the similarity to icariin, into the osteoinductive experiments in vitro and demonstrated its excellent osteogenic effect on BMSCs compared with a BMP-2-positive control group. Based on the compatible result of hydroxycholesterol, subsequently, ginsenoside Rb1 was chosen as the most drug-like natural compound among the molecule docking results from icariin. Finally, ginsenoside Rb1 was demonstrated to promote the expression of osteoblastic genes and ALP activity in vitro and repair the calvarial defect of rats in vivo. The study aimed to provide diverse choices for clinical application in bone repair and functional regeneration.
Collapse
Affiliation(s)
- Yuqiong Wu
- Department of Prosthodontics, Shanghai Ninth People’ s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Yulan Liu
- Department of Prosthodontics, Shanghai Ninth People’ s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Yuanjin Xu
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Zheng
- Department of Prosthodontics, Shanghai Ninth People’ s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Jiahui Du
- Department of Prosthodontics, Shanghai Ninth People’ s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Lingyan Cao
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Junfeng Shi
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
- *Correspondence: Junfeng Shi, ; Xinquan Jiang,
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People’ s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
- *Correspondence: Junfeng Shi, ; Xinquan Jiang,
| |
Collapse
|
11
|
Improved osteogenic differentiation by extremely low electromagnetic field exposure: possible application for bone engineering. Histochem Cell Biol 2022; 158:369-381. [PMID: 35751679 PMCID: PMC9512759 DOI: 10.1007/s00418-022-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/21/2022]
Abstract
Human periodontal ligament mesenchymal stem cells (hPDLSCs) are a promising cell type model for regenerative medicine applications due to their anti-inflammatory, immunomodulatory and non-tumorigenic potentials. Extremely low-frequency electromagnetic fields (ELF-EMF) are reported to affect biological properties such as cell proliferation and differentiation and modulate gene expression profile. In this study, we investigated the effects of an intermittent ELF-EMF exposure (6 h/day) for the standard differentiation period (28 days) and for 10 days in hPDLSCs in the presence or not of osteogenic differentiation medium (OM). We evaluated cell proliferation, de novo calcium deposition and osteogenic differentiation marker expression in sham and ELF-EMF-exposed cells. After ELF-EMF exposure, compared with sham-exposed, an increase in cell proliferation rate (p < 0.001) and de novo calcium deposition (p < 0.001) was observed after 10 days of exposure. Real-time PCR and Western blot results showed that COL1A1 and RUNX-2 gene expression and COL1A1, RUNX-2 and OPN protein expression were upregulated respectively in the cells exposed to ELF-EMF exposure along with or without OM for 10 days. Altogether, these results suggested that the promotion of osteogenic differentiation is more efficient in ELF-EMF-exposed hPDLSCs. Moreover, our analyses indicated that there is an early induction of hPDLSC differentiation after ELF-EMF application.
Collapse
|