1
|
Hassan AHE, Bae ES, Jeong Y, Ock CW, El-Sayed SM, Kim M, Radwan MF, Ibrahim TS, Cho JY, Park BY, Sim J, Lee SK, Lee YS. Design, synthesis and evaluation of acetylcholine-antitumor lipid hybrids led to identification of a potential anticancer agent disrupting the CDK4/6-Rb pathway in lung cancer. RSC Med Chem 2025:d4md01007h. [PMID: 40135145 PMCID: PMC11931566 DOI: 10.1039/d4md01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Hybridization of acetylcholine with antitumor lipids (ATLs) was explored to achieve novel potential anticancer agents. The combination with a 2-stearoxyphenyl moiety substantially enhanced the anticancer activity of the acetylcholine hybrids. Compounds 6, 8, 9 and 10 exhibited pronounced anticancer activities higher than edelfosine and stPEPC and NSC43067. Compounds 6, 8, 9 and 10 also showed broad-spectrum anticancer activity against diverse cancer cells including lung, ovarian, renal, prostate, leukaemia, colon, CNS, melanoma, and breast cancer cells. Compounds 6 and 8 were potent compounds eliciting single digit low micromolar GI50 values. Compound 6 was the most potent against non-small cell lung cancer, ovarian cancer, renal cancer, and prostate cancer. Meanwhile, compound 8 was the most potent against leukaemia, colon cancer, CNS cancer, melanoma, and breast cancer. Exploration of the mechanism of action of compound 6 in A549 non-small cell lung cancer cells showed that it triggers cell cycle arrest in the G0/G1 phase via disruption of the CDK4/6-Rb pathway and induces apoptosis via the activation of caspases, upregulation of BAX and cleavage of PARP. Overall, the results present acetylcholine-ATL hybrids 6 and 8 as potential anticancer agents for possible further development.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
- Department of Pharmacy, College of Pharmacy, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University Seoul 02447 Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University Seoul 08826 Republic of Korea
| | - Youngdo Jeong
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Chae Won Ock
- Natural Products Research Institute, College of Pharmacy, Seoul National University Seoul 08826 Republic of Korea
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura National University Gamasa 7731168 Egypt
| | - Minji Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Mohamed F Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Jun-Young Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Boyoung Y Park
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University Seoul 02447 South Korea
| | - Jaehoon Sim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University Seoul 02447 Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University Seoul 08826 Republic of Korea
| | - Yong Sup Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| |
Collapse
|
2
|
Jamialahmadi K, Noruzi S. Matrix metalloproteinases, chemoresistance and cancer. PATHOPHYSIOLOGICAL ASPECTS OF PROTEASES IN CANCER 2025:385-409. [DOI: 10.1016/b978-0-443-30098-1.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Xu D, Wu H, Tian M, Liu Q, Zhu Y, Zhang H, Zhang X, Shen H. Isolinderalactone suppresses pancreatic ductal adenocarcinoma by activating p38 MAPK to promote DDIT3 expression and trigger endoplasmic reticulum stress. Int Immunopharmacol 2024; 143:113497. [PMID: 39486185 DOI: 10.1016/j.intimp.2024.113497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, and its incidence rate is increasing. PDAC patients are prone to acquired chemotherapy resistance, necessitating the development of novel drugs to provide alternative treatment options. In recent years, traditional folk medicine and its active ingredients have garnered increasing attention for their effectiveness in treating tumors. Here, we discovered that isolinderalactone (ILL), a sesquiterpenoid compound extracted from the traditional Chinese medicine Lindera aggregata (Sims) Kosterm., possesses anti-PDAC pharmacological activity. Our results revealed that ILL decreased the proliferative capacity of PDAC cells in a time- and dose-dependent manner. The migration and invasion abilities of tumor cells were significantly suppressed due to the inhibition of epithelial-to-mesenchymal transition (EMT). Additionally, the cell cycle was arrested in the G2/M phase, leading to apoptosis, and inhibiting inflammatory responses. Mechanistically, bioinformatics analysis of molecular expression changes combined with in vivo and in vitro experiments demonstrated that ILL induces persistent ER stress by activating p38 MAPK signaling pathway, thus promoting the expression of DDIT3, and ultimately suppressing progression-related cell behaviors. Animal experiments confirmed that ILL also inhibited PDAC development in vivo with minimal toxicity. In summary, our study identified ILL as a potential therapeutic compound for PDAC treatment.
Collapse
Affiliation(s)
- Dongchao Xu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China
| | - Hao Wu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
| | - Mengyao Tian
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China
| | - Yuanling Zhu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China.
| | - Hongzhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
4
|
Alonso-Pérez V, Hernández V, Calzado MA, Vicente-Blázquez A, Gajate C, Soler-Torronteras R, DeCicco-Skinner K, Sierra A, Mollinedo F. Suppression of metastatic organ colonization and antiangiogenic activity of the orally bioavailable lipid raft-targeted alkylphospholipid edelfosine. Biomed Pharmacother 2024; 171:116149. [PMID: 38266621 DOI: 10.1016/j.biopha.2024.116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Metastasis is the leading cause of cancer mortality. Metastatic cancer is notoriously difficult to treat, and it accounts for the majority of cancer-related deaths. The ether lipid edelfosine is the prototype of a family of synthetic antitumor compounds collectively known as alkylphospholipid analogs, and its antitumor activity involves lipid raft reorganization. In this study, we examined the effect of edelfosine on metastatic colonization and angiogenesis. Using non-invasive bioluminescence imaging and histological examination, we found that oral administration of edelfosine in nude mice significantly inhibited the lung and brain colonization of luciferase-expressing 435-Lung-eGFP-CMV/Luc metastatic cells, resulting in prolonged survival. In metastatic 435-Lung and MDA-MB-231 breast cancer cells, we found that edelfosine also inhibited cell adhesion to collagen-I and laminin-I substrates, cell migration in chemotaxis and wound-healing assays, as well as cancer cell invasion. In 435-Lung and other MDA-MB-435-derived sublines with different organotropism, edelfosine induced G2/M cell cycle accumulation and apoptosis in a concentration- and time-dependent manner. Edelfosine also inhibited in vitro angiogenesis in human and mouse endothelial cell tube formation assays. The antimetastatic properties were specific to cancer cells, as edelfosine had no effects on viability in non-cancerous cells. Edelfosine accumulated in membrane rafts and endoplasmic reticulum of cancer cells, and membrane raft-located CD44 was downregulated upon drug treatment. Taken together, this study highlights the potential of edelfosine as an attractive drug to prevent metastatic growth and organ colonization in cancer therapy. The raft-targeted drug edelfosine displays a potent activity against metastatic organ colonization and angiogenesis, two major hallmarks of tumor malignancy.
Collapse
Affiliation(s)
- Verónica Alonso-Pérez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro de Investigación del Cáncer (CIC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Vanessa Hernández
- Biological Clues of the Invasive and Metastatic Phenotype Group, Molecular Oncology Department, Bellvitge Biomedical Research Institute (IDIBELL), E-08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), E-14004 Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, E-14004 Córdoba, Spain; Hospital Universitario Reina Sofía, E-14004 Córdoba, Spain
| | - Alba Vicente-Blázquez
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, C/ Ramiro de Maeztu 9, E-28040 Madrid, Spain; Department of Biology, American University, Washington, DC 20016, USA
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro de Investigación del Cáncer (CIC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, C/ Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Rafael Soler-Torronteras
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), E-14004 Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, E-14004 Córdoba, Spain; Hospital Universitario Reina Sofía, E-14004 Córdoba, Spain
| | | | - Angels Sierra
- Biological Clues of the Invasive and Metastatic Phenotype Group, Molecular Oncology Department, Bellvitge Biomedical Research Institute (IDIBELL), E-08907 L'Hospitalet de Llobregat, Barcelona, Spain; Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona-FCRB, E-08036 Barcelona, Spain; Department of Medicine and Life Sciences (MELIS), Faculty of Health and Live Sciences, Universitat Pompeu Fabra, E-08036 Barcelona, Spain
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro de Investigación del Cáncer (CIC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, C/ Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
5
|
Zhu X, Huang N, Ji Y, Sheng X, Huo J, Zhu Y, Huang M, He W, Ma J. Brusatol induces ferroptosis in oesophageal squamous cell carcinoma by repressing GSH synthesis and increasing the labile iron pool via inhibition of the NRF2 pathway. Biomed Pharmacother 2023; 167:115567. [PMID: 37742602 DOI: 10.1016/j.biopha.2023.115567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023] Open
Abstract
Brusatol (Bru), a bioactive compound found in Brucea sumatrana, exerts antitumour effects on several malignancies. However, the role and molecular mechanism of Bru in squamous cell carcinoma of the oesophagus (ESCC) remain unclear. Here, we found that Bru decreased the survival of ESCC cells. Subsequently, the ferroptosis inhibitors, deferoxamine and liproxstatin-1, rescued Bru-induced cell death, indicating that ferroptosis plays a major role in Bru-induced cell death. Furthermore, Bru promoted lipid peroxidation, glutathione (GSH) depletion, and ferrous iron overload in vitro. Consistent with these in vitro results, Bru significantly inhibited tumour growth in KYSE150 xenograft nude mice by triggering ferroptosis. Mechanistically, nuclear factor E2-related factor 2 (NRF2) inactivation via increased ubiquitin-proteasome degradation was found to be a vital determinant of ferroptosis induced by Bru. Notably, Bru significantly decreases GSH synthesis, iron storage, and efflux by downregulating the expression of NRF2 target genes (glutamate-cysteine ligase catalytic subunit (GCLC), solute carrier family 7 member 11 (SLC7A11), ferritin heavy chain 1 (FTH1), and solute carrier family 40 member 1 (SLC40A1)), resulting in the accumulation of lethal lipid-based reactive oxygen species (ROS) and intracellular enrichment of chelated iron. Taken together, our findings indicate that ferroptosis is a novel mechanism underlying Bru-induced antitumour activity and will hopefully provide a valuable compound for ESCC treatment.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Nannan Huang
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yao Ji
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Xinling Sheng
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Juanjuan Huo
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yuan Zhu
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Menghuan Huang
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Wei He
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China.
| | - Junting Ma
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|