1
|
Li W, Gao W, Yan S, Yang L, Zhu Q, Chu H. Gut Microbiota as Emerging Players in the Development of Alcohol-Related Liver Disease. Biomedicines 2024; 13:74. [PMID: 39857657 PMCID: PMC11761646 DOI: 10.3390/biomedicines13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The global incidence and mortality rates of alcohol-related liver disease are on the rise, reflecting a growing health concern worldwide. Alcohol-related liver disease develops due to a complex interplay of multiple reasons, including oxidative stress generated during the metabolism of ethanol, immune response activated by immunogenic substances, and subsequent inflammatory processes. Recent research highlights the gut microbiota's significant role in the progression of alcohol-related liver disease. In patients with alcohol-related liver disease, the relative abundance of pathogenic bacteria, including Enterococcus faecalis, increases and is positively correlated with the level of severity exhibited by alcohol-related liver disease. Supplement probiotics like Lactobacillus, as well as Bifidobacterium, have been found to alleviate alcohol-related liver disease. The gut microbiota is speculated to trigger specific signaling pathways, influence metabolite profiles, and modulate immune responses in the gut and liver. This research aimed to investigate the role of gut microorganisms in the onset and advancement of alcohol-related liver disease, as well as to uncover the underlying mechanisms by which the gut microbiota may contribute to its development. This review outlines current treatments for reversing gut dysbiosis, including probiotics, fecal microbiota transplantation, and targeted phage therapy. Particularly, targeted therapy will be a vital aspect of future alcohol-related liver disease treatment. It is to be hoped that this article will prove beneficial for the treatment of alcohol-related liver disease.
Collapse
Affiliation(s)
- Wei Li
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Shengqi Yan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Qingjing Zhu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| |
Collapse
|
2
|
Yao L, Chen T. A combined association of alanine aminotransferase, aspartate transaminase and bilirubin with sleep duration in aged 16-85 years (2005-2010). Medicine (Baltimore) 2024; 103:e40915. [PMID: 39654161 PMCID: PMC11630931 DOI: 10.1097/md.0000000000040915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Sleep is a vital restorative process that plays a pivotal role in maintaining the delicate equilibrium of mental and physical well-being. Both short and long sleep duration are associated with a range of adverse health outcomes. Numerous studies have consistently demonstrated a robust association between sleep duration and liver disease. In this study, we conducted statistical tests and performed subgroup analyses to explore potential variations in this association across different contexts, aiming to elucidate the correlation between ALT, AST, and TB with sleep duration. This cross-sectional investigation utilized datasets from the National Health and Nutrition Examination Survey 2005 to 2010. Multivariate linear regression models were used to examine the linear association between ALT, AST, and TB with sleep duration. Test for interaction is commonly conducted using multivariabte models to assess statistically significant subgroup disparities. Fitted smoothied curves and threshold effect analyses were employed to depict nonlinear relationships. The study enrolled 17,491 participants aged 16 to 85 years who met the inclusion and exclusion criteria, with a mean age of the participants was 45.58 ± 19.94 years. Multivariate linear regression analysis showed a significant positive association between sleep duration and ALT [-0.23 (-0.45, -0.00) 0.0455] and AST[-0.20 (-0.38, -0.01) 0.0338] in Model 3. Using a two-segment linear regression model, we found an U-shaped relationship and significant inflection point between between ALT and AST with sleep duration. The present study unveiled a significant inverse correlation between sleep duration and levels of ALT and AST, while no significant association was observed with TB levels. Furthermore, variations in the optimal sleep duration for liver function recovery were identified across diverse populations, thereby offering valuable healthcare recommendations to public.
Collapse
Affiliation(s)
- Lishuai Yao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Tiantian Chen
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Sun H, Pang X, Li JR, Li H, Tang M, Zhang T, Yu LY, Peng ZG. Isoechinulin B, a natural product from Antarctic fungus, attenuates acute liver injury by inhibiting excessive cell adhesion. Eur J Pharmacol 2024; 984:177065. [PMID: 39427860 DOI: 10.1016/j.ejphar.2024.177065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Abnormal cell adhesion between leukocytes and endothelial cells is closely associated with the development of numerous inflammation-related diseases, with adhesion molecules playing a crucial role. The disruption of cell adhesion directly or indirectly inhibits excessive cell adhesion and thus produces a therapeutic effect. However, there are only a few clinically available antagonists of cell adhesion. One of the biggest challenges is the development of novel and efficient cell adhesion inhibitors. Recently, the anti-inflammatory pharmacological activity of natural products of microbial origin has also received increasing attention. Here, we obtained a potential cell adhesion inhibitor isoechinulin B, an indole diketopiperazine derivative, from the Antarctic fungus Aspergillus sp. CPCC 401072, which is active against cell adhesion. Isoechinulin B decreased the expression of vascular endothelial adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) by inhibiting the activation of the NF-κB signaling pathway, thereby inhibiting cell adhesion between leukocytes and endothelial cells to reduce macrophage infiltration in the liver and significantly attenuate lipopolysaccharide-induced acute liver injury in mice. CONCLUSION: Isoechinulin B is a novel cell adhesion inhibitor derived from fungi found in extreme environments.
Collapse
Affiliation(s)
- Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xu Pang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Li-Yan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
4
|
Wang W, Lin H, Liu D, Wang T, Zhu Z, Yu P, Zhang J. Ropivacaine synergizes with sorafenib to induce apoptosis of hepatocellular carcinoma cells via the IL-6/STAT3 pathway. Cancer Sci 2024; 115:2923-2930. [PMID: 39014520 PMCID: PMC11462969 DOI: 10.1111/cas.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
The development of resistance in hepatocellular carcinoma (HCC) cells limits the effectiveness of sorafenib, but combination therapy with other drugs may have a positive effect. However, the effect of ropivacaine combined with sorafenib on the treatment of HCC cells and its potential regulatory mechanisms remain unclear. The proliferation and apoptosis of HCC cells treated with ropivacaine, sorafenib, and ropivacaine plus sorafenib were analyzed by cell-counting kit 8 and flow cytometry. The protein levels were measured by Western blot. The antitumor effect of ropivacaine, sorafenib, and their combination was verified by a tumor xenograft model. Ropivacaine and sorafenib markedly impeded the viability of HCC cells in a concentration-dependent manner. Compared with ropivacaine or sorafenib treatment alone, ropivacaine and sorafenib combination treatment impeded HCC cell proliferation, facilitated apoptosis, enhanced cleaved caspase-3, cleaved caspase-9, and cyclin D1 protein expression, while it reduced IL-6 and p-STAT3 expression and inhibited tumor growth in vivo. Importantly, the activation of the IL-6/STAT3 pathway could reverse the repressive or stimulative effects of ropivacaine and sorafenib on the proliferation and apoptosis in HCC cells. In summary, ropivacaine synergistically induces sorafenib-stimulated apoptosis of HCC cells via the IL-6/STAT3 pathway. Ropivacaine is a potential drug for the treatment of HCC when combined with sorafenib.
Collapse
Affiliation(s)
- Wenting Wang
- Department of AnesthesiologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Hongyun Lin
- Department of AnesthesiologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Desheng Liu
- Department of AnesthesiologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Tao Wang
- Department of AnesthesiologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Zicheng Zhu
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Peng Yu
- Department of Endocrinology and MetabolismThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Jing Zhang
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
5
|
Zhang D, Wang Q, Bai F. Bidirectional relationship between Helicobacter pylori infection and nonalcoholic fatty liver disease: insights from a comprehensive meta-analysis. Front Nutr 2024; 11:1410543. [PMID: 39161913 PMCID: PMC11332609 DOI: 10.3389/fnut.2024.1410543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Background Helicobacter pylori (H. pylori) infection and nonalcoholic fatty liver disease (NAFLD) represent significant concerns in global health. However, the precise relationship between H. pylori and NAFLD remains a subject of ongoing debate. This study endeavors to elucidate the association between H. pylori infection and the susceptibility to NAFLD. Furthermore, we aim to investigate the interplay among H. pylori infection, NAFLD, and metabolic syndrome (MetS). Methods We conducted an extensive search of the PubMed, EMBASE, and Web of Science databases spanning from inception to January 2024. Our examination focused on rigorous studies investigating the correlation between H. pylori infection and NAFLD. Utilizing a random-effects model, we computed the pooled odds ratio (OR) and corresponding 95% confidence interval (CI). Additionally, we assessed statistical heterogeneity, performed sensitivity analyses, and scrutinized the potential for publication bias. Results Thirty-four studies involving 175,575 individuals were included in our meta-analysis. Among these, 14 studies (involving 94,950 patients) demonstrated a higher incidence of NAFLD in H. pylori infection-positive individuals compared to H. pylori infection-negative individuals [RR = 1.17, 95% CI (1.10, 1.24), Z = 4.897, P < 0.001]. Seventeen studies (involving 74,928 patients) indicated a higher positive rate of H. pylori infection in patients with NAFLD compared to those without NAFLD [RR = 1.13, 95% CI (1.02, 1.24), Z = 2.395, P = 0.017]. Sensitivity analyses confirmed the robustness of these findings, and funnel plot analysis revealed no significant publication bias. Furthermore, we observed associations between H. pylori infection or NAFLD and various metabolic factors, including body mass index (BMI), blood pressure, lipids, liver function, and kidney function. Conclusion Our meta-analysis presents evidence supporting a reciprocal relationship between H. pylori infection and the susceptibility to NAFLD. Nevertheless, additional investigations are warranted to bolster this correlation and unravel the underlying mechanisms involved.
Collapse
Affiliation(s)
- Daya Zhang
- Graduate School, Hainan Medical University, Haikou, China
| | - Qi Wang
- Graduate School, Hainan Medical University, Haikou, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, China
| |
Collapse
|
6
|
Wang MJ, Zhang HL, Chen F, Guo XJ, Liu QG, Hou J. The double-edged effects of IL-6 in liver regeneration, aging, inflammation, and diseases. Exp Hematol Oncol 2024; 13:62. [PMID: 38890694 PMCID: PMC11184755 DOI: 10.1186/s40164-024-00527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine and exerts its complex biological functions mainly through three different signal modes, called cis-, trans-, and cluster signaling. When IL-6 binds to its membrane or soluble receptors, the co-receptor gp130 is activated to initiate downstream signaling and induce the expression of target genes. In the liver, IL-6 can perform its anti-inflammatory activities to promote hepatocyte reprogramming and liver regeneration. On the contrary, IL-6 also exerts the pro-inflammatory functions to induce liver aging, fibrosis, steatosis, and carcinogenesis. However, understanding the roles and underlying mechanisms of IL-6 in liver physiological and pathological processes is still an ongoing process. So far, therapeutic agents against IL‑6, IL‑6 receptor (IL‑6R), IL-6-sIL-6R complex, or IL-6 downstream signal transducers have been developed, and determined to be effective in the intervention of inflammatory diseases and cancers. In this review, we summarized and highlighted the understanding of the double-edged effects of IL-6 in liver homeostasis, aging, inflammation, and chronic diseases, for better shifting the "negative" functions of IL-6 to the "beneficial" actions, and further discussed the potential therapeutic effects of targeting IL-6 signaling in the clinics.
Collapse
Affiliation(s)
- Min-Jun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China.
| | - Hai-Ling Zhang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University (Naval Medical University), Shanghai, China
- Department of Neurology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xiao-Jing Guo
- Department of Health Statistics, Faculty of Health Service, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Qing-Gui Liu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University (Naval Medical University), Shanghai, China.
| |
Collapse
|
7
|
Jiang J, Li H, Tang M, Lei L, Li HY, Dong B, Li JR, Wang XK, Sun H, Li JY, Xu JC, Gong Y, Jiang JD, Peng ZG. Upregulation of Hepatic Glutathione S-Transferase Alpha 1 Ameliorates Metabolic Dysfunction-Associated Steatosis by Degrading Fatty Acid Binding Protein 1. Int J Mol Sci 2024; 25:5086. [PMID: 38791126 PMCID: PMC11120891 DOI: 10.3390/ijms25105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common metabolic disease of the liver, characterized by hepatic steatosis in more than 5% of hepatocytes. However, despite the recent approval of the first drug, resmetirom, for the management of metabolic dysfunction-associated steatohepatitis, decades of target exploration and hundreds of clinical trials have failed, highlighting the urgent need to find new druggable targets for the discovery of innovative drug candidates against MASLD. Here, we found that glutathione S-transferase alpha 1 (GSTA1) expression was negatively associated with lipid droplet accumulation in vitro and in vivo. Overexpression of GSTA1 significantly attenuated oleic acid-induced steatosis in hepatocytes or high-fat diet-induced steatosis in the mouse liver. The hepatoprotective and anti-inflammatory drug bicyclol also attenuated steatosis by upregulating GSTA1 expression. A detailed mechanism showed that GSTA1 directly interacts with fatty acid binding protein 1 (FABP1) and facilitates the degradation of FABP1, thereby inhibiting intracellular triglyceride synthesis by impeding the uptake and transportation of free fatty acids. Conclusion: GSTA1 may be a good target for the discovery of innovative drug candidates as GSTA1 stabilizers or enhancers against MASLD.
Collapse
Affiliation(s)
- Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jia-Yu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jing-Chen Xu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Yue Gong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Wang D, Wang X, Gu X, Zhang Y, Jiang Y, Liu Y, Di X. Systematic screening of hepatoprotective components from traditional Chinese medicine: Zuojin Pill as an example. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117556. [PMID: 38072292 DOI: 10.1016/j.jep.2023.117556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin Pill (ZJP), composed of Coptis chinensis Franch. and Euodia ruticarpa (A. Juss.) Benth. in a mass ratio of 6:1, is a famous traditional Chinese medicine (TCM) formula recorded in "Danxi's Experiential Therapy", an ancient medical book from the Ming Dynasty of China. It is used to treat liver fire invading the stomach, which is caused by liver stagnation transforming into fire and disharmony between the liver and stomach. AIM OF THE STUDY To develop a systematic strategy to screen hepatoprotective components from TCM using ZJP as a model sample. MATERIALS AND METHODS A CCl4-induced mouse model of acute liver injury was used for the verification of the hepatoprotective effects of ZJP. UPLC-Q-Exactive Plus Orbitrap MS/MS was used for the identification of the components in mouse serum after intragastric administration of ZJP. The hepatoprotective activities of the components found in mouse serum were tested in primary cultured mouse hepatocytes induced by CCl4. RESULTS Nine components with significant hepatoprotective activity including berberine, epiberberine, coptisine, palmatine, jatrorrhizine, rutaecarpin, dehydroevodiamine, evocarpine and chlorogenic acid were successfully screened out. CONCLUSIONS Our developed strategy has the advantages of high efficiency and low cost, and would provide a powerful tool for screening potential hepatoprotective components from TCM.
Collapse
Affiliation(s)
- Dongwu Wang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xin Wang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiaoting Gu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yu Zhang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yanhui Jiang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Youping Liu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xin Di
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
9
|
Li H, Wang XK, Tang M, Lei L, Li JR, Sun H, Jiang J, Dong B, Li HY, Jiang JD, Peng ZG. Bacteroides thetaiotaomicron ameliorates mouse hepatic steatosis through regulating gut microbial composition, gut-liver folate and unsaturated fatty acids metabolism. Gut Microbes 2024; 16:2304159. [PMID: 38277137 PMCID: PMC10824146 DOI: 10.1080/19490976.2024.2304159] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Gut microbiota plays an essential role in the progression of nonalcoholic fatty liver disease (NAFLD), making the gut-liver axis a potential therapeutic strategy. Bacteroides genus, the enriched gut symbionts, has shown promise in treating fatty liver. However, further investigation is needed to identify specific beneficial Bacteroides strains for metabolic disorders in NAFLD and elucidate their underlying mechanisms. In this study, we observed a positive correlation between the abundance of Bacteroides thetaiotaomicron (B. theta) and the alleviation of metabolic syndrome in the early and end stages of NAFLD. Administration of B. theta to HFD-fed mice for 12 weeks reduced body weight and fat accumulation, decreased hyperlipidemia and insulin resistance, and prevented hepatic steatohepatitis and liver injury. Notably, B. theta did not affect these indicators in low-fat diet (LFD)-fed mice and exhibited good safety. Mechanistically, B. theta regulated gut microbial composition, characterized by a decreased Firmicutes/Bacteroidetes ratio in HFD-Fed mice. It also increased gut-liver folate levels and hepatic metabolites, alleviating metabolic dysfunction. Additionally, treatment with B. theta increased the proportion of polyunsaturated fatty acid in the mouse liver, offering a widely reported benefit for NAFLD improvement. In conclusion, this study provides evidence that B. theta ameliorates NAFLD by regulating gut microbial composition, enhancing gut-liver folate and unsaturated fatty acid metabolism, highlighting the therapeutic role of B. theta as a potential probiotic for NAFLD.
Collapse
Affiliation(s)
- Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Zhu JY, Tang M, Li H, Shi YL, Li YM, Li YH, Ma XC, Duan QL, Mei YH, He HW, Zhang N, Peng ZG, Song DQ. Design, synthesis and triglyceride-lowering activity of tricyclic matrine derivatives for the intervention of non-alcoholic fatty liver disease. Bioorg Chem 2024; 142:106925. [PMID: 37890213 DOI: 10.1016/j.bioorg.2023.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Thirty new tricyclicmatrinic derivatives were successively synthesized and evaluated for their inhibitory activity on the accumulation of triglycerides (TG) in AML12 cells, using 12 N-m-trifluoromethylbenzenesulfonyl matrine (1) as the hit compound. Among the analogues, compound 7n possessing 11-trimethylbutylamine quaternary exerted the highest in vitro TG-lowering potency, as well as a good safety profile. 7n significantly attenuated the hepatic injury and steatosis, and ameliorated dyslipidemia and dysglycemia in the mice with non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet. Primary mechanism study revealed that upregulation of peroxisome proliferator-activated receptors α (PPARα)-carnitine palmitoyltransferase 1A (CPT1A) pathway mediated the efficacy of 7n. Our study provides powerful information for developing this kind of compound into a new class of anti-NAFLD candidates, and compound 7n is worthy of further investigation as an ideal lead compound.
Collapse
Affiliation(s)
- Jing-Yang Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei Tang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu-Long Shi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi-Ming Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying-Hong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xi-Can Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qiong-Lu Duan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu-Heng Mei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hong-Wei He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Dan-Qing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Chen X, Peng R, Peng D, Xiao J, Liu D, Li R. An update: is there a relationship between H. pylori infection and nonalcoholic fatty liver disease? why is this subject of interest? Front Cell Infect Microbiol 2023; 13:1282956. [PMID: 38145041 PMCID: PMC10739327 DOI: 10.3389/fcimb.2023.1282956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is thought to impact various extragastric diseases, including nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease. Meanwhile, the pathogenesis of NAFLD needs further research, and effective treatment for this disease remains elusive. In this mini-review, we enumerate and ponder on the evidence demonstrating an association between H. pylori infection and NAFLD. Primarily, we delve into high-quality meta-analyses and clinical randomized controlled trials focusing on the association studies between the two. We also discuss clinical studies that present opposite conclusions. In addition, we propose a mechanism through which H. pylori infection aggravates NAFLD: inflammatory cytokines and adipocytokines, insulin resistance, lipid metabolism, intestinal barrier and microbiota, H. pylori outer membrane vesicles and H. pylori-infected cell-extracellular vesicles. This mini-review aims to further explore NAFLD pathogenesis and extragastric disease mechanisms caused by H. pylori infection.
Collapse
Affiliation(s)
- Xingcen Chen
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Ruyi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Dongzi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Jia Xiao
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Deliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Rong Li
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
12
|
Alhawsawi SM, Mohany M, Baabbad AA, Almoutiri ND, Maodaa SN, Al-Shaebi EM, Yaseen KN, Wadaan MAM, Hozzein WN. Streptomyces Bioactive Metabolites Prevent Liver Cancer through Apoptosis, Inhibiting Oxidative Stress and Inflammatory Markers in Diethylnitrosamine-Induced Hepatocellular Carcinoma. Biomedicines 2023; 11:biomedicines11041054. [PMID: 37189672 DOI: 10.3390/biomedicines11041054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
A safe and effective treatment for liver cancer is still elusive despite all attempts. Biomolecules produced from natural products and their derivatives are potential sources of new anticancer medications. This study aimed to investigate the anticancer potential of a Streptomyces sp. bacterial extract against diethylnitrosamine (DEN)-induced liver cancer in Swiss albino mice and explore the underlying cellular and molecular mechanisms. The ethyl acetate extract of a Streptomyces sp. was screened for its potential anticancer activities against HepG-2 using the MTT assay, and the IC50 was also determined. Gas chromatography-mass spectrometric analysis was used to identify the chemical constituents of the Streptomyces extract. Mice were administered DEN at the age of 2 weeks, and from week 32 until week 36 (4 weeks), they received two doses of Streptomyces extract (25 and 50 mg/kg body weight) orally daily. The Streptomyces extract contains 29 different compounds, according to the GC-MS analysis. The rate of HepG-2 growth was dramatically reduced by the Streptomyces extract. In the mice model. Streptomyces extract considerably lessened the negative effects of DEN on liver functions at both doses. Alpha-fetoprotein (AFP) levels were significantly (p < 0.001) decreased, and P53 mRNA expression was increased, both of which were signs that Streptomyces extract was suppressing carcinogenesis. This anticancer effect was also supported by histological analysis. Streptomyces extract therapy additionally stopped DEN-induced alterations in hepatic oxidative stress and enhanced antioxidant activity. Additionally, Streptomyces extract reduced DEN-induced inflammation, as shown by the decline in interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels. Additionally, the Streptomyces extract administration dramatically boosted Bax and caspase-3 levels while decreasing Bcl-2 expressions in the liver according to the Immunohistochemistry examination. In summary, Streptomyces extract is reported here as a potent chemopreventive agent against hepatocellular carcinoma through multiple mechanisms, including inhibiting oxidative stress, cell apoptosis, and inflammation.
Collapse
Affiliation(s)
- Sana M Alhawsawi
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Almohannad A Baabbad
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Nawaf D Almoutiri
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Saleh N Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Khadijah N Yaseen
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Mohammed A M Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Wael N Hozzein
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Sun H, Wang XK, Li JR, Tang M, Li H, Lei L, Li HY, Jiang J, Li JY, Dong B, Jiang JD, Peng ZG. Establishment and application of a high-throughput screening model for cell adhesion inhibitors. Front Pharmacol 2023; 14:1140163. [PMID: 36909195 PMCID: PMC9995855 DOI: 10.3389/fphar.2023.1140163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
The cell adhesion between leukocytes and endothelial cells plays an important balanced role in the pathophysiological function, while excessive adhesion caused by etiological agents is associated with the occurrence and development of many acute and chronic diseases. Cell adhesion inhibitors have been shown to have a potential therapeutic effect on these diseases, therefore, efficient and specific inhibitors against cell adhesion are highly desirable. Here, using lipopolysaccharide-induced human umbilical vein endothelial cells (HUVECs) and calcein-AM-labeled human monocytic cell THP-1, we established a high-throughput screening model for cell adhesion inhibitors with excellent model evaluation parameters. Using the drug repurposing strategy, we screened out lifitegrast, a potent cell adhesion inhibitor, which inhibited cell adhesion between HUVEC and THP-1 cells by directly interrupting the adhesion interaction between HUVEC and THP-1 cells and showed a strong therapeutic effect on the mouse acute liver injury induced by poly (I:C)/D-GalN. Therefore, the screening model is suitable for screening and validating cell adhesion inhibitors, which will promote the research and development of inhibitors for the treatment of diseases caused by excessive cell adhesion.
Collapse
Affiliation(s)
- Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Yu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|