1
|
Sun H, Huo X, Bi X, Cao D, Yang J, Shen K, Peng P. Exosome transmit the ability of migration and invasion in heterogeneous ovarian cancer cells by regulating autophagy via targeting hsa-miR-328. Gynecol Oncol 2025; 194:60-70. [PMID: 39970632 DOI: 10.1016/j.ygyno.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE This study investigates the role of exosomes in ovarian cancer heterogeneity, which contributes to metastasis. By examining the variability of exosomes from different ovarian cancer cells, which aims to elucidate the molecular mechanisms driving this heterogeneity. EXPERIMENTAL DESIGN Ovarian cancer cell lines were subjected to clonal culture and single-cell sorting. Monoclonal cell lines with different migration and invasion capabilities were identified using Transwell assays. The effect of exosomes on these abilities was assessed through Transwell, scratch tests, and in vivo experiments. High-throughput sequencing was used to compare miRNAs in exosomes with mRNAs in cells. Techniques like electron microscopy, immunofluorescence, adenoviral transduction, western blot, RNA-binding protein immunoprecipitation, and fluorescence in situ hybridization were employed to explore how exosomes affect cell migration and invasion. RESULTS Two subpopulations, SK-H/A-H (highly invasive) and SK-L/A-L (less invasive), were isolated. Exosomes from SK-H and A-H cells enhanced the migration and invasion of SK-L and A-L cells. Hsa-miR-328-3p was significantly upregulated in exosomes from SK-H and A-H cells, promoting invasive traits in SK-L and A-L cells, reducing Raf1 and mTOR expression, and increasing ULK1 and LC3B levels to promote autophagy. Overexpression of pri-miR-328-3p in SK-L and A-L cells resulted in similar effects. CONCLUSIONS Ovarian cancer cells with different invasive capabilities secrete distinct exosomes. Exosomes from highly invasive cells enhance these traits in less aggressive cells via hsa-miR-328-3p, which targets Raf1, disrupts the mTOR pathway, and promotes autophagy. This study highlights exosomes as carriers of hsa-miR-328-3p, mediating intercellular communication and autophagy to influence ovarian cancer cell heterogeneity.
Collapse
Affiliation(s)
- Hengzi Sun
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Huo
- Center of Basic Medical Research, Peking University Third Hospital Institute of Medical Innovation and Research, Beijing, China; Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoning Bi
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Balan AI, Scridon A. MicroRNAs in atrial fibrillation - have we discovered the Holy Grail or opened a Pandora's box? Front Pharmacol 2025; 16:1535621. [PMID: 40012622 PMCID: PMC11861496 DOI: 10.3389/fphar.2025.1535621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
Atrial fibrillation (AF) causes a heavy socio-economic burden on healthcare systems around the globe. Identification of new preventive, diagnostic, and treatment methods is imperative. In recent years, special attention has been paid to microRNAs (miRNAs) as potential regulators of AF pathogenesis. Through post-transcriptional regulation of genes, miRNAs have been shown to play crucial roles in AF-related structural and electrical atrial remodeling. Altered expression of different miRNAs has been related to proarrhythmic changes in the duration of action potentials and atrial fibrosis. In clinical studies, miRNA changes have been associated with AF, whereas in experimental studies miRNA manipulation has emerged as a potential therapeutic approach. It would appear that, with the advent of miRNAs, we may have found the Holy Grail, and that efficient and personalized AF therapy may be one step away. Yet, the clinical relevance of miRNA evaluation and manipulation remains questionable. Studies have identified numerous miRNAs associated with AF, but none of them have shown sufficient specificity for AF. MicroRNAs are not gene-specific but regulate the expression of a myriad of genes. Cardiac and non-cardiac off-target effects may thus occur following miRNA manipulation. A Pandora's box might thus have opened with the advent of these sophisticated molecules. In this paper, we provide a critical analysis of the clinical and experimental, epidemiological and mechanistic data linking miRNAs to AF, we discuss the most promising miRNA therapeutic approaches, we emphasize a number of questions that remain to be answered, and we identify hotspots for future research.
Collapse
Affiliation(s)
| | - Alina Scridon
- Physiology Department and Center for Advanced Medical and Pharmaceutical Research, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, University of Medicine, Târgu Mures, Romania
| |
Collapse
|
3
|
He H, Zhang X, Deng M, Zhou Y, Pang H, Yang H, Lyu J, Feng Y, Geng X, Guo X, Luo G, Guo B. In-situ nucleic acid amplification induced by DNA self-assembly for rapid and ultrasensitive detection of miRNA. Anal Chim Acta 2025; 1335:343457. [PMID: 39643311 DOI: 10.1016/j.aca.2024.343457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND To improve the sensitivity and specificity of nucleic acid detection, coupling two or more signal amplification systems is a feasible pattern, such as nucleic acid isothermal amplification coupling genome-editing technology, and cascaded DNA self-assembly circuits. And representative signal amplification strategies include loop-mediated isothermal amplification (LAMP), clustered regularly interspaced short palindromic repeats/associated proteins (CRISPR/Cas) systems, and catalyzed hairpin assembly (CHA). However, these detection strategies often require the enrichment of intermediate products, the replacement of reaction conditions and the design of multiple probes, which may seriously affect the reliability of detection results. RESULTS Herein, we propose a novel nucleic acid detection system which is named as catalyzed hairpin assembly (CHA) coupled with embedded primer triggered isothermal amplification (CEA for short). DNA self-assembly probes in CEA contain a specially designed primer. When target nucleic acid (e.g., miRNA) initiates CHA reaction (the first signal amplification), the self-assembly product of CHA will expose a primer (named as embedded primer). The embedded primer will trigger a special nucleic acid isothermal amplification in situ, then generate plenty of double-stranded DNA products in 30 min with varying lengths (the second signal amplification). Compared to that of a typical CHA reaction, the sensitivity of CEA has increased by three orders of magnitude and the detection limit is as low as 0.228 fM. Besides, it has excellent detection performance in cancer and stem cell samples. SIGNIFICANCE By coupling embedded primer with DNA self-assembly system, a new nucleic acid detection system (CEA) with one-step operation and dual signal amplification has been successfully established. Compared with traditional dual signal amplification systems, CEA can not only significantly improve the reaction efficiency, but also greatly reduce the difficulty of detection system design and experimental operation.
Collapse
Affiliation(s)
- Hongfei He
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China.
| | - Xuewen Zhang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Meng Deng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Yan Zhou
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Hongwei Pang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Hui Yang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Jiazhen Lyu
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Yuxin Feng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xiangqin Geng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Guangcheng Luo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Bin Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
4
|
Chini A, Guha P, Rishi A, Obaid M, Udden SN, Mandal SS. Discovery and functional characterization of LncRNAs associated with inflammation and macrophage activation. Methods 2024; 227:1-16. [PMID: 38703879 DOI: 10.1016/j.ymeth.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
Long noncoding RNAs (lncRNA) are emerging players in regulation of gene expression and cell signaling and their dysregulation has been implicated in a multitude of human diseases. Recent studies from our laboratory revealed that lncRNAs play critical roles in cytokine regulation, inflammation, and metabolism. We demonstrated that lncRNA HOTAIR, which is a well-known regulator of gene silencing, plays critical roles in modulation of cytokines and proinflammatory genes, and glucose metabolism in macrophages during inflammation. In addition, we recently discovered a series of novel lncRNAs that are closely associated with inflammation and macrophage activation. We termed these as long-noncoding inflammation associated RNAs (LinfRNAs). We are currently engaged in the functional characterization of these hLinfRNAs (human LinfRNAs) with a focus on their roles in inflammation, and we are investigating their potential implications in chronic inflammatory human diseases. Here, we have summarized experimental methods that have been utilized for the discovery and functional characterization of lncRNAs in inflammation and macrophage activation.
Collapse
Affiliation(s)
- Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Monira Obaid
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sm Nashir Udden
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
5
|
Bahattab S, Assiri A, Alhaidan Y, Trivilegio T, AlRoshody R, Huwaizi S, Almuzzaini B, Alamro A, Abudawood M, Alehaideb Z, Matou-Nasri S. Pharmacological p38 MAPK inhibitor SB203580 enhances AML stem cell line KG1a chemosensitivity to daunorubicin by promoting late apoptosis, cell growth arrest in S-phase, and miR-328-3p upregulation. Saudi Pharm J 2024; 32:102055. [PMID: 38699598 PMCID: PMC11063648 DOI: 10.1016/j.jsps.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Acute myeloid leukaemia (AML) is characterized by uncontrolled proliferation of myeloid progenitor cells and impaired maturation, leading to immature cell accumulation in the bone marrow and bloodstream, resulting in hematopoietic dysfunction. Chemoresistance, hyperactivity of survival pathways, and miRNA alteration are major factors contributing to treatment failure and poor outcomes in AML patients. This study aimed to investigate the impact of the pharmacological p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 on the chemoresistance potential of AML stem cell line KG1a to the therapeutic drug daunorubicin (DNR). KG1a and chemosensitive leukemic HL60 cells were treated with increasing concentrations of DNR. Cell Titer-Glo®, flow cytometry, phosphokinase and protein arrays, Western blot technology, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were employed for assessment of cell viability, half-maximal inhibitory concentration (IC50) determination, apoptotic status detection, cell cycle analysis, apoptosis-related protein and gene expression monitoring. Confocal microscopy was used to visualize caspase and mitochondrial permeability transition pore (mPTP) activities. Exposed at various incubation times, higher DNR IC50 values were determined for KG1a cells than for HL60 cells, confirming KG1a cell chemoresistance potential. Exposed to DNR, late apoptosis induction in KG1a cells was enhanced after SB203580 pretreatment, defined as the combination treatment. This enhancement was confirmed by increased cleavage of poly(ADP-ribose) polymerase, caspase-9, caspase-3, and augmented caspase-3/-7 and mPTP activities in KG1a cells upon combination treatment, compared to DNR. Using phosphokinase and apoptosis protein arrays, the combination treatment decreased survival Akt phosphorylation and anti-apoptotic Bcl-2 expression levels in KG1a cells while increasing the expression levels of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21, compared to DNR. Cell cycle analysis revealed KG1a cell growth arrest in G2/M-phase caused by DNR, while combined treatment led to cell growth arrest in S-phase, mainly associated with cyclin B1 expression levels. Remarkably, the enhanced KG1a cell sensitivity to DNR after SB203580 pretreatment was associated with an increased upregulation of miR-328-3p and slight downregulation of miR-26b-5p, compared to DNR effect. Altogether, these findings could contribute to the development of a new therapeutic strategy by targeting the p38 MAPK pathway to improve treatment outcomes in patients with refractory or relapsed AML.
Collapse
Affiliation(s)
- Sara Bahattab
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Assiri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Thadeo Trivilegio
- Medical Research Core Facility and Platforms, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Rehab AlRoshody
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Abir Alamro
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Zeyad Alehaideb
- Medical Genomics Research Department, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School of Systems Biology, George Mason University, Manassas, VA 20110, United States
| |
Collapse
|
6
|
Liu W, Huang X, Luo W, Liu X, Chen W. Progerin Inhibits the Proliferation and Migration of Melanoma Cells by Regulating the Expression of Paxillin. Onco Targets Ther 2024; 17:227-242. [PMID: 38533131 PMCID: PMC10964789 DOI: 10.2147/ott.s442504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Progerin, the underlying cause of Hutchinson-Gilford Progeria Syndrome (HGPS), has been extensively studied for its impact on normal cells and premature aging patients. However, there is a lack of research on its specific effects on tumor cells. Melanoma is one of the most common malignant tumors with high morbidity and mortality. This study aimed to elucidate the potential therapeutic role of progerin in melanoma. Materials and Methods We constructed the melanoma A375 cell line and M14 cell line with stable expression of progerin. The expression of progerin, paxillin, and epithelial-mesenchymal transition (EMT) marker proteins in each cell group was measured using Western blot. The migration, proliferation, and cell cycle of cancer cells were assessed using the transwell assay, wound healing assay, colony formation assay, CCK 8 assay, and flow cytometry. RT-qPCR technology was used to examine the impact of progerin overexpression on microRNA expression. Finally, we transfected paxillin into the progerin overexpression cell group to verify whether progerin regulates the phenotype of tumor cells through paxillin. Results Our study demonstrated that overexpression of progerin leads to decreased expression of paxillin and inhibits cancer cell migration, proliferation, EMT process and cell cycle progression. Additionally, rescue experiments revealed that the migration, proliferation ability, and EMT marker protein expression in progerin overexpressing cancer cells could be partially restored by transfecting a plasmid containing the paxillin gene. Mechanistic investigations further revealed that progerin achieves this inhibition of paxillin expression by upregulating miR-212. Conclusion This study reveals that progerin may inhibit the migration and proliferation of melanoma cells through the miR-212/paxillin axis, which provides a new approach for the future treatment of this disease.
Collapse
Affiliation(s)
- Weixian Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Xinxian Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
- School of Medical Technology, Guangdong Medical University, Dongguan, People’s Republic of China
| | - Weizhao Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| |
Collapse
|
7
|
Liu Z, Yang H, Zhang B, Li X, Wang H, Zhang Y. A cascade signal-amplified fluorescent biosensor combining APE1 enzyme cleavage-assisted target cycling with rolling circle amplification. Analyst 2023; 149:82-87. [PMID: 37997151 DOI: 10.1039/d3an01727c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A cascade signal-amplified fluorescent biosensor was developed for miRNA-21 detection by combining APE1 enzyme-assisted target recycling and rolling circle amplification strategy. A key feature of this biosensor is its dual-trigger mechanism, utilizing both tumor-endogenous miRNA-21 and the APE1 enzyme in the initial amplification step, followed by a second rolling circle amplification reaction. This dual signal amplification cascade significantly enhanced sensitivity, achieving a detection limit of 3.33 pM. Furthermore, this biosensor exhibited excellent specificity and resistance to interference, allowing it to effectively distinguish and detect the target miRNA-21 in the presence of multiple interfering miRNAs. Moreover, the biosensor maintained its robust detection capabilities in a 10% serum environment, demonstrating its potential for clinical disease diagnosis applications.
Collapse
Affiliation(s)
- Zirui Liu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongqun Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Beibei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinhao Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Kjellberg A, Lindholm ME, Zheng X, Liwenborg L, Rodriguez-Wallberg KA, Catrina SB, Lindholm P. Comparing the Blood Response to Hyperbaric Oxygen with High-Intensity Interval Training-A Crossover Study in Healthy Volunteers. Antioxidants (Basel) 2023; 12:2043. [PMID: 38136163 PMCID: PMC10740875 DOI: 10.3390/antiox12122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
High-intensity interval training (HIIT) and hyperbaric oxygen therapy (HBOT) induce reactive oxygen species (ROS) formation and have immunomodulatory effects. The lack of readily available biomarkers for assessing the dose-response relationship is a challenge in the clinical use of HBOT, motivating this feasibility study to evaluate the methods and variability. The overall hypothesis was that a short session of hyperbaric oxygen (HBO2) would have measurable effects on immune cells in the same physiological range as shown in HIIT; and that the individual response to these interventions can be monitored in venous blood and/or peripheral blood mononuclear cells (PBMCs). Ten healthy volunteers performed two interventions; a 28 min HIIT session and 28 min HBO2 in a crossover design. We evaluated bulk RNA sequencing data from PBMCs, with a separate analysis of mRNA and microRNA. Blood gases, peripheral venous oxygen saturation (SpvO2), and ROS levels were measured in peripheral venous blood. We observed an overlap in the gene expression changes in 166 genes in response to HIIT and HBO2, mostly involved in hypoxic or inflammatory pathways. Both interventions were followed by downregulation of several NF-κB signaling genes in response to both HBO2 and HIIT, while several interferon α/γ signaling genes were upregulated. Only 12 microRNA were significantly changed in HBO2 and 6 in HIIT, without overlap between interventions. ROS levels were elevated in blood at 30 min and 60 min compared to the baseline during HIIT, but not during/after HBO2. In conclusion, HBOT changed the gene expression in a number of pathways measurable in PBMC. The correlation of these changes with the dose and individual response to treatment warrants further investigation.
Collapse
Affiliation(s)
- Anders Kjellberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden (P.L.)
- Medical Unit Intensive Care and Thoracic Surgery, Perioperative Medicine and Intensive Care, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Maléne E. Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden (P.L.)
- Department of Medicine, Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xiaowei Zheng
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lovisa Liwenborg
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden (P.L.)
| | - Kenny Alexandra Rodriguez-Wallberg
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
- Department of Reproductive Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Peter Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden (P.L.)
- Division of Hyperbaric Medicine, Department of Emergency Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Rafieenia F, Ebrahimi SO, Emadi ES, Taheri F, Reiisi S. Bioengineered chimeric tRNA/pre-miRNAs as prodrugs in cancer therapy. Biotechnol Prog 2023; 39:e3387. [PMID: 37608520 DOI: 10.1002/btpr.3387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Today, biologic prodrugs have led to targeting specific tumor markers and have increased specificity and selectivity in cancer therapy. Various studies have shown the role of ncRNAs in cancer pathology and tumorigenesis and have suggested that ncRNAs, especially miRNAs, are valuable molecules in understanding cancer biology and therapeutic processes. Most miRNAs-based research and treatment are limited to chemically synthesized miRNAs. Synthetic alterations in these miRNA mimics may affect their folding, safety profile, and even biological activity. However, despite synthetic miRNA mimics produced by automated systems, various carriers could be used to achieve efficient production of bioengineered miRNAs through economical microbial fermentation. These bioengineered miRNAs as biological prodrugs could provide a new approach for safe therapeutic methods and drug production. In this regard, bioengineered chimeric miRNAs could be selectively processed to mature miRNAs in different types of cancer cells by targeting the desired gene and regulating cancer progression. In this article, we aim to review bioengineered miRNAs and their use in cancer therapy, as well as offering advances in this area, including the use of chimeric tRNA/pre-miRNAs.
Collapse
Affiliation(s)
- Fatemeh Rafieenia
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Ensieh Sadat Emadi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
10
|
Vasilieva AA, Timechko EE, Lysova KD, Paramonova AI, Yakimov AM, Kantimirova EA, Dmitrenko DV. MicroRNAs as Potential Biomarkers of Post-Traumatic Epileptogenesis: A Systematic Review. Int J Mol Sci 2023; 24:15366. [PMID: 37895044 PMCID: PMC10607802 DOI: 10.3390/ijms242015366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Structural or post-traumatic epilepsy often develops after brain tissue damage caused by traumatic brain injury, stroke, infectious diseases of the brain, etc. Most often, between the initiating event and epilepsy, there is a period without seizures-a latent period. At this time, the process of restructuring of neural networks begins, leading to the formation of epileptiform activity, called epileptogenesis. The prediction of the development of the epileptogenic process is currently an urgent and difficult task. MicroRNAs are inexpensive and minimally invasive biomarkers of biological and pathological processes. The aim of this study is to evaluate the predictive ability of microRNAs to detect the risk of epileptogenesis. In this study, we conducted a systematic search on the MDPI, PubMed, ScienceDirect, and Web of Science platforms. We analyzed publications that studied the aberrant expression of circulating microRNAs in epilepsy, traumatic brain injury, and ischemic stroke in order to search for microRNAs-potential biomarkers for predicting epileptogenesis. Thus, 31 manuscripts examining biomarkers of epilepsy, 19 manuscripts examining biomarkers of traumatic brain injury, and 48 manuscripts examining biomarkers of ischemic stroke based on circulating miRNAs were analyzed. Three miRNAs were studied: miR-21, miR-181a, and miR-155. The findings showed that miR-21 and miR-155 are associated with cell proliferation and apoptosis, and miR-181a is associated with protein modifications. These miRNAs are not strictly specific, but they are involved in processes that may be indirectly associated with epileptogenesis. Also, these microRNAs may be of interest when they are studied in a cohort with each other and with other microRNAs. To further study the microRNA-based biomarkers of epileptogenesis, many factors must be taken into account: the time of sampling, the type of biological fluid, and other nuances. Currently, there is a need for more in-depth and prolonged studies of epileptogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diana V. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (A.A.V.); (E.E.T.); (K.D.L.); (A.I.P.)
| |
Collapse
|
11
|
Frisk NLS, Sørensen AE, Pedersen OBV, Dalgaard LT. Circulating microRNAs for Early Diagnosis of Ovarian Cancer: A Systematic Review and Meta-Analysis. Biomolecules 2023; 13:871. [PMID: 37238740 PMCID: PMC10216356 DOI: 10.3390/biom13050871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, we conducted a systematic review and meta-analysis to summarize and evaluate the global research potential of different circulating miRNAs as an early diagnostic biomarker for OC. A systematic literature search for relevant studies was conducted in June 2020 and followed up in November 2021. The search was conducted in English databases (PubMed, ScienceDirect). The primary search resulted in a total of 1887 articles, which were screened according to the prior established inclusion and exclusion criteria. We identified 44 relevant studies, of which 22 were eligible for the quantitative meta-analysis. Statistical analysis was performed using the Meta-package in Rstudio. Standardized mean differences (SMD) of relative levels between control subjects and OC patients were used to evaluate the differential expression. All studies were quality evaluated using a Newcastle-Ottawa Scale. Based on the meta-analysis, nine miRNAs were identified as dysregulated in OC patients compared to controls. Nine were upregulated in OC patients compared to controls (miR-21, -125, -141, -145, -205, -328, -200a, -200b, -200c). Furthermore, miR-26, -93, -106 and -200a were analyzed, but did not present an overall significant difference between OC patients and controls. These observations should be considered when performing future studies of circulating miRNAs in relation to OC: sufficient size of clinical cohorts, development of consensus guidelines for circulating miRNA measurements, and coverage of previously reported miRNAs.
Collapse
Affiliation(s)
- Nanna Lond Skov Frisk
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Ringstedgade 77B, 4700 Næstved, Denmark
| | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Ringstedgade 77B, 4700 Næstved, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| |
Collapse
|