1
|
Agyeman-Prempeh NO, Maas H, Burchell GL, Millar NL, Moen MH, Smit TH. Treatment options for Achilles tendinopathy: a scoping review of preclinical studies. PeerJ 2025; 13:e18143. [PMID: 39807157 PMCID: PMC11727660 DOI: 10.7717/peerj.18143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 01/16/2025] Open
Abstract
Background Achilles tendinopathy (AT) management can be difficult, given the paucity of effective treatment options and the degenerative nature of the condition. Innovative therapies for Achilles tendinopathy are therefore direly needed. New therapeutic developments predominantly begin with preclinical animal and in vitro studies to understand the effects at the molecular level and to evaluate toxicity. Despite the publication of many preclinical studies, a comprehensive, quality-assessed review of the basic molecular mechanisms in Achilles tendinopathy is lacking. Objectives This scoping review aims to summarize the literature regarding in vitro and in vivo animal studies examining AT treatments and evaluate their effect on tendon properties. Also, a quality assessment of the included animal studies is done. We provide a comprehensive insight into the current state of preclinical AT treatment research which may guide preclinical researchers in future research. Eligibility criteria Treatment options of Achilles tendinopathy in chemically or mechanically induced in vivo or in vitro Achilles tendinopathy models, reporting biomechanical, histological, and/or biochemical outcomes were included. Sources of evidence A systematically conducted scoping review was performed in PubMed, Embase.com, Clarivate Analytics/Web of Science, and the Wiley/Cochrane Library. Studies up to May 4, 2023 were included. Charting Methods Data from the included articles were extracted and categorized inductively in tables by one reviewer. The risk-of-bias quality assessment of the included animal studies is done with Systematic Review Centre for Laboratory Animal Experimentation risk-of-bias tool. Results A total of 98 studies is included, which investigated 65 different treatment options. 80% of studies reported significant improvement in the Achilles tendon characteristics after treatment. The main results were; maximum load and stiffness improvement; fibre structure recovered and less inflammation was observed; collagen I fibrils increased, collagen III fibrils decreased, and fewer inflammatory cells were observed after treatment. However, 65.4% to 92.5% of the studies had an uncertain to high risk of bias according to the risk-of-bias tool of the Systematic Review Centre for Laboratory Animal Experimentation. Conclusions Despite promising preclinical treatment outcomes, translation to clinical practice lags behind. This may be due to the poor face validity of animal models, heterogeneity in Achilles tendinopathy induction, and low quality of the included studies. Preclinical treatments that improved the biomechanical, histological, and biochemical tendon properties may be interesting for clinical trial investigation. Future efforts should focus on developing standardized preclinical Achilles tendinopathy models, improving reporting standards to minimize risk of bias, and facilitating translation to clinical practice.
Collapse
Affiliation(s)
- Nathanael Opoku Agyeman-Prempeh
- University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department Orthopedic Surgery and Sports Medicine, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Huub Maas
- Amsterdam Movement Sciences, Amsterdam, Netherlands
- VU University Amsterdam, Amsterdam, Noord-Holland, Netherlands
| | | | - Neal L. Millar
- University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Maarten H. Moen
- Department of Sports Medicine, Bergman Clinics, Naarden, the Netherlands, Unaffliated, Naarden, Netherlands
- High-Performance Team, Dutch National Olympic Committee & National Sports Federation, Arnhem, Netherlands
| | - Theodoor Henri Smit
- University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department Orthopedic Surgery and Sports Medicine, Amsterdam University Medical Centre, Amsterdam, Netherlands
- VU University Amsterdam, Amsterdam, Noord-Holland, Netherlands
| |
Collapse
|
2
|
Li Z, Tan G, Xie H, Lu S. The Application of Regenerated Silk Fibroin in Tissue Repair. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3924. [PMID: 39203101 PMCID: PMC11355482 DOI: 10.3390/ma17163924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
Silk fibroin (SF) extracted from silk is non-toxic and has excellent biocompatibility and biodegradability, making it an excellent biomedical material. SF-based soft materials, including porous scaffolds and hydrogels, play an important role in accurately delivering drugs to wounds, creating microenvironments for the adhesion and proliferation of support cells, and in tissue remodeling, repair, and wound healing. This article focuses on the study of SF protein-based soft materials, summarizing their preparation methods and basic applications, as well as their regenerative effects, such as drug delivery carriers in various aspects of tissue engineering such as bone, blood vessels, nerves, and skin in recent years, as well as their promoting effects on wound healing and repair processes. The authors expect SF soft materials to play an important role in the field of tissue repair.
Collapse
Affiliation(s)
| | | | | | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.L.); (G.T.); (H.X.)
| |
Collapse
|
3
|
Tian Z, Zhao C, Huang T, Yu L, Sun Y, Tao Y, Cao Y, Du R, Lin W, Zeng J. Silkworm Cocoon: Dual Functions as a Traditional Chinese Medicine and the Raw Material of Promising Biocompatible Carriers. Pharmaceuticals (Basel) 2024; 17:817. [PMID: 39065668 PMCID: PMC11279987 DOI: 10.3390/ph17070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The silkworm cocoon (SC), both as a traditional Chinese medicine and as the raw material for biocompatible carriers, has been extensively used in the medical and biomedical fields. This review elaborates on the multiple functions of SC, with an in-depth analysis of its chemical composition, biological activities, as well as its applications in modern medicine. The primary chemical components of SC include silk fibroin (SF), silk sericin (SS), and other flavonoid-like bioactive compounds demonstrating various biological effects. These include hypoglycemic, cardioprotective, hypolipidemic, anti-inflammatory, antioxidant, and antimicrobial actions, which highlight its potential therapeutic benefits. Furthermore, the review explores the applications of silk-derived materials in drug delivery systems, tissue engineering, regenerative medicine, and in vitro diagnostics. It also highlights the progression of SC from laboratory research to clinical trials, emphasizing the safety and efficacy of SC-based materials across multiple medical domains. Moreover, we discuss the market products developed from silk proteins, illustrating the transition from traditional uses to contemporary medical applications. This review provides support in understanding the current research status of SC and the further development and application of its derived products.
Collapse
Affiliation(s)
- Zhijie Tian
- School of Chemistry & Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Chuncao Zhao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Ting Huang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Lining Yu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Yijie Sun
- Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China;
| | - Yian Tao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Yunfeng Cao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Ruofei Du
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Wenhui Lin
- School of Chemistry & Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Jia Zeng
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| |
Collapse
|
4
|
Micheli L, Di Cesare Mannelli L, Mosti E, Ghelardini C, Bilia AR, Bergonzi MC. Antinociceptive Action of Thymoquinone-Loaded Liposomes in an In Vivo Model of Tendinopathy. Pharmaceutics 2023; 15:1516. [PMID: 37242757 PMCID: PMC10222138 DOI: 10.3390/pharmaceutics15051516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Tendinopathies represent about 45% of musculoskeletal lesions and they are a big burden in clinics characterized by activity-related pain, focal tendon tenderness and intra-tendinous imaging changes. Many approaches have been proposed for tendinopathies' management (e.g., nonsteroidal anti-inflammatory drugs, corticosteroids, eccentric exercises, laser therapy), unfortunately with very little support of efficacy or serious side effects, thus making the identification of new treatments fundamental. The aim of the study was to test the protective and pain reliever effect of thymoquinone (TQ)-loaded formulations in a rat model of tendinopathy induced by carrageenan intra-tendon injection (20 µL of carrageenan 0.8% on day 1). Conventional (LP-TQ) and hyaluronic acid (HA)-coated TQ liposomes (HA-LP-TQ) were characterized and subjected to in vitro release and stability studies at 4 °C. Then, TQ and liposomes were peri-tendon injected (20 µL) on days 1, 3, 5, 7 and 10 to evaluate their antinociceptive profile using mechanical noxious and non-noxious stimuli (paw pressure and von Frey tests), spontaneous pain (incapacitance test) and motor alterations (Rota rod test). Liposomes containing 2 mg/mL of TQ and covered with HA (HA-LP-TQ2) reduced the development of spontaneous nociception and hypersensitivity for a long-lasting effect more than the other formulations. The anti-hypersensitivity effect matched with the histopathological evaluation. In conclusion, the use of TQ encapsulated in HA-LP liposomes is suggested as a new treatment for tendinopathies.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (L.M.); (L.D.C.M.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (L.M.); (L.D.C.M.); (C.G.)
| | - Elena Mosti
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (E.M.); (A.R.B.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (L.M.); (L.D.C.M.); (C.G.)
| | - Anna Rita Bilia
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (E.M.); (A.R.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (E.M.); (A.R.B.)
| |
Collapse
|
5
|
Zhang Y, Xue Y, Ren Y, Li X, Liu Y. Biodegradable Polymer Electrospinning for Tendon Repairment. Polymers (Basel) 2023; 15:polym15061566. [PMID: 36987348 PMCID: PMC10054061 DOI: 10.3390/polym15061566] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
With the degradation after aging and the destruction of high-intensity exercise, the frequency of tendon injury is also increasing, which will lead to serious pain and disability. Due to the structural specificity of the tendon tissue, the traditional treatment of tendon injury repair has certain limitations. Biodegradable polymer electrospinning technology with good biocompatibility and degradability can effectively repair tendons, and its mechanical properties can be achieved by adjusting the fiber diameter and fiber spacing. Here, this review first briefly introduces the structure and function of the tendon and the repair process after injury. Then, different kinds of biodegradable natural polymers for tendon repair are summarized. Then, the advantages and disadvantages of three-dimensional (3D) electrospun products in tendon repair and regeneration are summarized, as well as the optimization of electrospun fiber scaffolds with different bioactive materials and the latest application in tendon regeneration engineering. Bioactive molecules can optimize the structure of these products and improve their repair performance. Importantly, we discuss the application of the 3D electrospinning scaffold's superior structure in different stages of tendon repair. Meanwhile, the combination of other advanced technologies has greater potential in tendon repair. Finally, the relevant patents of biodegradable electrospun scaffolds for repairing damaged tendons, as well as their clinical applications, problems in current development, and future directions are summarized. In general, the use of biodegradable electrospun fibers for tendon repair is a promising and exciting research field, but further research is needed to fully understand its potential and optimize its application in tissue engineering.
Collapse
Affiliation(s)
- Yiming Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| | - Yueguang Xue
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yan Ren
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xin Li
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Liu
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
6
|
Tang Y, Wang Z, Xiang L, Zhao Z, Cui W. Functional biomaterials for tendon/ligament repair and regeneration. Regen Biomater 2022; 9:rbac062. [PMID: 36176715 PMCID: PMC9514853 DOI: 10.1093/rb/rbac062] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
With an increase in life expectancy and the popularity of high-intensity exercise, the frequency of tendon and ligament injuries has also increased. Owing to the specificity of its tissue, the rapid restoration of injured tendons and ligaments is challenging for treatment. This review summarizes the latest progress in cells, biomaterials, active molecules and construction technology in treating tendon/ligament injuries. The characteristics of supports made of different materials and the development and application of different manufacturing methods are discussed. The development of natural polymers, synthetic polymers and composite materials has boosted the use of scaffolds. In addition, the development of electrospinning and hydrogel technology has diversified the production and treatment of materials. First, this article briefly introduces the structure, function and biological characteristics of tendons/ligaments. Then, it summarizes the advantages and disadvantages of different materials, such as natural polymer scaffolds, synthetic polymer scaffolds, composite scaffolds and extracellular matrix (ECM)-derived biological scaffolds, in the application of tendon/ligament regeneration. We then discuss the latest applications of electrospun fiber scaffolds and hydrogels in regeneration engineering. Finally, we discuss the current problems and future directions in the development of biomaterials for restoring damaged tendons and ligaments.
Collapse
Affiliation(s)
- Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| |
Collapse
|