1
|
Xiu M, Li B, He L, Shi Y, Zhang Y, Zhou S, Liu Y, Wang N, He J. Caffeic Acid Protects Against Ulcerative Colitis via Inhibiting Mitochondrial Apoptosis and Immune Overactivation in Drosophila. Drug Des Devel Ther 2025; 19:2157-2172. [PMID: 40145123 PMCID: PMC11938933 DOI: 10.2147/dddt.s499284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Background Ulcerative colitis (UC) is a chronic intestinal inflammation that is prone to relapse and is difficult to fully recover; therefore, there is a need for safer alternative treatments. Caffeic acid (CA) is a natural polyphenolic compound that has antioxidant and anti-inflammatory properties. However, the beneficial effects and mechanisms of action of CA in UC remain unclear. Purpose This study evaluated the protective effect of CA against dextran sulfate sodium (DSS)-induced intestinal injury in Drosophila melanogaster model. Results Oral administration of CA significantly reduced body damage in UC flies, improved their survival rate, restored damaged digestion, and improved locomotion. CA supplementation significantly alleviated intestinal damage in UC flies by restoring excretion balance, repairing intestinal atrophy, improving acid-base balance imbalance, inhibiting intestinal structural destruction, inhibiting intestinal epithelial cell death and intestinal stem cell (ISC) excessive proliferation, and reducing the number of harmful bacteria. Mechanistic studies found that CA significantly reduced the expression of Toll and Imd pathway genes (including Myd88, Dif, PGRP-LC, Imd, Rel, and Dpt), reduced ROS levels and the expression of apoptosis-related genes (Debcl, Cyt-c-p, DrlCE, Dronc, and Dark), and increased ATP and MFN2 levels. Conclusion CA alleviated intestinal damage mainly by inhibiting the Toll and Imd signaling pathways and inhibiting apoptosis mediated by mitochondrial damage. These findings suggest that CA holds promise as a potential therapeutic for UC treatment.
Collapse
Affiliation(s)
- Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, People’s Republic of China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou City, Gansu Province, People’s Republic of China
| | - Botong Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, People’s Republic of China
| | - Li He
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, People’s Republic of China
| | - Yan Shi
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, People’s Republic of China
| | - Yongxuan Zhang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, People’s Republic of China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, People’s Republic of China
| | - Yongqi Liu
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou City, Gansu Province, People’s Republic of China
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, People’s Republic of China
| | - Ningbo Wang
- Tibetan Medical College, Qinghai University, Xining City, Qinghai Province, People’s Republic of China
| | - Jianzheng He
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou City, Gansu Province, People’s Republic of China
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, People’s Republic of China
- Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, People’s Republic of China
| |
Collapse
|
2
|
Yang D, Xiu M, Jiang X, Kang Q, Fu J, Zhou S, Liu Y, He J. Caffeic Acid Alleviates Chronic Sleep Deprivation-Induced Intestinal Damage by Inhibiting the IMD Pathway in Drosophila. J Inflamm Res 2025; 18:3485-3498. [PMID: 40093942 PMCID: PMC11908395 DOI: 10.2147/jir.s500892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Background Sleep is vital for maintaining the health of the organism. Chronic sleep deprivation (CSD) is a key contributor to significant health risks, including the induction of gastrointestinal disorders. However, the mechanism of CSD caused intestinal damage remains unclear. Methods Drosophila melanogaster as an in vivo model was used to investigate the mechanism of CSD-induced intestinal injury, as well as the ameliorative effect of caffeic acid. Results CSD resulted in reduced survival and severely affected intestinal homeostasis in flies, as evidenced by disruption of intestinal acid-base homeostasis, increased feeding, increased intestinal permeability and shortened intestinal length. Meanwhile, the expressions of the immune deficiency (IMD) pathway-related genes PGRP-SB1, Dpt, AttA, AttB and Mtk were significantly up-regulated in the intestine of CSD flies. On the other hand, Caffeic acid supplementation restored intestinal acid-base homeostasis and intake, while improving intestinal barrier permeability and intestinal length, and effectively reducing intestinal damage. In addition, administration of caffeic acid decreased the expressions of PGRP-SB1, Dpt, AttA and Mtk genes in the CSD flies gut. Discussion These results suggested that CSD could disrupt gut homeostasis in adult flies by overactivating the IMD pathway, while Caffeic acid has an obvious protective role on the gut homeostasis.
Collapse
Affiliation(s)
- Dan Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Xiaolin Jiang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Qian Kang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Jinyu Fu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
3
|
Wang T, Wu Z, Li M, Cao B, Li J, Jiang J, Liu H, Zhang Q, Zhang S. TCP80-1, a new levan-neoseries fructan from Tupistra chinensis Baker rhizomes alleviates ulcerative colitis induced by dextran sulfate sodium in Drosophila melanogaster model. Food Res Int 2025; 203:115860. [PMID: 40022382 DOI: 10.1016/j.foodres.2025.115860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
Ulcerative colitis (UC) is a recurrent inflammation of the gastrointestinal tract, for which available treatment drugs are severely limited. Natural polysaccharides show potential for UC prevention. Herein, we extracted TCP80-1, a polysaccharide with significant anti-ulcerative colitis (UC) activity, from Tupistra chinensis Baker for the first time. Structure analysis revealed that TCP80-1 (3190 Da) was a levan-neoseries fructan containing → 6)-α-D-Glcp-(1→, →1)-β-D-Fruf-(2→, →1,6)-β-D-Fruf-(2→, →6)-β-D-Fruf-(2→ and β-D-Fruf-(2→ residues as backbone, with →6)-β-D-Fruf-(2→, and β-D-Fruf-(2→ as side chains substituted at C-6. The protective effect of TCP80-1 on UC was further evaluated using a UC Drosophila melanogaster model. The results demonstrated that TCP80-1 could alleviate the UC symptoms by reducing colonic atrophy, enhancing intestinal barrier, and promoting the proliferation and differentiation of intestinal stem cells (ISCs) into intestinal epithelial cells (IECs). Our findings provide important structural information about TCP80-1 and establish the foundation for the future progression and utilization of T. chinensis polysaccharide within the realm of UC therapy.
Collapse
Affiliation(s)
- Tanggan Wang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808 China
| | - Zhongnan Wu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808 China
| | - Meifeng Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808 China
| | - Baichuan Cao
- The First Clinical Medical School of Shanxi Medical University, Taiyuan 030001 China
| | - Junhao Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808 China
| | - Junting Jiang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808 China
| | - Hongju Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808 China.
| | - Qian Zhang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006 China.
| | - Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808 China.
| |
Collapse
|
4
|
Zhang Y, Lv J, Sun X, Zhang Y, Shao M, Shi B, Zhang Y, Gu J, Zhao C, Liu F. Toxicity of antimony in housefly after whole-life-cycle exposure: Changes in growth, development, redox homeostasis, mitochondrial function, and fecundity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117656. [PMID: 39752911 DOI: 10.1016/j.ecoenv.2024.117656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
The increasing utilization of antimony (Sb) in manufacturing industries has led to the emergence of Sb contamination in the environment as a significant public health concern. To elucidate the toxicity of Sb and its mechanism of action, this study aimed to investigate the adverse effects of Sb on a cosmopolitan insect, housefly (Musca domestica), under a whole life cycle (from embryonic to adult stage) exposure through the examination of a suite of parameters, including biological, physiological, behavioral, and molecular endpoints. A range of Sb concentrations, including moderate contamination (0.07 mM), heavy contamination (0.7 mM), and extreme contamination (7 and 70 mM), were conducted in the study. The results indicated that the houseflies could maintain their health when exposed to 0.07 mM Sb. The exposure of Sb (0.7-70 mM) to houseflies resulted in a range of adverse effects, including developmental retardation, locomotor inhibition, gut damage, oxidative stress, and mitochondrial dysfunction in the houseflies. Significantly, Sb demonstrated reproductive toxicity in the houseflies, as evidenced by reduced reproductive capacity, DNA damage, and ovarian abnormalities. The disturbance of hormonal synthesis and the MAPK pathway induced by Sb treatment may contribute to reproductive toxicity. These comprehensive toxicological data provide insight into the prediction of toxicity and the assessment of the ecological risk of Sb.
Collapse
Affiliation(s)
- Yuming Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Jinghua Lv
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaoli Sun
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yiwen Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Menghua Shao
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Bingbing Shi
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yajie Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Jihai Gu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chenchen Zhao
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengsong Liu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Wang Y, Qin Y, Kang Q, Wang H, Zhou S, Wu Y, Liu Y, Su Y, Guo Y, Xiu M, He J. Therapeutic potential of Astragalus membranaceus-Pueraria lobata decoction for the treatment of chemotherapy bowel injury. FASEB J 2024; 38:e70102. [PMID: 39382026 DOI: 10.1096/fj.202401677r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Intestinal mucositis (IM) is one of the most serious side effects of the chemotherapeutic agent irinotecan (CPT-11). Astragalus membranaceus-Pueraria lobata decoction is from the ancient medical book Zhengzhihuibu, has been reported to be used for the treatment of diabetes and hypertension. However, the beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) remain largely unknown. This study aimed to investigate the efficacy and mechanism of Astragalus membranaceus-Pueraria lobata decoction (AP) in treating CIM. The beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) were detected using Drosophila model, and combination with RT qPCR, transcriptomics. AP supplementation could significantly alleviate the CPT-11-induced body injury in Drosophila, such as increasing the survival rate, recovering the impaired digestion, improving the movement, and repairing the reproduction and developmental processes. Administration of AP remarkably alleviated the IM caused by CPT-11, including inhibiting the excretion, repairing the intestinal atrophy, improving the acid-base homeostasis imbalance, and inhibiting the disruption of intestinal structure. Mechanistic studies revealed that the protective role of AP against CPT-11 induced intestinal injury was regulated mainly by inhibiting immune-related Toll and Imd pathways, and enhancing the antioxidant capacity. Taken together, these results suggest that AP may be a novel agent to relieve CIM.
Collapse
Affiliation(s)
- Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Qin
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qian Kang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Huinan Wang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yifan Wu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yun Su
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yaqiong Guo
- Second Provincial People's Hospital of Gansu, Lanzhou, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Jianzheng He
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
- Second Provincial People's Hospital of Gansu, Lanzhou, China
- Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
6
|
Zvizdic Z, Jonuzi A, Pilav L, Sefic Pasic I, Vranić S. Chemotherapy-Induced Jejunal Perforations as an Atypical Presentation of Neutropenic Enterocolitis in an Acute Leukemia Patient. Cureus 2024; 16:e71636. [PMID: 39417065 PMCID: PMC11482738 DOI: 10.7759/cureus.71636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 10/19/2024] Open
Abstract
Neutropenic enterocolitis (NE) is a potentially life-threatening condition, primarily affecting neutropenic patients with hematologic malignancies. The clinical manifestations of NE in patients receiving antineoplastic drugs range from fever, diarrhea, nausea, vomiting, and abdominal pain to intestinal perforation and shock. We report the case of a 12-year-old boy with acute myelogenous leukemia, undergoing chemotherapy, who presented with an atypical case of NE. Due to numerous jejunal perforations and severe rectal bleeding, he experienced abdominal distension without any accompanying tenderness and the unexpected rapid onset of shock. Surgery was performed, and his postoperative course was uneventful. However, seven days later, Pseudomonas aeruginosa-induced sepsis made his condition rapidly worse due to severe neutropenia and thrombocytopenia. Despite intensive supportive therapy, the patient unfortunately passed away. NE remains a life-threatening complication in pediatric immunosuppressed leukemic patients. A high index of suspicion, prompt diagnosis, aggressive treatment with broad-spectrum antibiotics, and correction of fluid-electrolyte imbalances are crucial in reducing morbidity and mortality.
Collapse
Affiliation(s)
- Zlatan Zvizdic
- Department of Pediatric Surgery, Clinical Center University of Sarajevo, Sarajevo, BIH
| | - Asmir Jonuzi
- Department of Pediatric Surgery, Clinical Center University of Sarajevo, Sarajevo, BIH
| | - Lejla Pilav
- Department of Pediatrics, Clinical Center University of Sarajevo, Sarajevo, BIH
| | - Irmina Sefic Pasic
- Department of Radiology, Clinical Center University of Sarajevo, Sarajevo, BIH
| | - Semir Vranić
- Department of Pathology, College of Medicine, Qatar University, Doha, QAT
| |
Collapse
|
7
|
Chilaka KN, Namoju R. Maternal supplementation of alpha-lipoic acid ameliorates prenatal cytarabine-induced mutilation in reproductive development and function in F1 male adult rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4035-4053. [PMID: 38010397 DOI: 10.1007/s00210-023-02852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
AIMS Cytarabine (CYT), a prevalent anticancer drug for blood cancers, detrimentally affects male reproductive development and function. Alpha-lipoic acid (ALA), a universal antioxidant, offers defense against chemical-induced reproductive dysfunction. Our study sought to explore ALA's protective role against prenatal CYT-induced reproductive impairment in F1 male adult rats. MAIN METHODS Pregnant rats were divided into 5 groups and administered normal saline, ALA 200 mg/kg, CYT 12.5 mg/kg, CYT 25 mg/kg, and CYT 25 mg/kg + ALA 200 mg/ kg from gestational day 8 to 21. On postnatal day 73, F1 male rats were sacrificed, and general, oxidative, steroidogenic, spermatogenic, histological, and morphometrical parameters were evaluated. KEY FINDINGS Prenatal CYT caused dose-dependent reductions in body weight, testis, and accessory gland weights; elevated oxidative stress; delayed puberty onset; sperm anomalies (decreased count, motility, viability, seminal fructose; increased morphological anomalies); impeded steroidogenesis (lower testosterone, follicle-stimulating hormone, luteinizing hormone, 3β-Hydroxysteroid dehydrogenase(HSD), 17β-HSD, and elevated cholesterol); and testicular histopathological and morphometric disturbances. Maternal supplementation of ALA was found to alleviate all the CYT-induced reproductive disruptions. SIGNIFICANCE The present work accentuates the beneficial actions of ALA against CYT-induced impairment in reproductive development and functions by combating disruptions in oxidative balance, steroidogenesis, spermatogenesis, and testicular histological aberrations. However, future experimental and clinical studies are warranted to explore the molecular mechanisms involved in the ALA's protection against prenatal CYT-induced testicular injury.
Collapse
Affiliation(s)
- Kavitha N Chilaka
- GITAM Institute of Pharmacy, GITAM Deemed to Be University, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Ramanachary Namoju
- GITAM Institute of Pharmacy, GITAM Deemed to Be University, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
- Department of Pharmacology, Bhaskar Pharmacy College, Jawaharlal Nehru Technical University, Hyderabad, Telangana, 500075, India.
| |
Collapse
|
8
|
Li B, Xiu M, He L, Zhou S, Yi S, Wang X, Cao W, Liu Y, He J. Protective effect of San Huang Pill and its bioactive compounds against ulcerative colitis in Drosophila via modulation of JAK/STAT, apoptosis, Toll, and Nrf2/Keap1 pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117578. [PMID: 38104873 DOI: 10.1016/j.jep.2023.117578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE San Huang Pill (SHP) is a prescription in Dunhuang Ancient Medical Prescription, which has the efficacy of heat-clearing and dampness-drying, and is a traditional formula for the treatment of gastrointestinal diseases. However, its efficacy and mechanism in treating ulcerative colitis (UC) are still unclear. AIM OF THE STUDY To investigate the protective effects of SHP and its bioactive compounds against Dextran Sulfate Sodium (DSS)-induced intestinal damage using the Drosophila melanogaster model, and to detect the molecular mechanism of SHP in the treatment of UC. METHODS Survival rate, locomotion, feeding, and excretion were used to explore the anti-inflammatory effects of SHP. The pharmacotoxicity of SHP was measured using developmental analysis. Intestinal integrity, intestinal length, intestinal acid-base homeostasis, and Tepan blue assay were used to analyze the protective effect of SHP against DSS-induced intestinal damage. The molecular mechanism of SHP was detected using DHE staining, immunofluorescence, real-time PCR, 16 S rRNA gene sequencing, and network pharmacology analysis. Survival rate, intestinal length, and integrity analysis were used to detect the protective effect of bioactive compounds of SHP against intestinal damage. RESULTS SHP supplementation significantly increased the survival rate, restored locomotion, increased metabolic rate, maintained intestinal morphological integrity and intestinal homeostasis, protected intestinal epithelial cells, and alleviated intestinal oxidative damage in adult flies under DSS stimulation. Besides, administration of SHP had no toxic effect on flies. Moreover, SHP supplementation remarkably decreased the expression levels of genes related to JAK/STAT, apoptosis, and Toll signaling pathways, increased the gene expressions of the Nrf2/Keap1 pathway, and also reduced the relative abundance of harmful bacteria in DSS-treated flies. Additionally, the ingredients in SHP (palmatine, berberine, baicalein, wogonin, rhein, and aloeemodin) had protection against DSS-induced intestinal injury, such as prolonging survival rate, increasing intestinal length, and maintaining intestinal barrier integrity. CONCLUSION SHP had a strong anti-inflammatory function, and remarkably alleviated DSS-induced intestinal morphological damage and intestinal homeostatic imbalance in adult flies by regulating JAK/STAT, apoptosis, Toll and Nrf2/Keap1 signaling pathways, and also gut microbial homeostasis. This suggests that SHP may be a potential complementary and alternative medicine herb therapy for UC, which provides a basis for modern pharmacodynamic evaluation of other prescriptions in Dunhuang ancient medical prescription.
Collapse
Affiliation(s)
- Botong Li
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Li He
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Simeng Yi
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoqian Wang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Wangjie Cao
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
10
|
He J, Han S, Wang Y, Kang Q, Wang X, Su Y, Li Y, Liu Y, Cai H, Xiu M. Irinotecan cause the side effects on development and adult physiology, and induces intestinal damage via innate immune response and oxidative damage in Drosophila. Biomed Pharmacother 2023; 169:115906. [PMID: 37984304 DOI: 10.1016/j.biopha.2023.115906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Chemotherapy leads to significant side effects in patients, especially in the gut, resulting in various clinical manifestations and enhanced economic pressure. Until now, many of the underlying mechanisms remain poorly understood. Here, we used Drosophila melanogaster (fruit fly) as in vivo model to delineate the side effects and underlying mechanisms of Irinotecan (CPT-11). The results showed that administration of CPT-11 delayed larval development, induced imbalance of male to female ratio in offspring, shortened lifespan, impaired locomotor ability, changed metabolic capacity, induced ovarian atrophy, and increased excretion. Further, CPT-11 supplementation dramatically caused intestinal damages, including decreased intestinal length, increased crop size, disrupted gastrointestinal acid-based homeostasis, induced epithelial cell death, and damaged the ultrastructure and mitochondria structure of epithelial cells. The cross-comparative analysis between transcriptome and bioinformation results showed that CPT-11 induced intestinal damage mainly via regulating the Toll-like receptor signaling, NF-kappa B signaling, MAPK signaling, FoxO signaling, and PI3K-AKT signaling pathways. In addition, CPT-11 led to the intestinal damage by increasing ROS accumulation. These observations raise the prospects of using Drosophila as a model for the rapid and systemic evaluation of chemotherapy-induced side effects and high-throughput screening of the protective drugs.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuzhen Han
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Qian Kang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaoqian Wang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yun Su
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yaling Li
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Hui Cai
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Minghui Xiu
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|