1
|
Du Z, Wei W, Lu S, Wang H, Feng C, Li Y, Cui X, Zhe J, Sun K, Liu K, Fan Q, Sun D, Bao W. PCL-PEtOx-based Crystalline-core Micelles for the Targeted Delivery of Paclitaxel and Trabectedin in Ovarian Cancer Therapy. Acta Biomater 2025:S1742-7061(25)00303-4. [PMID: 40306394 DOI: 10.1016/j.actbio.2025.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Ovarian cancer (OC), which primarily metastasizes through ascites, is both invasive and fatal. Despite its toxicity and drug resistance, the platinum-based chemotherapy Taxol®+Carboplatin has been the first-line standard treatment for decades. Trabectedin (TBD) is a recently developed, highly effective antitumor drug that is also capable of regulating tumor-associated macrophages (TAMs), however, its severe side-effects hinder further clinical application. Here, we developed safe and efficient pH-responsive crystalline-core micelles for the combined treatment of OCs, exploiting parallel delivery of paclitaxel (PTX) and TBD. PCL-PEtOx-COOH was selected as the optimal carrier to encapsulate PTX or TBD, which self-assemble into micelles with internal crystalline cores. The carboxyl group exposed on the surface of the micelles was utilized to react with the amines of Herceptin and hyaluronic acid cross-linked polymer (Herceptin-HA) to form PTX(Target). Similarly, TBD(Target) was formed by reaction with the CD206-targeted peptide mUNO. The low critical micelle concentrations of PTX(Target) and TBD(Target) stabilize the micelles in the bloodstream and normal tissues to prevent drug release. In an acidic microenvironment, the tertiary amide group on PEtOx chain of micelles ionizes, causing disassembly and pH-responsive release. Compared with Taxol®+Carboplatin, the combination therapy displayed dramatically improved safety and efficacy, as evidenced by the elimination of peritoneal tumor spheroids and reduced expression of NOX4, a gene that is overexpressed in most OC tissues. Furthermore, in human tissues, the ROS-response gene NOX4 is linked to the development of M2-type TAMs. Collectively, this study provides a safe and effective non-platinum-based chemotherapy for OC, offering an alternative to traditional Taxol®+Carboplatin. STATEMENT OF SIGNIFICANCE: (1) Significance: This work reports a new approach for ovarian cancer (OC) treatment. We utilized trabectedin (TBD) which a recently developed, highly effective antitumor drug that is also capable of regulating tumor associated macrophages (TAMs) combined with paclitaxel (PTX) to replace platinum-based chemotherapy Taxol®+Carboplatin (TC regimen). Compared to the clinical formulations, Yondelis® and Taxol®, pH-responsive PCL-PEtOx-based crystalline-core micelles were utilized for targeted independent delivery of TBD and PTX to TAMs and tumor cells, which maintained safe and efficient transport, overcoming the challenges posed by TAMs and carboplatin resistance. The system capabilities have also been confirmed in organoid and PDX models. (2) This is the first report demonstrating that this approach simultaneously overcomes the abdominal metastasis and carboplatin resistance of OC.
Collapse
Affiliation(s)
- Zixiu Du
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wei Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuli Lu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Chenxu Feng
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Xinyi Cui
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianan Zhe
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai 200030, China
| | - Kuo Sun
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, 1st Minde Road, Nanchang, Jiangxi, 330006, China
| | - Kuai Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qiong Fan
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai 200030, China.
| | - Donglei Sun
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
2
|
Cruz ADL, Ronchi C, Bartolucci C, Socuéllamos PG, Benito-Bueno AD, Severi S, Zaza A, Valenzuela C. RvD1 and LXA 4 inhibitory effects on cardiac voltage-gated potassium channels. Biomed Pharmacother 2025; 187:118083. [PMID: 40273690 DOI: 10.1016/j.biopha.2025.118083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
The resolution of inflammation is modulated by specialized pro-resolving lipid mediators (SPMs), which can be modified in some cardiovascular diseases. Among these SPMs, RvD1 and LXA4 prevent atrial fibrillation (AF) remodeling and cardiac hypertrophy, respectively in animal models. However, little is known about their electrophysiological effects on cardiac voltage-gated (VG) ion channels. We used the patch-clamp technique in heterologous systems and cardiomyocytes to assess the acute effects of RvD1, and LXA4, on VG potassium currents. In silico simulations were used to predict the effect of current modulation on the atrial and ventricular action potentials (AP). RvD1 (5 nM) reduced IKs (channel KV7.1/KCNE1) in COS-7 cells and guinea-pig cardiomyocytes by 50.3 ± 7.3 % and 29.9 ± 5.4 % at + 40 mV, respectively, without modifying its voltage dependence. RvD1 was more potent than LXA4. In heterologous systems, RvD1 was also tested on IKur (channel KV1.5), Ito (channel KV4.3/KChIP2), IKr (channel KV11.1), and IK1 (channel Kir2.1) with the largest inhibitory effect on IKs and IKr. In in silico simulations RvD1 prolonged repolarization significantly in both atrial and ventricular myocytes. All these results provide a comprehensive evaluation of RvD1 and LXA4 on cardiac human potassium channels, at pathophysiologically relevant concentrations, being RvD1 more potent than LXA4. The predicted effects on the AP suggest that, along with their antiinflammatory action, RvD1 may reverse AF-induced electrical remodeling in the atria by their modulation of K+ currents. The same action might instead contribute to ventricular functional remodeling; however, direct evidence for this is missing.
Collapse
Affiliation(s)
- Alicia De la Cruz
- Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, Madrid, Spain; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Carlotta Ronchi
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy.
| | - Chiara Bartolucci
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy.
| | - Paula G Socuéllamos
- Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, Madrid, Spain.
| | | | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy.
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy.
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, Madrid, Spain; Network of Cardiovascular Diseases (CIBERCV), Spain.
| |
Collapse
|
4
|
Moura DS, Mondaza-Hernandez JL, Sanchez-Bustos P, Peña-Chilet M, Cordero-Varela JA, Lopez-Alvarez M, Carrillo-Garcia J, Martin-Ruiz M, Romero-Gonzalez P, Renshaw-Calderon M, Ramos R, Marcilla D, Alvarez-Alegret R, Agra-Pujol C, Izquierdo F, Ortega-Medina L, Martin-Davila F, Hernandez-Leon CN, Romagosa C, Salgado MAV, Lavernia J, Bagué S, Mayodormo-Aranda E, Alvarez R, Valverde C, Martinez-Trufero J, Castilla-Ramirez C, Gutierrez A, Dopazo J, Hindi N, Garcia-Foncillas J, Martin-Broto J. HMGA1 regulates trabectedin sensitivity in advanced soft-tissue sarcoma (STS): A Spanish Group for Research on Sarcomas (GEIS) study. Cell Mol Life Sci 2024; 81:219. [PMID: 38758230 PMCID: PMC11101398 DOI: 10.1007/s00018-024-05250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
HMGA1 is a structural epigenetic chromatin factor that has been associated with tumor progression and drug resistance. Here, we reported the prognostic/predictive value of HMGA1 for trabectedin in advanced soft-tissue sarcoma (STS) and the effect of inhibiting HMGA1 or the mTOR downstream pathway in trabectedin activity. The prognostic/predictive value of HMGA1 expression was assessed in a cohort of 301 STS patients at mRNA (n = 133) and protein level (n = 272), by HTG EdgeSeq transcriptomics and immunohistochemistry, respectively. The effect of HMGA1 silencing on trabectedin activity and gene expression profiling was measured in leiomyosarcoma cells. The effect of combining mTOR inhibitors with trabectedin was assessed on cell viability in vitro studies, whereas in vivo studies tested the activity of this combination. HMGA1 mRNA and protein expression were significantly associated with worse progression-free survival of trabectedin and worse overall survival in STS. HMGA1 silencing sensitized leiomyosarcoma cells for trabectedin treatment, reducing the spheroid area and increasing cell death. The downregulation of HGMA1 significantly decreased the enrichment of some specific gene sets, including the PI3K/AKT/mTOR pathway. The inhibition of mTOR, sensitized leiomyosarcoma cultures for trabectedin treatment, increasing cell death. In in vivo studies, the combination of rapamycin with trabectedin downregulated HMGA1 expression and stabilized tumor growth of 3-methylcholantrene-induced sarcoma-like models. HMGA1 is an adverse prognostic factor for trabectedin treatment in advanced STS. HMGA1 silencing increases trabectedin efficacy, in part by modulating the mTOR signaling pathway. Trabectedin plus mTOR inhibitors are active in preclinical models of sarcoma, downregulating HMGA1 expression levels and stabilizing tumor growth.
Collapse
Affiliation(s)
- David S Moura
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28015, Madrid, Spain.
- Department of Oncology in University Hospital Fundación Jiménez Díaz,, Av. de los Reyes Católicos, 2, 28040, Madrid, Spain.
| | - Jose L Mondaza-Hernandez
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28015, Madrid, Spain
| | - Paloma Sanchez-Bustos
- Institute of Biomedicine of Seville (IBIS, HUVR, CSIC, Universidad de Sevilla), 41013, Seville, Spain
| | - Maria Peña-Chilet
- Institute of Biomedicine of Seville (IBIS, HUVR, CSIC, Universidad de Sevilla), 41013, Seville, Spain
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, 41013, Seville, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, 41013, Seville, Spain
| | - Juan A Cordero-Varela
- Institute of Biomedicine of Seville (IBIS, HUVR, CSIC, Universidad de Sevilla), 41013, Seville, Spain
| | - Maria Lopez-Alvarez
- Institute of Biomedicine of Seville (IBIS, HUVR, CSIC, Universidad de Sevilla), 41013, Seville, Spain
| | - Jaime Carrillo-Garcia
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28015, Madrid, Spain
| | - Marta Martin-Ruiz
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28015, Madrid, Spain
| | - Pablo Romero-Gonzalez
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28015, Madrid, Spain
| | - Marta Renshaw-Calderon
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28015, Madrid, Spain
| | - Rafael Ramos
- Pathology Department, Son Espases University Hospital, 07120, Mallorca, Spain
| | - David Marcilla
- Pathology Department, University Hospital Virgen del Rocio, 41013, Seville, Spain
| | | | - Carolina Agra-Pujol
- Pathology Department, Gregorio Marañon Universitary Hospital, 28007, Madrid, Spain
| | - Francisco Izquierdo
- Pathological Anatomy Service, Complejo Asistencial Universitario de León, 24071, Leon, Spain
| | | | | | | | - Cleofe Romagosa
- Pathology department, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | | | - Javier Lavernia
- Medical Oncology Department, Instituto Valenciano de Oncologia, 46009, Valencia, Spain
| | - Silvia Bagué
- Pathology Department, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | | | - Rosa Alvarez
- Medical Oncology Department, Gregorio Marañon Universitary Hospital, 28007, Madrid, Spain
| | - Claudia Valverde
- Medical Oncology Department, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | | | | | - Antonio Gutierrez
- Hematology Department, Son Espases University Hospital, 07120, Mallorca, Spain
| | - Joaquin Dopazo
- Institute of Biomedicine of Seville (IBIS, HUVR, CSIC, Universidad de Sevilla), 41013, Seville, Spain
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, 41013, Seville, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, 41013, Seville, Spain
- INB-ELIXIR-es, FPS, Hospital Virgen del Rocío, 41013, Seville, Spain
| | - Nadia Hindi
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28015, Madrid, Spain
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, 28040, Madrid, Spain
- General de Villalba University Hospital, 28400, Madrid, Spain
| | - Jesus Garcia-Foncillas
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28015, Madrid, Spain
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, 28040, Madrid, Spain
- General de Villalba University Hospital, 28400, Madrid, Spain
| | - Javier Martin-Broto
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28015, Madrid, Spain.
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, 28040, Madrid, Spain.
- General de Villalba University Hospital, 28400, Madrid, Spain.
- Department of Oncology in University Hospital Fundación Jiménez Díaz,, Av. de los Reyes Católicos, 2, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Povo-Retana A, Landauro-Vera R, Alvarez-Lucena C, Cascante M, Boscá L. Trabectedin and Lurbinectedin Modulate the Interplay between Cells in the Tumour Microenvironment-Progresses in Their Use in Combined Cancer Therapy. Molecules 2024; 29:331. [PMID: 38257245 PMCID: PMC10820391 DOI: 10.3390/molecules29020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Trabectedin (TRB) and Lurbinectedin (LUR) are alkaloid compounds originally isolated from Ecteinascidia turbinata with proven antitumoral activity. Both molecules are structural analogues that differ on the tetrahydroisoquinoline moiety of the C subunit in TRB, which is replaced by a tetrahydro-β-carboline in LUR. TRB is indicated for patients with relapsed ovarian cancer in combination with pegylated liposomal doxorubicin, as well as for advanced soft tissue sarcoma in adults in monotherapy. LUR was approved by the FDA in 2020 to treat metastatic small cell lung cancer. Herein, we systematically summarise the origin and structure of TRB and LUR, as well as the molecular mechanisms that they trigger to induce cell death in tumoral cells and supporting stroma cells of the tumoral microenvironment, and how these compounds regulate immune cell function and fate. Finally, the novel therapeutic venues that are currently under exploration, in combination with a plethora of different immunotherapeutic strategies or specific molecular-targeted inhibitors, are reviewed, with particular emphasis on the usage of immune checkpoint inhibitors, or other bioactive molecules that have shown synergistic effects in terms of tumour regression and ablation. These approaches intend to tackle the complexity of managing cancer patients in the context of precision medicine and the application of tailor-made strategies aiming at the reduction of undesired side effects.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine-Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|