1
|
Lyu G, Liao H, Li R. Ferroptosis and renal fibrosis: mechanistic insights and emerging therapeutic targets. Ren Fail 2025; 47:2498629. [PMID: 40329437 PMCID: PMC12057793 DOI: 10.1080/0886022x.2025.2498629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
Ferroptosis is a regulated, iron-dependent form of cell death driven by lipid peroxidation and distinct from apoptosis, necroptosis, and pyroptosis. Recent studies implicate ferroptosis as a central contributor to the pathogenesis of renal fibrosis, a hallmark of chronic kidney disease associated with high morbidity and progression to end-stage renal failure. This review synthesizes current evidence linking ferroptotic signaling to fibrotic remodeling in the kidney, focusing on iron metabolism dysregulation, glutathione peroxidase 4 (GPX4) inactivation, lipid peroxide accumulation, and ferroptosis-regulatory pathways such as FSP1-CoQ10-NAD(P)H and GCH1-BH4. We detail how ferroptosis in tubular epithelial cells modulates pro-fibrotic cytokine release, macrophage recruitment, and TGF-β1-driven extracellular matrix deposition. Moreover, we explore ferroptosis as a therapeutic vulnerability in renal fibrosis, highlighting promising agents including iron chelators, GPX4 activators, anti-lipid peroxidants, and exosome-based gene delivery systems. By consolidating emerging preclinical data, this review provides a comprehensive mechanistic framework and identifies translational opportunities for targeting ferroptosis in fibrotic kidney disease.
Collapse
Affiliation(s)
- Guangna Lyu
- The Nephrology Department of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
- The Second People’s Hospital of Shanxi Province, Taiyuan, China
| | - Hui Liao
- The Drug Clinical Trial Institution of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- The Nephrology Department of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Chen M, Zhao Y, Hu S, Yuan JB, Xie KJ, Cai SN, Zhu XY, Du JK, Xu PB. Inhibition of SIRT1/HSF1 pathway contributes to doxorubicin-induced nephrotoxicity in ovarian tumor-bearing mice. Apoptosis 2025:10.1007/s10495-025-02122-z. [PMID: 40347321 DOI: 10.1007/s10495-025-02122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2025] [Indexed: 05/12/2025]
Abstract
Doxorubicin (DOX) is a common drug used in chemotherapy to treat for advanced ovarian cancer, but it can cause organ damage, particularly to the kidneys. This study aimed to investigate whether the SIRT1/HSF1 pathway is associated with DOX-induced nephrotoxicity. Bioinformatics analysis was performed using single-cell RNA sequencing (scRNA-seq) data from DOX-treated kidneys to investigate the potential mechanism of DOX-induced renal damage. To explore the role of HSF1 in DOX-induced nephrotoxicity, the lentivirus HSF1 (Lv-HSF1) was injected after tumor implantation, followed by DOX administration. DOX prevented ovarian tumor growth but caused renal injury in mice, as evidenced by elevated UACR, increased blood BUN levels, and abnormalities in kidney structure and fibrosis. Bioinformatic analysis revealed fewer podocytes in the kidneys of DOX-exposed mice than in those of control mice, which was further confirmed by examining renal tissue and murine podocyte cells. Gene set enrichment analysis revealed significant enrichment of HSF1-dependent transactivation and HSF1 activation pathways specifically within podocytes obtained from DOX-treated mice, which was also validated in renal tissue samples. Furthermore, HSF1A attenuated DOX-induced podocyte injury in vitro. Lv-HSF1-targeted podocytes mitigate DOX-induced podocyte injury in vivo. Notably, SIRT1 expression was significantly downregulated in both kidney tissues and podocytes subjected to DOX treatment. The observed damage to podocytes induced by DOX may be attributed to an increase in HSF1 acetylation facilitated through the downregulation of SIRT1, a process that can be counteracted by the administration of the SIRT1 agonist RSV. Collectively, these findings demonstrated that suppression of the SIRT1/HSF1 signaling pathway contributes to DOX-mediated nephrotoxicity in mice bearing ovarian tumors.
Collapse
Affiliation(s)
- Mo Chen
- Department of Anesthesiology, Zhejiang Cancer Hospital, Laboratory of Anesthesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Ying Zhao
- Department of Anesthesiology, Zhejiang Cancer Hospital, Laboratory of Anesthesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Song Hu
- Department of Anesthesiology, Zhejiang Cancer Hospital, Laboratory of Anesthesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jun-Bo Yuan
- Department of Anesthesiology, Zhejiang Cancer Hospital, Laboratory of Anesthesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Kang-Jie Xie
- Department of Anesthesiology, Zhejiang Cancer Hospital, Laboratory of Anesthesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Shu-Nv Cai
- Department of Anesthesiology, Zhejiang Cancer Hospital, Laboratory of Anesthesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Jian-Kui Du
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai, 200433, China.
| | - Ping-Bo Xu
- Department of Anesthesiology, Zhejiang Cancer Hospital, Laboratory of Anesthesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
3
|
Song BF, Li BJ, Sun Y, Li M, Rao T, Ruan Y, Cheng F. GOLPH3 promotes calcium oxalate-induced renal injury and fibrosis through Golgi stress-mediated apoptosis and inflammatory responses. Sci Rep 2025; 15:7640. [PMID: 40038402 PMCID: PMC11880244 DOI: 10.1038/s41598-025-91638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
A common urological disorder, calcium oxalate (CaOx) stones are the most common form of kidney stones. Deposition of CaOx crystals leads to tubular damage, interstitial fibrosis, and chronic kidney disease. Understanding the intrinsic mechanisms of kidney stone formation is essential for the prevention of kidney stones and the development of new therapeutic agents. The Golgi apparatus is a key organelle in the secretory pathway of eukaryotic cells, which plays an important role in the sorting, modification, and transport of proteins within the cell, and has been reported to be involved in several diseases, including prostate tumors, gastrointestinal tumors, sepsis, and so on. GOLPH3 is also known as GPP34, GMx33, or MIDAS. It is a glycoprotein that regulates traffic between the trans-Golgi network and the cell membrane. However, its role in renal injury caused by CaOx crystal deposition is still unclear. Results from immunohistochemistry, qRT-PCR, western blot, and public database single nucleotide RNA-seq showed that GOLPH3 was significantly upregulated in kidney stone patients and animal kidneys. Significant inhibition of Golgi stress, apoptosis, and renal fibrosis by GOLPH3 inhibition with siRNA in CaOx-stimulated HK-2 cells. The PI3K\AKT\mTOR signaling pathway was inhibited by GOLPH3 knockdown, which may be associated with reduced inflammatory response and apoptosis, as well as restoration of Golgi morphology and function. In conclusion, GOLPH3 plays a critical role in CaOx-induced kidney injury by promoting Golgi stress and increasing inflammatory responses, apoptosis, and renal fibrosis, suggesting that GOLPH3 is a potential therapeutic target for kidney stones.
Collapse
Affiliation(s)
- Bao-Feng Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo-Jun Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yushi Sun
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ming Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Cheng Y, Jiao Y, Wei W, Kou M, Cai Y, Li Y, Li H, Liu T. FBR2 modulates ferroptosis via the SIRT3/p53 pathway to ameliorate pulmonary fibrosis. Front Pharmacol 2025; 16:1509665. [PMID: 40008127 PMCID: PMC11850536 DOI: 10.3389/fphar.2025.1509665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background Idiopathic Pulmonary Fibrosis (IPF), an interstitial lung disease of unknown etiology, remains incurable with current therapies, which fail to halt disease progression or restore lung function. However, Feibi Recipe No. 2 (FBR2), a clinically validated traditional Chinese medicine formula, exhibits potential as an IPF treatment. Objective This study aimed to investigate the regulatory effect of FBR2 on ferroptosis through the SIRT3/p53 pathway and its therapeutic potential in improving IPF. Methods Pulmonary fibrosis was induced in C57BL/6J mice by intratracheal instillation of Bleomycin (BLM), followed by FBR2 treatment via gavage. Assessments encompassed histopathology, ELISA for cytokine detection, IHC and Western blot for protein expression analysis, and qRT-PCR for gene expression quantification. Transmission electron microscopy (TEM) was used to observe mitochondrial morphology. The roles of Erastin and the SIRT3 inhibitor 3-TYP were also explored to elucidate FBR2's mechanisms of action. Results FBR2 treatment significantly mitigated BLM-induced lung injury in mice, as evidenced by improved body weight and survival rates, and reduced levels of inflammatory cytokines, including IL-6 and TNF-α. FBR2 decreased collagen deposition in lung tissue, as shown by Masson's staining and IHC detection of Col-I and α-SMA, confirming its anti-fibrotic effects. It also reduced iron and MDA levels in lung tissue, increased GSH-Px activity, improved mitochondrial morphology, and enhanced the expression of GPX4 and SLC7A11, indicating its ferroptosis-inhibitory capacity. Furthermore, FBR2 increased SIRT3 levels and suppressed p53 and its acetylated forms, promoting the translocation of p53 from the nucleus to the cytoplasm where it co-localized with SIRT3. The protective effects of FBR2 were reversed by Erastin, confirming the central role of ferroptosis in pulmonary fibrosis treatment. The use of 3-TYP further confirmed FBR2's intervention in ferroptosis and cellular senescence through the SIRT3/p53 pathway. Conclusion FBR2 shows therapeutic potential in a BLM-induced pulmonary fibrosis mouse model, with its effects mediated through modulation of the ferroptosis pathway via the SIRT3/p53 mechanism. This study provides novel evidence for the targeted treatment of IPF and offers further insights into its pathogenesis.
Collapse
Affiliation(s)
- Yu Cheng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Jiao
- Department of Respiratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wan Wei
- Department of Respiratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengjia Kou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yaodong Cai
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Li
- Department of Respiratory and Critical Care Medicine, Beijing Jiangong Hospital, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Fan Z, Wei X, Zhu X, Du Y. Sirtuins in kidney homeostasis and disease: where are we now? Front Endocrinol (Lausanne) 2025; 15:1524674. [PMID: 39911234 PMCID: PMC11794115 DOI: 10.3389/fendo.2024.1524674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Sirtuins, identified as (NAD+)- dependent class III histone deacetylases, engage in a spectrum of biological functions, encompassing DNA damage repair, oxidative stress, immune modulation, mitochondrial homeostasis, apoptosis and autophagy. Sirtuins play an apoptosis role in regulating cellular operations and overall organism health. Mounting data indicate that dysregulated sirtuin expression is linked to the onset of renal diseases. Effective modulation of sirtuins expression and activity has been shown to improve renal function and attenuate the advancement of kidney diseases. In this review, we present a comprehensive overview of the biological impacts of sirtuins and their molecular targets in regulating renal diseases. Additionally, we detail advancements in elucidating sirtuin roles in the pathophysiology of both chronic and acute renal disorders. We review compounds that modulate sirtuin activity through activation or inhibition, potentially improving outcomes in renal disease. In summary, strategic manipulation of sirtuin activity represents a prospective therapeutic approach for renal diseases.
Collapse
Affiliation(s)
| | | | | | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Liu L, Wen T, Xiao Y, Chen H, Yang S, Shen X. Sea buckthorn extract mitigates chronic obstructive pulmonary disease by suppression of ferroptosis via scavenging ROS and blocking p53/MAPK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118726. [PMID: 39181279 DOI: 10.1016/j.jep.2024.118726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea buckthorn (Hippophae rhamnoides), a traditional Tibetan medicinal herb, exhibits protective effects against cardiovascular and respiratory diseases. Although Sea buckthorn extract (SBE) has been confirmed to alleviate airway inflammation in mice, its therapeutic effect and underlying mechanism on chronic obstructive pulmonary disease (COPD) requires further clarification. AIM OF THE STUDY To elucidate the alleviative effect and molecular mechanism of SBE on lipopolysaccharides (LPS)/porcine pancreatic elastase (PPE)-induced COPD by blocking ferroptosis. METHODS The anti-ferroptotic effects of SBE were evaluated in human BEAS-2B bronchial epithelial cells using CCK8, RT-qPCR, western blotting, and transmission electron microscopy. Transwell was employed to detect chemotaxis of neutrophils. COPD model was induced by intranasally administration of LPS/PPE in mice and measured by alterations of histopathology, inflammation, and ferroptosis. RNA-sequencing, western blotting, antioxidant examination, flow cytometry, DARTS, CETSA, and molecular docking were then used to investigate its anti-ferroptotic mechanisms. RESULTS In vitro, SBE not only suppressed erastin- or RSL3-induced ferroptosis by suppressing lipid peroxides (LPOs) production and glutathione (GSH) depletion, but also suppressed ferroptosis-induced chemotactic migration of neutrophils via reducing mRNA expression of chemokines. In vivo, SBE ameliorated LPS/PPE-induced COPD phenotypes, and inhibited the generation of LPOs, cytokines, and chemokines. RNA-sequencing showed that p53 pathway and mitogen-activated protein kinases (MAPK) pathway were implicated in SBE-mediated anti-ferroptotic action. SBE repressed erastin- or LPS/PPE-induced overactivation of p53 and MAPK pathway, thereby decreasing expression of diamine acetyltransferase 1 (SAT1) and arachidonate 15-lipoxygenase (ALOX15), and increasing expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). Mechanistically, erastin-induced elevation of reactive oxygen species (ROS) was reduced by SBE through directly scavenging free radicals, thereby contributing to its inhibition of p53 and MAPK pathways. CETSA, DARTS, and molecular docking further showed that ROS-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) may be the target of SBE. Overexpression of NOX4 partially impaired the anti-ferroptotic activity of SBE. CONCLUSION Our results demonstrated that SBE mitigated COPD by suppressing p53 and MAPK pro-ferroptosis pathways via directly scavenging ROS and blocking NOX4. These findings also supported the clinical application of Sea buckthorn in COPD therapy.
Collapse
Affiliation(s)
- Lu Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Wen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xiao
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqing Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shan Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Ye Z, Yang S, Chen L, Yu W, Xia Y, Li B, Zhou X, Cheng F. Luteolin alleviated calcium oxalate crystal induced kidney injury by inhibiting Nr4a1-mediated ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156302. [PMID: 39662099 DOI: 10.1016/j.phymed.2024.156302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND The global incidence of calcium oxalate (CaOx) kidney stones is rising, and effective treatments remain limited. Luteolin (Lut), a naturally flavonoid present in several plants, is recognized for its anti-inflammatory, anti-injury, and neuroprotective effects. However, its effects on CaOx kidney stone formation and the associated kidney damage are still unknown. OBJECTIVE Our study seeks to explore the therapeutic impact of Lut on kidney injury and renal fibrosis caused by CaOx crystal and to elucidate the underlying mechanisms. METHODS CaOx stone models were established in mice via intraperitoneal injection of glyoxylate (Gly, 100 mg/kg) for 12 days. Lut (50 mg/kg or 100 mg/kg) was administered intraperitoneally 7 days before and with the period of Gly treatment. Kidney function and histopathology changes in renal tissues were assessed. RNA sequencing was used to explore potential mechanisms between the model and Lut treatment groups. Molecular docking simulations evaluated the interaction between Lut and the downstream target Nr4a1. Moreover, Nr4a1 knockout mice and knockdown plasmids were used to validate the mechanism of Lut in the treatment of CaOx crystal-induced kidney injury. RESULTS Lut significantly mitigated kidney injury and renal fibrosis induced by CaOx crystal, as evidenced by improved kidney function, histopathology staining and Western blot analysis. Lut treatment also significantly inhibited lipid peroxidation and mitochondrial injury. In vitro experiments further demonstrated that Lut treatment alleviated injury and fibrosis in HK-2 cells. Mechanistically, RNA sequencing and molecular docking simulations indicated that Lut binds to Nr4a1 to regulate ferroptosis, thereby alleviating kidney injury induced by CaOx crystal. Overexpression of Nr4a1 negated Lut's beneficial effects, whereas Nr4a1 knockout exhibited a protective effect against kidney injury. CONCLUSION Lut exerts its protective effects by inhibiting ferroptosis via targeting Nr4a1-Slc7a11-GPX4 pathway, alleviating kidney injury and renal fibrosis caused by CaOx crystal deposition.
Collapse
Affiliation(s)
- Zehua Ye
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Songyuan Yang
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Lijia Chen
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Weimin Yu
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Yuqi Xia
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Bojun Li
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Xiangjun Zhou
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Fan Cheng
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060.
| |
Collapse
|
8
|
Yao X, Yang S, Chen L, Lin F, Ruan Y, Rao T, Cheng F. The bach1/G9a/Slc7a11 axis epigenetically promotes renal fibrosis by mediated ferroptosis. Int Immunopharmacol 2024; 143:113363. [PMID: 39393269 DOI: 10.1016/j.intimp.2024.113363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
A high percentage of individuals with renal fibrosis are susceptible to developing chronic kidney disease (CKD), and conventional therapy fails to halt the progression of renal fibrosis and CKD. Here, we assessed the potential functions of G9a in a unilateral ureteral obstruction (UUO)-induced renal fibrosis mouse model. The expression of G9a was significantly increased in the fibrotic kidneys of patients and mice. G9a knockout inhibited inflammatory cytokine production and collagen deposition in mice, whereas its overexpression aggravated renal fibrosis in mice. In vitro, the knockdown of G9a alleviated the production of inflammatory cytokines and renal fibrosis. G9a, a histone methyltransferase, interacts with transcription factor Bach1 and activates ferroptosis by suppressing the transcription of Slc7a11 via dimethylation of histone 3 lysine 9 (H3K9me2) both in vivo and in vitro. Collectively, our findings indicate that G9a could be an attractive therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Xiaobing Yao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijia Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
9
|
Li T, Yu C. Metal-Dependent Cell Death in Renal Fibrosis: Now and in the Future. Int J Mol Sci 2024; 25:13279. [PMID: 39769044 PMCID: PMC11678559 DOI: 10.3390/ijms252413279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Renal fibrosis is a common final pathway underlying nearly almost all progressive kidney diseases. Metal ions are essential trace elements in organisms and are involved in important physiological activities. However, aberrations in intracellular metal ion metabolism may disrupt homeostasis, causing cell death and increasing susceptibility to various diseases. Accumulating evidence suggests a complex association between metal-dependent cell death and renal fibrosis. In this article, we provide a comprehensive overview of the specific molecular mechanisms of metal-dependent cell death and their crosstalk, up-to-date evidence supporting their role in renal fibrosis, therapeutic targeting strategies, and research needs, aiming to offer a rationale for future clinical treatment of renal fibrosis.
Collapse
Affiliation(s)
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
10
|
Xu Y, Liang H, Mao X, Song Z, Shen X, Ge D, Chen Y, Hou B, Hao Z. Puerarin alleviates apoptosis and inflammation in kidney stone cells via the PI3K/AKT pathway: Network pharmacology and experimental verification. J Cell Mol Med 2024; 28:e70180. [PMID: 39462270 PMCID: PMC11512754 DOI: 10.1111/jcmm.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Puerarin(PUE), an isoflavonoid extracted from Pueraria root, has anti-apoptotic effects. The objective of this research is to examine the impact of PUE on renal apoptosis and inflammation resulting from renal calculi and to elucidate its mechanism. The approach of network pharmacology and molecular docking was employed to discover potential targets and pathways of PUE. An animal model of calcium oxalate crystal deposition by intraperitoneal injection of glyoxylate and a model of COM-induced human renal tubular epithelial cells (HK2) were used to investigate the pharmacological mechanisms of PUE against apoptosis and inflammation. We used haematoxylin-eosin (H&E) and Periodic Acid-Schiff staining (PAS) to assess the effect of PUE on crystal deposition and damage. The mechanism of PUE was elucidated and validated using Western blotting, histology and immunohistochemical staining. Network pharmacology findings indicated that the PI3K/AKT pathway plays a crucial role in PUE. We experimentally demonstrate that PUE alleviated COM-induced changes in apoptotic proteins, increased inflammatory indicators and changes in oxidative stress-related indicators in HK2 cells by activating the PI3K/AKT pathway, reduced serum creatinine and urea nitrogen levels in mice caused by CaOx, alleviated crystal deposition and damage, and alleviated apoptosis, oxidative stress and inflammation. Puerarin attenuates renal apoptosis and inflammation caused by kidney stones through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yuexian Xu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Hu Liang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Xike Mao
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Zhenyu Song
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Xudong Shen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Defeng Ge
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Yang Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Bingbing Hou
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Zongyao Hao
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| |
Collapse
|
11
|
Wu H, Qiu Z, Wang L, Li W. Renal Fibrosis: SIRT1 Still of Value. Biomedicines 2024; 12:1942. [PMID: 39335456 PMCID: PMC11428497 DOI: 10.3390/biomedicines12091942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.
Collapse
Affiliation(s)
- Huailiang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| | - Liyan Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| |
Collapse
|
12
|
Fang T, Wang J, Sun S, Deng X, Xue M, Han F, Sun B, Chen L. JinLiDa granules alleviates cardiac hypertrophy and inflammation in diabetic cardiomyopathy by regulating TP53. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155659. [PMID: 38759318 DOI: 10.1016/j.phymed.2024.155659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND JinLiDa granules (JLD) is a traditional Chinese medicine (TCM) used to treat type 2 diabetes mellitus with Qi and Yin deficiency. Clinical evidence has shown that JLD can alleviate diabetic cardiomyopathy, but the exact mechanism is not yet clear. PURPOSE The purpose of this study was to examine the potential role and mechanism of JLD in the treatment of diabetic cardiomyopathy through network pharmacological analysis and basic experiments. METHODS The targets of JLD associated with diabetic cardiomyopathy were examined by network pharmacology. Protein interaction analysis was performed on the targets, and the associated pathways were searched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Diabetic mice were treated with low or high doses of JLD by gavage, and AC16 and H9C2 cardiomyocytes exposed to high-glucose conditions were treated with JLD. The analysis results were verified by various experimental techniques to examine molecular mechanisms. RESULTS Network pharmacological analysis revealed that JLD acted on the tumor suppressor p53 (TP53) during inflammation and fibrosis associated with diabetic cardiomyopathy. The results of basic experiments showed that after JLD treatment, ventricular wall thickening in diabetic mouse hearts was attenuated, cardiac hypertrophy and myocardial inflammation were alleviated, and the expression of cardiac hypertrophy- and inflammation-related factors in cardiomyocytes exposed to a high-glucose environment was decreased. Cardiomyocyte morphology also improved after JLD treatment. TP53 expression and the tumor necrosis factor (TNF) and transforming growth factor beta-1 (TGFβ1) signaling pathways were significantly altered, and inhibiting TP53 expression effectively alleviated the activation of the TNF and TGFβ1 signaling pathways under high glucose conditions. Overexpression of TP53 activated these signaling pathways. CONCLUSIONS JLD acted on TP53 to regulate the TNF and TGFβ1 signaling pathways, effectively alleviating cardiomyocyte hypertrophy and inflammation in high glucose and diabetic conditions. Our study provides a solid foundation for the future treatment of diabetic cardiomyopathy with JLD.
Collapse
Affiliation(s)
- Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Jingyi Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Shengnan Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaoqing Deng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Mei Xue
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Fei Han
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
13
|
Bao YN, Yang Q, Shen XL, Yu WK, Zhou L, Zhu QR, Shan QY, Wang ZC, Cao G. Targeting tumor suppressor p53 for organ fibrosis therapy. Cell Death Dis 2024; 15:336. [PMID: 38744865 PMCID: PMC11094089 DOI: 10.1038/s41419-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.
Collapse
Affiliation(s)
- Yi-Ni Bao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xin-Lei Shen
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Wen-Kai Yu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Li Zhou
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qing-Ru Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qi-Yuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
14
|
Hou C, Zhong B, Gu S, Wang Y, Ji L. Identification and validation of the biomarkers related to ferroptosis in calcium oxalate nephrolithiasis. Aging (Albany NY) 2024; 16:5987-6007. [PMID: 38536018 PMCID: PMC11042938 DOI: 10.18632/aging.205684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 04/23/2024]
Abstract
Ferroptosis is a specific type of programmed cell death characterized by iron-dependent lipid peroxidation. Understanding the involvement of ferroptosis in calcium oxalate (CaOx) stone formation may reveal potential targets for this condition. The publicly available dataset GSE73680 was used to identify 61 differentially expressed ferroptosis-related genes (DEFERGs) between normal kidney tissues and Randall's plaques (RPs) from patients with nephrolithiasis through employing weighted gene co-expression network analysis (WGCNA). The findings were validated through in vitro and in vivo experiments using CaOx nephrolithiasis rat models induced by 1% ethylene glycol administration and HK-2 cell models treated with 1 mM oxalate. Through WGCNA and the machine learning algorithm, we identified LAMP2 and MDM4 as the hub DEFERGs. Subsequently, nephrolithiasis samples were classified into cluster 1 and cluster 2 based on the expression of the hub DEFERGs. Validation experiments demonstrated decreased expression of LAMP2 and MDM4 in CaOx nephrolithiasis animal models and cells. Treatment with ferrostatin-1 (Fer-1), a ferroptosis inhibitor, partially reversed oxidative stress and lipid peroxidation in CaOx nephrolithiasis models. Moreover, Fer-1 also reversed the expression changes of LAMP2 and MDM4 in CaOx nephrolithiasis models. Our findings suggest that ferroptosis may be involved in the formation of CaOx kidney stones through the regulation of LAMP2 and MDM4.
Collapse
Affiliation(s)
- Chao Hou
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Bing Zhong
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Shuo Gu
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Yunyan Wang
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Lu Ji
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| |
Collapse
|
15
|
Jin Q, Ma F, Liu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Sirtuins in kidney diseases: potential mechanism and therapeutic targets. Cell Commun Signal 2024; 22:114. [PMID: 38347622 PMCID: PMC10860260 DOI: 10.1186/s12964-023-01442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Xiong P, Zheng YY, Ouyang JM. Carboxylated Pocoa polysaccharides inhibited oxidative damage and inflammation of HK-2 cells induced by calcium oxalate nanoparticles. Biomed Pharmacother 2023; 169:115865. [PMID: 37972469 DOI: 10.1016/j.biopha.2023.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
The inhibitory effects of Chinese medicine Pocoa (PCPs) with different carboxyl group (-COOH) contents on oxidative damage and inflammatory response of renal epithelial cells and the influence of -COOH content in polysaccharides were investigated. HK-2 cell damage model was established by nanocalcium oxalate crystals (nanoCOM), and then PCPs with -COOH contents of 2.56% (PCP0), 7.48% (PCP1), 12.07% (PCP2), and 17.18% (PCP3) were used to protect the cells. PCPs could inhibit the damage of nanoCOM to HK-2 cells, increase cell viability, restore cytoskeleton and morphology, and improve lysosomal integrity. PCPs can reduce the oxidative stress response of nanoCOM to cells, inhibit the opening of mPTP and cell necrotic apoptosis, reduce the level of Ca2+ ions in cells, the production of ATP and MDA, and increase SOD expression. PCPs can also reduce the cellular inflammatory response caused by oxidative damage, and reduce the expression of nitric oxide (NO), inflammatory factors TNF-α, IL-6, IL-1β and MCP-1, as well as the content of inflammasome NLRP3. After protection, PCPs can inhibit the endocytosis of nanoCOM crystals by cells. With the increase in -COOH content in PCPs, its ability to inhibit nanoCOM cell damage, reduce oxidative stress, reduce inflammatory response, and inhibit crystal endocytosis increases, that is, PCP3 with the highest -COOH content, shows the best biological activity. Inhibiting cell damage and inflammation and reducing a large amount of endocytosis of crystals by cells are beneficial to inhibit the formation of kidney stones.
Collapse
Affiliation(s)
- Peng Xiong
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China
| | - Yu-Yun Zheng
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China.
| |
Collapse
|
17
|
Tziastoudi M, Pissas G, Golfinopoulos S, Filippidis G, Dousdampanis P, Eleftheriadis T, Stefanidis I. Sodium-Glucose Transporter 2 (SGLT2) Inhibitors and Iron Deficiency in Heart Failure and Chronic Kidney Disease: A Literature Review. Life (Basel) 2023; 13:2338. [PMID: 38137939 PMCID: PMC10744560 DOI: 10.3390/life13122338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Heart failure (HF) and chronic kidney disease (CKD) are associated with high mortality. In both disorders, impaired iron homeostasis, mostly in the form of a functional iron deficiency, is a frequent co-morbidity. In HF, functional iron deficiency and management by i.v. iron supplementation have been proven to affect both prognosis and functional capacity. In the same context, iron supplementation is routine for the adequate management of renal anemia in CKD. In numerous recent studies in HF and in CKD, sodium-glucose transporter 2 (SGLT2) inhibitor treatment has been proven to significantly reduce mortality. Furthermore, the same trials showed that these drugs alleviate iron deficiency and anemia. These effects of SGLT2 inhibitors may be due to an amelioration of inflammation with reduced interleukin-6 (IL-6) and to an enhancement of autophagy with increased sirtuin 1 (SIRT1), both associated with modified production of hepcidin and enhanced ferritinophagy. However, the exact pathogenic basis of the beneficial SGLT2 inhibitor action is not fully elucidated. Nevertheless, effects on iron homeostasis might be a potential explanatory mechanism for the powerful SGLT2 inhibitors' cardiovascular and renal outcome benefits. In addition, the interaction between iron supplementation and SGLT2 inhibitors and its potential impact on prognosis remains to be clarified by future studies. This review represents a significant effort to explore the complex relationships involved, seeking to elucidate the intricate mechanisms by which SGLT2 inhibitors influence iron homeostasis.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Clinic of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (G.P.); (S.G.); (G.F.); (P.D.); (T.E.)
| | | | | | | | | | | | - Ioannis Stefanidis
- Clinic of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (G.P.); (S.G.); (G.F.); (P.D.); (T.E.)
| |
Collapse
|
18
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J, Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther 2023; 8:449. [PMID: 38072908 PMCID: PMC10711040 DOI: 10.1038/s41392-023-01720-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Yinshi Xu
- Department of Outpatient, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|
19
|
Li J, Zheng S, Fan Y, Tan K. Emerging significance and therapeutic targets of ferroptosis: a potential avenue for human kidney diseases. Cell Death Dis 2023; 14:628. [PMID: 37739961 PMCID: PMC10516929 DOI: 10.1038/s41419-023-06144-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Kidney diseases remain one of the leading causes of human death and have placed a heavy burden on the medical system. Regulated cell death contributes to the pathology of a plethora of renal diseases. Recently, with in-depth studies into kidney diseases and cell death, a new iron-dependent cell death modality, known as ferroptosis, has been identified and has attracted considerable attention among researchers in the pathogenesis of kidney diseases and therapeutics to treat them. The majority of studies suggest that ferroptosis plays an important role in the pathologies of multiple kidney diseases, such as acute kidney injury (AKI), chronic kidney disease, and renal cell carcinoma. In this review, we summarize recently identified regulatory molecular mechanisms of ferroptosis, discuss ferroptosis pathways and mechanisms of action in various kidney diseases, and describe the protective effect of ferroptosis inhibitors against kidney diseases, especially AKI. By summarizing the prominent roles of ferroptosis in different kidney diseases and the progress made in studying ferroptosis, we provide new directions and strategies for future research on kidney diseases. In summary, ferroptotic factors are potential targets for therapeutic intervention to alleviate different kidney diseases, and targeting them may lead to new treatments for patients with kidney diseases.
Collapse
Affiliation(s)
- Jinghan Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Sujuan Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|