1
|
Radmard S. Abnormal Movements and Movement Disorder Urgencies. Med Clin North Am 2025; 109:509-528. [PMID: 39893026 DOI: 10.1016/j.mcna.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Movement disorder urgencies present as an acute-to-subacute-onset primary movement disorder. Emergencies can lead to patient morbidity or mortality if not readily recognized. Many of these presentations have no standard diagnostic criteria or definitive laboratory tests, and thus relying on phenomenology is a clinician's best way to approach these challenging disorders. This section describes the phenomenology, presentation, complications, and management of movement disorder urgencies and emergencies.
Collapse
Affiliation(s)
- Sara Radmard
- Department of Neurology, Division of Movement Disorders, Albany Medical Center, 47 New Scotland Avenue MC70, Albany, NY 12208, USA.
| |
Collapse
|
2
|
Wolfgang AS, Fonzo GA, Gray JC, Krystal JH, Grzenda A, Widge AS, Kraguljac NV, McDonald WM, Rodriguez CI, Nemeroff CB. MDMA and MDMA-Assisted Therapy. Am J Psychiatry 2025; 182:79-103. [PMID: 39741438 DOI: 10.1176/appi.ajp.20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
MDMA (i.e., 3,4-methylenedixoymethamphetamine), commonly known as "Ecstasy" or "Molly," has been used since the 1970s both in recreational and therapeutic settings. The Food and Drug Administration (FDA) designated MDMA-Assisted Therapy (MDMA-AT) as a Breakthrough Therapy for posttraumatic stress disorder (PTSD) in 2017, and the FDA is requiring an additional phase 3 trial after rejecting the initial New Drug Application in 2024. Unlike other psychedelics, MDMA uniquely induces prosocial subjective effects of heightened trust and self-compassion while maintaining ego functioning as well as cognitive and perceptual lucidity. While recreational use in nonmedical settings may still cause harm, especially due to adulterants or when used without proper precautions, conclusions that can be drawn from studies of recreational use are limited by many confounds. This especially limits the extent to which evidence related to recreational use can be extrapolated to therapeutic use. A considerable body of preliminary evidence suggests that MDMA-AT delivered in a controlled clinical setting is a safe and efficacious treatment for PTSD. After a course of MDMA-AT involving three MDMA administrations supported by psychotherapy, 67%-71% of individuals with PTSD no longer meet diagnostic criteria after MDMA-AT versus 32%-48% with placebo-assisted therapy, and effects endure at long-term follow-up. This review primarily aims to distinguish evidence of recreational use in nonclinical settings versus MDMA-AT using pharmaceutical-grade MDMA in controlled clinical settings. This review further describes the putative neurobiological mechanisms of MDMA underlying its therapeutic effects, the clinical evidence of MDMA-AT, considerations at the level of public health and policy, and future research directions.
Collapse
Affiliation(s)
- Aaron S Wolfgang
- Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, MD (Wolfgang); Departments of Psychiatry (Wolfgang) and Medical and Clinical Psychology (Gray), Uniformed Services University, Bethesda, MD; Departments of Psychiatry (Wolfgang, Krystal), Neuroscience (Krystal), and Psychology (Krystal), Yale University School of Medicine, New Haven, CT; Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA (Grzenda); Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez)
| | - Gregory A Fonzo
- Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, MD (Wolfgang); Departments of Psychiatry (Wolfgang) and Medical and Clinical Psychology (Gray), Uniformed Services University, Bethesda, MD; Departments of Psychiatry (Wolfgang, Krystal), Neuroscience (Krystal), and Psychology (Krystal), Yale University School of Medicine, New Haven, CT; Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA (Grzenda); Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez)
| | - Joshua C Gray
- Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, MD (Wolfgang); Departments of Psychiatry (Wolfgang) and Medical and Clinical Psychology (Gray), Uniformed Services University, Bethesda, MD; Departments of Psychiatry (Wolfgang, Krystal), Neuroscience (Krystal), and Psychology (Krystal), Yale University School of Medicine, New Haven, CT; Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA (Grzenda); Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez)
| | - John H Krystal
- Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, MD (Wolfgang); Departments of Psychiatry (Wolfgang) and Medical and Clinical Psychology (Gray), Uniformed Services University, Bethesda, MD; Departments of Psychiatry (Wolfgang, Krystal), Neuroscience (Krystal), and Psychology (Krystal), Yale University School of Medicine, New Haven, CT; Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA (Grzenda); Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez)
| | - Adrienne Grzenda
- Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, MD (Wolfgang); Departments of Psychiatry (Wolfgang) and Medical and Clinical Psychology (Gray), Uniformed Services University, Bethesda, MD; Departments of Psychiatry (Wolfgang, Krystal), Neuroscience (Krystal), and Psychology (Krystal), Yale University School of Medicine, New Haven, CT; Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA (Grzenda); Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez)
| | - Alik S Widge
- Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, MD (Wolfgang); Departments of Psychiatry (Wolfgang) and Medical and Clinical Psychology (Gray), Uniformed Services University, Bethesda, MD; Departments of Psychiatry (Wolfgang, Krystal), Neuroscience (Krystal), and Psychology (Krystal), Yale University School of Medicine, New Haven, CT; Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA (Grzenda); Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez)
| | - Nina V Kraguljac
- Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, MD (Wolfgang); Departments of Psychiatry (Wolfgang) and Medical and Clinical Psychology (Gray), Uniformed Services University, Bethesda, MD; Departments of Psychiatry (Wolfgang, Krystal), Neuroscience (Krystal), and Psychology (Krystal), Yale University School of Medicine, New Haven, CT; Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA (Grzenda); Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez)
| | - William M McDonald
- Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, MD (Wolfgang); Departments of Psychiatry (Wolfgang) and Medical and Clinical Psychology (Gray), Uniformed Services University, Bethesda, MD; Departments of Psychiatry (Wolfgang, Krystal), Neuroscience (Krystal), and Psychology (Krystal), Yale University School of Medicine, New Haven, CT; Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA (Grzenda); Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez)
| | - Carolyn I Rodriguez
- Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, MD (Wolfgang); Departments of Psychiatry (Wolfgang) and Medical and Clinical Psychology (Gray), Uniformed Services University, Bethesda, MD; Departments of Psychiatry (Wolfgang, Krystal), Neuroscience (Krystal), and Psychology (Krystal), Yale University School of Medicine, New Haven, CT; Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA (Grzenda); Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez)
| | - Charles B Nemeroff
- Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, MD (Wolfgang); Departments of Psychiatry (Wolfgang) and Medical and Clinical Psychology (Gray), Uniformed Services University, Bethesda, MD; Departments of Psychiatry (Wolfgang, Krystal), Neuroscience (Krystal), and Psychology (Krystal), Yale University School of Medicine, New Haven, CT; Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA (Grzenda); Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez)
| |
Collapse
|
3
|
Rosenbaum HK, Van den Eynde V, Gillman PK. Serotonin Syndrome with Propofol and Remifentanil: Mechanistic Concern and Alternative Diagnosis. A A Pract 2024; 18:e01855. [PMID: 39636017 DOI: 10.1213/xaa.0000000000001855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Affiliation(s)
- Harvey K Rosenbaum
- Department of Anesthesiology and Perioperative Medicine David Geffen School of Medicine at the University of California Los Angeles, California
| | - Vincent Van den Eynde
- PsychoTropical Research Bucasia, Queensland, Australia Department of Psychiatry RadboudUMC Nijmegen, the Netherlands
| | | |
Collapse
|
4
|
Mercadante S. Influence of aging on opioid dosing for perioperative pain management: a focus on pharmacokinetics. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:51. [PMID: 39085914 PMCID: PMC11292879 DOI: 10.1186/s44158-024-00182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
The older population continues to grow in all countries, and surgeons are encountering older patients more frequently. The management of postoperative pain in older patients can be a difficult task. Opioids are the mainstay of perioperative pain control. This paper assesses some pharmacokinetic age-related aspects and their relationship with the use of opioids in the perioperative period. Changes in body composition and organ function, and pharmacokinetics in older patients, as well as characteristics of opioids commonly used in the perioperative period are described. Specific problems, dose titration, and patient-controlled analgesia in the elderly are also reviewed. Opioids can be safety used in perioperative period, even in the elderly. The choice of drugs and doses can be individualized according to the surgery, opioid pharmacokinetics, comorbidities, and routes of administration.
Collapse
Affiliation(s)
- Sebastiano Mercadante
- Main Regional Center for Pain Relief and Supportive/Palliative Care, La Maddalena Cancer Center, Palermo, 90146, Italy.
| |
Collapse
|
5
|
Sharif AF, Almulhim MNM, Almosabeh HMA, Alshammasy MEA, Aljeshi AMA, Mufti TMA, AlNasser S, Al-Mulhim KA, AlMubarak YA. Predictors of Serotonin Syndrome in Acute Poisoning with 5-Hydroxytryptamine Modulators. TOXICS 2024; 12:550. [PMID: 39195652 PMCID: PMC11360237 DOI: 10.3390/toxics12080550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
5-Hydroxytryptamine (5-HT) modulators are commonly prescribed medications with potentially life-threatening outcomes, particularly serotonin syndrome (SS). Early prediction of SS is critical not only to avoid lethal drug combinations but also to initiate appropriate treatment. The present work aimed to recognize the significant predictors of SS through a retrospective cross-sectional study that was conducted among patients exposed to an overdose of 5-HT modulators and admitted to a poison control center where 112 patients were enrolled. Of them, 21 patients were diagnosed with SS, and 66.7% of patients with SS were exposed to long-term co-ingestion. There was a noticeable surge in SS between April and May, and 52.4% of patients who suffered from SS were admitted after suicidal exposure (p < 0.05). Patients with SS showed severe presentation indicated by high-grade poison severity scores (PSS) and low Glasgow coma scales (GCS). PSS was a significant predictor of SS with an area under the curve of 0.879. PCO2, pulse, GCS, HCO3, and erythrocytic count were other significant predictors of SS. Combinations of serotonergic agents increase the likelihood of developing SS. Clinicians should be vigilant when prescribing a combination of serotonergic therapy, particularly for patients on illicit sympathomimetic and over-the-counter medications like dextromethorphan.
Collapse
Affiliation(s)
- Asmaa F. Sharif
- Department of Clinical Medical Sciences, College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, El Bahr St., Tanta 31111, Egypt
| | - Mubarak Nasir M. Almulhim
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Hadi Mohamed A. Almosabeh
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Mohammed Essam A. Alshammasy
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Ali Mohammed A. Aljeshi
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Taher Mohammed A. Mufti
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Shahd AlNasser
- Saudi Food and Drug Authority, Hittin, Riyadh 13513, Saudi Arabia;
| | - Khalid A. Al-Mulhim
- Emergency Medicine Department, King Fahad Medical City, Sulimaniyah, Riyadh 12231, Saudi Arabia; (K.A.A.-M.); (Y.A.A.)
| | - Yousef A. AlMubarak
- Emergency Medicine Department, King Fahad Medical City, Sulimaniyah, Riyadh 12231, Saudi Arabia; (K.A.A.-M.); (Y.A.A.)
| |
Collapse
|
6
|
Prakash S, Shah CS, Prakash A. Serotonin syndrome controversies: A need for consensus. World J Crit Care Med 2024; 13:94707. [PMID: 38855279 PMCID: PMC11155509 DOI: 10.5492/wjccm.v13.i2.94707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024] Open
Abstract
Serotonin syndrome (SS) is a drug-induced clinical syndrome resulting from increased serotonergic activity in the central nervous system. Although more than seven decades have passed since the first description of SS, it is still an enigma in terms of terminology, clinical features, etiology, pathophysiology, diagnostic criteria, and therapeutic measures. The majority of SS cases have previously been reported by toxicology or psychiatry centers, particularly in people with mental illness. However, serotonergic medications are used for a variety of conditions other than mental illness. Serotonergic properties have been discovered in several new drugs, including over-the-counter medications. These days, cases are reported in non-toxicology centers, such as perioperative settings, neurology clinics, cardiology settings, gynecology settings, and pediatric clinics. Overdoses or poisonings of serotonergic agents constituted the majority of the cases observed in toxicology or psychiatry centers. Overdose or poisoning of serotonergic drugs is uncommon in other clinical settings. Patients may develop SS at therapeutic dosages. Moreover, these patients may continue to use serotonergic medications even if they develop mild to moderate SS due to several reasons. Thus, the clinical presentation (onset, severity, and clinical features) in such instances may not exactly match what toxicologists or psychiatrists observe in their respective settings. They produce considerable diversity in many aspects of SS. However, other experts discount these new developments in SS. Since SS is a potentially lethal illness, consensus is required on several concerns related to SS.
Collapse
Affiliation(s)
- Sanjay Prakash
- Department of Neurology, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara 391760, Gujarāt, India
| | - Chetsi S Shah
- Department of Neurology, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara 391760, Gujarāt, India
| | - Anurag Prakash
- Medicine, Parul Institute of Medical Sciences and Research Centre, Parul University Waghodia, Vadodara 391760, India
| |
Collapse
|
7
|
Sikiric P, Boban Blagaic A, Strbe S, Beketic Oreskovic L, Oreskovic I, Sikiric S, Staresinic M, Sever M, Kokot A, Jurjevic I, Matek D, Coric L, Krezic I, Tvrdeic A, Luetic K, Batelja Vuletic L, Pavic P, Mestrovic T, Sjekavica I, Skrtic A, Seiwerth S. The Stable Gastric Pentadecapeptide BPC 157 Pleiotropic Beneficial Activity and Its Possible Relations with Neurotransmitter Activity. Pharmaceuticals (Basel) 2024; 17:461. [PMID: 38675421 PMCID: PMC11053547 DOI: 10.3390/ph17040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
We highlight the particular aspects of the stable gastric pentadecapeptide BPC 157 pleiotropic beneficial activity (not destroyed in human gastric juice, native and stable in human gastric juice, as a cytoprotection mediator holds a response specifically related to preventing or recovering damage as such) and its possible relations with neurotransmitter activity. We attempt to resolve the shortage of the pleiotropic beneficial effects of BPC 157, given the general standard neurotransmitter criteria, in classic terms. We substitute the lack of direct conclusive evidence (i.e., production within the neuron or present in it as a precursor molecule, released eliciting a response on the receptor on the target cells on neurons and being removed from the site of action once its signaling role is complete). This can be a network of interconnected evidence, previously envisaged in the implementation of the cytoprotection effects, consistent beneficial particular evidence that BPC 157 therapy counteracts dopamine, serotonin, glutamate, GABA, adrenalin/noradrenalin, acetylcholine, and NO-system disturbances. This specifically includes counteraction of those disturbances related to their receptors, both blockade and over-activity, destruction, depletion, tolerance, sensitization, and channel disturbances counteraction. Likewise, BPC 157 activates particular receptors (i.e., VGEF and growth hormone). Furthermore, close BPC 157/NO-system relations with the gasotransmitters crossing the cell membrane and acting directly on molecules inside the cell may envisage particular interactions with receptors on the plasma membrane of their target cells. Finally, there is nerve-muscle relation in various muscle disturbance counteractions, and nerve-nerve relation in various encephalopathies counteraction, which is also exemplified specifically by the BPC 157 therapy application.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Danijel Matek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Kresimir Luetic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lovorka Batelja Vuletic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Pavic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Mestrovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivica Sjekavica
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Ghafori SS, Yousefi Z, Bakhtiari E, mohammadi mahdiabadi hasani MH, Hassanzadeh G. Neutrophil-to-lymphocyte ratio as a predictive biomarker for early diagnosis of depression: A narrative review. Brain Behav Immun Health 2024; 36:100734. [PMID: 38362135 PMCID: PMC10867583 DOI: 10.1016/j.bbih.2024.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
Depression is a mood disorder that causes persistent feelings of sadness, hopelessness, loss of interest, and decreased energy. Early diagnosis of depression can improve its negative impacts and be effective in its treatment. Previous studies have indicated that inflammation plays an important role in the initiation and development of depression, hence, various inflammatory biomarkers have been investigated for early diagnosis of depression, the most popular of which are blood biomarkers. The Neutrophil to lymphocyte ratio (NLR) may be more informative in the early diagnosis of depression than other widely used markers, such as other leukocyte characteristics or interleukins. Considering the importance of early diagnosis of depression and the role of NLR in early diagnosis of depression, our paper reviews the literature on NLR as a diagnostic biomarker of depression, which may be effective in its treatment. Various studies have shown that elevated NLR is associated with depression, suggesting that NLR may be a valuable, reproducible, easily accessible, and cost-effective method for the evaluation of depression and it may be used in outpatient clinic settings. Closer follow-up can be performed for these patients who have higher NLR levels. However, it seems that further studies on larger samples, taking into account important confounding factors, and assessing them together with other inflammatory markers are necessary to draw some conclusive statements.
Collapse
Affiliation(s)
- Sayed Soran Ghafori
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Elham Bakhtiari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Gillman PK, Van den Eynde V, Redhead C. A five-pronged critique of 'Serotonin syndrome-A focused review'. Basic Clin Pharmacol Toxicol 2023; 133:548-549. [PMID: 37574814 DOI: 10.1111/bcpt.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Affiliation(s)
- Peter Kenneth Gillman
- PsychoTropical Research, Bucasia, Queensland, Australia
- International MAOI Expert Group, Bucasia, Queensland, Australia
| | - Vincent Van den Eynde
- PsychoTropical Research, Bucasia, Queensland, Australia
- International MAOI Expert Group, Bucasia, Queensland, Australia
- Department of Psychiatry, RadboudUMC, Nijmegen, the Netherlands
| | - Charles Redhead
- PsychoTropical Research, Bucasia, Queensland, Australia
- International MAOI Expert Group, Bucasia, Queensland, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
10
|
Van den Eynde V, Abdelmoemin WR, Abraham MM, Amsterdam JD, Anderson IM, Andrade C, Baker GB, Beekman ATF, Berk M, Birkenhäger TK, Blackwell BB, Blier P, Blom MBJ, Bodkin AJ, Cattaneo CI, Dantz B, Davidson J, Dunlop BW, Estévez RF, Feinberg SS, Finberg JPM, Fochtmann LJ, Gotlib D, Holt A, Insel TR, Larsen JK, Mago R, Menkes DB, Meyer JM, Nutt DJ, Parker G, Rego MD, Richelson E, Ruhé HG, Sáiz-Ruiz J, Stahl SM, Steele T, Thase ME, Ulrich S, van Balkom AJLM, Vieta E, Whyte I, Young AH, Gillman PK. The prescriber's guide to classic MAO inhibitors (phenelzine, tranylcypromine, isocarboxazid) for treatment-resistant depression. CNS Spectr 2023; 28:427-440. [PMID: 35837681 DOI: 10.1017/s1092852922000906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article is a clinical guide which discusses the "state-of-the-art" usage of the classic monoamine oxidase inhibitor (MAOI) antidepressants (phenelzine, tranylcypromine, and isocarboxazid) in modern psychiatric practice. The guide is for all clinicians, including those who may not be experienced MAOI prescribers. It discusses indications, drug-drug interactions, side-effect management, and the safety of various augmentation strategies. There is a clear and broad consensus (more than 70 international expert endorsers), based on 6 decades of experience, for the recommendations herein exposited. They are based on empirical evidence and expert opinion-this guide is presented as a new specialist-consensus standard. The guide provides practical clinical advice, and is the basis for the rational use of these drugs, particularly because it improves and updates knowledge, and corrects the various misconceptions that have hitherto been prominent in the literature, partly due to insufficient knowledge of pharmacology. The guide suggests that MAOIs should always be considered in cases of treatment-resistant depression (including those melancholic in nature), and prior to electroconvulsive therapy-while taking into account of patient preference. In selected cases, they may be considered earlier in the treatment algorithm than has previously been customary, and should not be regarded as drugs of last resort; they may prove decisively effective when many other treatments have failed. The guide clarifies key points on the concomitant use of incorrectly proscribed drugs such as methylphenidate and some tricyclic antidepressants. It also illustrates the straightforward "bridging" methods that may be used to transition simply and safely from other antidepressants to MAOIs.
Collapse
Affiliation(s)
| | | | | | - Jay D Amsterdam
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian M Anderson
- Department of Psychiatry, University of Manchester, Manchester, UK
| | - Chittaranjan Andrade
- Department of Psychopharmacology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Aartjan T F Beekman
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Michael Berk
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Tom K Birkenhäger
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Barry B Blackwell
- Department of Psychiatry, University of Wisconsin, Milwaukee, WI, USA
| | - Pierre Blier
- Departments of Psychiatry and Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | - Bezalel Dantz
- Department of Psychiatry and Behavioral Sciences, Rush Medical College, Chicago, IL, USA
| | - Jonathan Davidson
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Ryan F Estévez
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Shalom S Feinberg
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - John P M Finberg
- Department of Molecular Pharmacology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Laura J Fochtmann
- Department of Psychiatry, Department of Pharmacological Sciences, and Biomedical Informatics, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | | | - Andrew Holt
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Thomas R Insel
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jens K Larsen
- Department of Affective Disorders, Aarhus University Hospital, Aarhus, Denmark
| | - Rajnish Mago
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David B Menkes
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan M Meyer
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - David J Nutt
- Department of Brain Sciences, Imperial College, London, UK
| | - Gordon Parker
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Mark D Rego
- Yale Institute for Global Health, Yale School of Medicine, New Haven, CT, USA
| | - Elliott Richelson
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Henricus G Ruhé
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Stephen M Stahl
- Department of Psychiatry and Neuroscience, University of California, Riverside, Riverside, CA, USA
| | - Thomas Steele
- Department of Psychiatry and Behavioral Sciences, University of South Carolina, Columbia, SC, USA
| | - Michael E Thase
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Anton J L M van Balkom
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eduard Vieta
- Department of Psychiatry and Psychology, University of Barcelona Hospital Clinic, Barcelona, Spain
| | - Ian Whyte
- Department of Clinical Toxicology and Pharmacology, University of Newcastle, Callaghan, NSW, Australia
| | - Allan H Young
- Department of Psychological Medicine, King's College London, London, UK
| | | |
Collapse
|
11
|
Van den Eynde V, Godet L, Trupin S, Gillman PK. Classic Monoamine Oxidase Inhibitors for Depression: Update on Nursing Care. Issues Ment Health Nurs 2023; 44:138-139. [PMID: 36469730 DOI: 10.1080/01612840.2022.2149908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Lila Godet
- PsychoTropical Research, Bucasia, Queensland, Australia
| | | | | |
Collapse
|
12
|
Cooper J, Duffull SB, Isbister GK. Predicting serotonin toxicity in serotonin reuptake inhibitor overdose. Clin Toxicol (Phila) 2023; 61:22-28. [PMID: 36444913 DOI: 10.1080/15563650.2022.2151455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
AIMS We aimed to investigate the frequency of serotonin toxicity following overdose of antidepressants that inhibit serotonin reuptake and the factors that influence the probability of serotonin toxicity occurring. METHODS This was a retrospective cohort study of overdoses that included selective serotonin reuptake inhibitors (SSRIs) (70%) and serotonin norepinephrine reuptake inhibitors (SNRIs) (30%) admitted to a tertiary toxicology unit over 23 years. A multivariate mixed effects logistic regression model using NONMEM (7.2.0) was used to determine factors that influenced the probability of serotonin toxicity occurring. RESULTS There were 1978 overdoses in 1520 patients; median age 33 y (range: 13-86 years) and 64% female. Median defined daily dose equivalent (DDD) was 15 (1-420). Co-ingestants were taken in 1678/1978 (85%) overdoses: 11 co-ingested the monoamine oxidase-A inhibitor (MAOI) moclobemide, 99 (5%) co-ingested olanzapine, 58 (3%) co-ingested risperidone and 417 co-ingested a benzodiazepine (21%). Serotonin toxicity occurred in 269 overdoses (13.6%). The probability of serotonin toxicity increased slightly per 10 DDD units dose [OR, 1.01; 95% confidence intervals (CIs): 0.93-1.10], increased for an SNRI vs. an SSRI [OR, 1.07; 95% CI: 0.99-1.15], and markedly increased with co-ingestion of moclobemide [OR, 33.12; 95% CI: 7.5-147]. The probability decreased per 10 y age [OR, 0.84; 95% CI: 0.74-0.95], and with co-ingestion of the serotonin 2 A receptor (5-HT2A) antagonists olanzapine [OR, 0.40; 95% CI: 0.17-0.94] or risperidone [OR, 0.13; 95% CI: 0.02-0.99]. The probability of serotonin toxicity was 12.5% at 1 DDD (therapeutic), 12.7% at 15 DDDs and 19% at 420 DDDs. In overdoses of the median dose of 15 DDDs, co-ingestion of moclobemide increased the probability to 83%, and co-ingestion of olanzapine or risperidone decreased it to 5.5% and 1.8%, respectively. CONCLUSIONS Serotonin toxicity is common following SSRI/SNRI overdose. Although dose increases probability, this was only a small effect. Co-ingestion with olanzapine or risperidone reduced the risk 2-6-fold, and moclobemide increased the risk 5-fold.
Collapse
Affiliation(s)
- Joyce Cooper
- Clinical Toxicology Research Group, University of Newcastle, Townsville, Australia.,Division of Tropical Health & Medicine, James Cook University, Townsville, Australia
| | | | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Townsville, Australia.,Department of Clinical Toxicology, Calvary Mater Newcastle, Newcastle, Australia
| |
Collapse
|
13
|
Edinoff AN, Swinford CR, Odisho AS, Burroughs CR, Stark CW, Raslan WA, Cornett EM, Kaye AM, Kaye AD. Clinically Relevant Drug Interactions with Monoamine Oxidase Inhibitors. Health Psychol Res 2022; 10:39576. [PMID: 36425231 PMCID: PMC9680847 DOI: 10.52965/001c.39576] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
Monoamine oxidase inhibitors (MAOI) are a class of drugs that were originally developed for the treatment of depression but have since been expanded to be used in management of affective and neurological disorders, as well as stroke and aging-related neurocognitive changes. Ranging from irreversible to reversible and selective to non-selective, these drugs target the monoamine oxidase (MAO) enzyme and prevent the oxidative deamination of various monoamines and catecholamines such as serotonin and dopamine, respectively. Tyramine is a potent releaser of norepinephrine (NE) and is found in high concentrations in foods such as aged cheeses and meats. Under normal conditions, NE is unable to accumulate to toxic levels due to the presence of MAO-A, an enzyme that degrades neurotransmitters, including NE. When MAO-A is inhibited, the capacity to handle tyramine intake from the diet is significantly reduced causing the brain to be vulnerable to overstimulation of postsynaptic adrenergic receptors with as little as 8-10 mg of tyramine ingested and can result in life-threatening blood pressure elevations. In addition to adverse reactions with certain foods, both older and newer MAOIs can negatively interact with both sympathomimetic and serotonergic drugs. In general, patients on a MAOI want to avoid two types of medications: those that can elevate blood pressure via sympathomimetic actions (e.g., phenylephrine and oxymetazoline) and those that can increase serotonin levels via 5-HT reuptake inhibition (e.g., dextromethorphan, chlorpheniramine, and brompheniramine). Illicit drugs that stimulate the central nervous system such as ecstasy (MDMA, 3,4-methylenedioxymethamphetamine) act as serotonin releasers. Patient involvement is also crucial to ensure any interaction within the healthcare setting includes making other providers aware of a MAOI prescription as well as avoiding certain OTC medications that can interact adversely with MAOIs.
Collapse
Affiliation(s)
- Amber N Edinoff
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital
| | - Connor R Swinford
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Science Center Shreveport
| | - Amira S Odisho
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Science Center Shreveport
| | | | - Cain W Stark
- School of Medicine, Louisiana State University Health Science Center Shreveport
| | | | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Science Center Shreveport
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Science Center Shreveport
| |
Collapse
|
14
|
Requiem or resurrection: Classic monoamine oxidase inhibitors revisited. Eur Neuropsychopharmacol 2022; 61:15-16. [PMID: 35709625 DOI: 10.1016/j.euroneuro.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022]
|
15
|
Baldo BA. Current research in pathophysiology of opioid-induced respiratory depression, neonatal opioid withdrawal syndrome, and neonatal antidepressant exposure syndrome. Curr Res Toxicol 2022; 3:100078. [PMID: 35734228 PMCID: PMC9207297 DOI: 10.1016/j.crtox.2022.100078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 01/29/2023] Open
Abstract
Respiratory depression (RD) is the primary cause of death due to opioids. Opioids bind to mu (µ)-opioid receptors (MORs) encoded by the MOR gene Oprm1, widely expressed in the central and peripheral nervous systems including centers that modulate breathing. Respiratory centers are located throughout the brainstem. Experiments with Oprm1-deleted knockout (KO) mice undertaken to determine which sites are necessary for the induction of opioid-induced respiratory depression (OIRD) showed that the pre-Bötzinger complex (preBötC) and the pontine Kölliker-Fuse nucleus (KF) contribute equally to OIRD but RD was not totally eliminated. Morphine showed a differential influence on preBötC and KF neurons - low doses attenuated RD following deletion of MORs from preBötC neurons and an increase in apneas after high doses whereas deletion of MORs from KF neurons but not the preBötC attenuated RD at both high and low doses. In other KO mice studies, morphine administration after deletion of Oprm1 from both the preBötC and the KF/PBN neurons, led to the conclusion that both respiratory centres contribute to OIRD but the preBötC predominates. MOR-mediated post-synaptic activation of GIRK potassium channels has been implicated as a cause of OIRD. A complementary mechanism in the preBötC involving KCNQ potassium channels independent of MOR signaling has been described. Recent experiments in rats showing that morphine depresses normal, but not gasping breathing, cast doubt on the belief that eupnea, sighs, and gasps, are under the control of preBötC neurons. Methadone, administered to alleviate symptoms of neonatal opioid withdrawal syndrome (NOWES), desensitized rats to OIRD. Protection lost between postnatal days 1 and 2 coincides with the preBötC becoming the dominant generator of respiratory rhythm. Neonatal antidepressant exposure syndrome (NADES) and serotonin toxicity (ST) show similarities including RD. Enzyme CYP2D6 involved in opioid detoxification is polymorphic. Individuals of different CYP2D6 genotype may show increased, decreased, or no enzyme activity, contributing to the variability of patient responses to different opioids and OIRD.
Collapse
Key Words
- AAV, adeno-associated virus
- CDC, Centers for Disease control and prevention
- CTAP, MOR agonist (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2)
- DAMGO, synthetic specific MOR agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin
- DRG, dorsal respiratory group
- FDA, Food and Drug Administration
- GIRK, G protein-gated inwardly-rectifying potassium (K+)
- GPCR, G protein-coupled receptor
- KCNQ, voltage-gated potassium (Kv) channels in the KCNQ (Kv7) family
- KF, Kölliker-Fuse nucleus
- Kölliker-Fuse nucleus and opioid-induced respiratory depression
- MOR, mu opioid receptor
- NADES, neonatal antidepressant exposure syndrome
- NAS, neonatal abstinence syndrome
- NIH, National Institutes of Health
- NK-1R, neurokinin-1 receptor
- NOWES, neonatal opioid withdrawal syndrome
- Neonatal opioid withdrawal syndrome
- Neural mediation of opioid-induced respiratory depression
- OAD, opioid analgesic drug
- OIRD, opioid-induced respiratory depression
- PBL, lateral parabrachial
- PBN, parabrachial nucleus
- PRG, pontine respiratory group
- Pathophysiology of opioid-induced respiratory depression
- Pre-Bötzinger complex and opioid-induced respiratory depression
- RD, respiratory depression
- TACR1, tachykinin receptor 1
- VRG, ventral respiratory group
- preBötC, pre-Bötzinger complex
Collapse
Affiliation(s)
- Brian A. Baldo
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney and Department of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Jarbou NS, Newell KA. Exercise and yoga during pregnancy and their impact on depression: a systematic literature review. Arch Womens Ment Health 2022; 25:539-559. [PMID: 35286442 DOI: 10.1007/s00737-021-01189-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
It is well established that exercise can improve depressive symptoms in the general population; however, it is not clear if these benefits are also seen in pregnancy. This review aimed to synthesize the evidence that examines whether exercise during pregnancy impacts depressive and associated symptoms (e.g. anxiety) during the perinatal period. The review was conducted in accordance with PRISMA guidelines and reporting criteria; literature was searched using PubMed, Scopus and Web of Science database engines. Clinical trials published in English evaluating the effects of a defined exercise protocol during pregnancy on depressive and/or anxiety symptoms during the perinatal period were included. Studies without a control group were excluded. Risk of bias was conducted by Cochrane assessment to appraise the quality of the included studies. Twenty-seven articles, between 1994 and 2019, were included. Of these, only 5 specifically recruited women with depression (n = 334), which all assessed a yoga-based intervention; 4 of these studies showed a statistically significant improvement in depressive and/or anxiety symptoms in the intervention group compared to baseline; however, 2 of these studies also showed an improvement in the control group. The remaining 22 studies used various exercise interventions in pregnant women (n = 4808) with 20 studies reporting that exercise during pregnancy has the ability to improve depressive and/or anxiety measures in the perinatal period compared to either baseline or control. The evidence suggests that exercise of various types in pregnancy can reduce depressive and/or anxiety symptoms in the perinatal period in otherwise healthy women. Specifically in women with antenatal depression, the incorporation of yoga in pregnancy can improve depressive/anxiety symptoms in the perinatal period; however, this is based on a small number of studies, and it is not clear whether this is superior to non-exercise controls. Further studies are needed to determine the potential therapeutic effects of exercise of various types during pregnancy on symptoms of antenatal depression.
Collapse
Affiliation(s)
- Noor S Jarbou
- Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Kelly A Newell
- Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
17
|
Loader K. Too much of a good thing? Diagnosis and management of patients with serotonin syndrome. Emerg Nurse 2021; 30:20-27. [PMID: 34904423 DOI: 10.7748/en.2021.e2121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/09/2022]
Abstract
Serotonin syndrome is a rare but potentially life-threatening condition caused by excess serotonin in the central and peripheral nervous systems. Patients with serotonin syndrome present with a range of mild to severe autonomic, neuromuscular and mental state signs and symptoms. A variety of drugs affect the serotonin pathways by modifying serotonin release and reuptake mechanisms, or reducing metabolism. There are also several genetic polymorphisms and clinical risk factors that affect the development and course of serotonin syndrome. This article describes the pathophysiology of serotonin syndrome and discusses diagnosis and treatment with reference to a case study of a patient who attended an emergency department (ED) with signs and symptoms of the condition following an increase in antidepressant medicines. The article aims to increase clinicians' awareness of serotonin syndrome to improve identification and treatment of patients who present to EDs with the condition.
Collapse
Affiliation(s)
- Katie Loader
- Crisis Resolution Home Treatment Team, Hellesdon Hospital, Norfolk and Suffolk NHS Foundation Trust, Norwich, England
| |
Collapse
|
18
|
Idowu Oyeleye S, Ajayi OE, Ademosun AO, Oboh G. GC characterization and erectogenic enzyme inhibitory effect of essential oils from tangerine and lemon peels: A comparative study. FLAVOUR FRAG J 2021. [DOI: 10.1002/ffj.3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sunday Idowu Oyeleye
- Functional Foods and Nutraceutical Research Unit Department of Biochemistry Federal University of Technology Akure Nigeria
- Biomedical Technology Federal University of Technology Akure Nigeria
| | - Oluwasegun E. Ajayi
- Functional Foods and Nutraceutical Research Unit Department of Biochemistry Federal University of Technology Akure Nigeria
| | - Ayokunle O. Ademosun
- Functional Foods and Nutraceutical Research Unit Department of Biochemistry Federal University of Technology Akure Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Research Unit Department of Biochemistry Federal University of Technology Akure Nigeria
| |
Collapse
|
19
|
Abstract
BACKGROUND About one third of depression patients do not respond to the first antidepressant trial. Difficult-to-treat depression was suggested to characterize the often chronic and severe course of disease. Previous data indicate that tranylcypromine is effective in case of treatment-refractory depression. Many antidepressants are contraindicated in combination with tranylcypromine and other monoamine-oxidase inhibitors because of the risk of serotonin syndrome. The combination of tranylcypromine and amitriptyline was reported to be efficacious and safe in patients with electroconvulsive therapy-resistant major depression. METHODS In this retrospective chart review, we report a series of 3 cases, in which patients with electroconvulsive therapy-resistant depression were treated with the combination of tranylcypromine and mirtazapine. There are no published clinical data on this combination yet. Disease severity and treatment response were retrospectively assessed with the Clinical Global Impression-Severity and Improvement Scales. RESULTS All 3 patients had severe difficult-to-treat depression with chronic course of disease and several times of inpatient treatment without achieving remission. The combination treatment was tolerated well, although the patients had somatic comorbidities. One patient developed mild and self-limiting neuroleptic malignant syndrome in the long-term course after dose increase of concomitant aripiprazole. All 3 patients showed either much or very much improvement. CONCLUSIONS Under tight clinical controls in inpatient setting and after exhausting of alternatives, the combination of tranylcypromine and mirtazapine could be considered in patients, who do not achieve adequate improvement through common treatment options recommended in the guidelines. The combination has to be ceased, if symptoms of possible serotonin syndrome occur.
Collapse
|
20
|
Baldo BA. Toxicities of opioid analgesics: respiratory depression, histamine release, hemodynamic changes, hypersensitivity, serotonin toxicity. Arch Toxicol 2021; 95:2627-2642. [PMID: 33974096 DOI: 10.1007/s00204-021-03068-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022]
Abstract
Opioid-induced respiratory depression is potentially life-threatening and often regarded as the main hazard of opioid use. Main cause of death is cardiorespiratory arrest with hypoxia and hypercapnia. Respiratory depression is mediated by opioid μ receptors expressed on respiratory neurons in the CNS. Studies on the major sites in the brainstem mediating respiratory rate suppression, the pre-Bӧtzinger complex and parabrachial complex (including the Kӧlliker Fuse nucleus), have yielded conflicting findings and interpretations but recent investigations involving deletion of μ receptors from neurons have led to greater consensus. Some opioid analgesic drugs are histamine releasers. The range of clinical effects of released histamine include increased cardiac output due to an increase in heart rate, increased force of myocardial contraction, and a dilatatory effect on small blood vessels leading to flushing, decreased vascular resistance and hypotension. Resultant hemodynamic changes do not necessarily relate directly to the concentration of histamine in plasma due to a range of variables including functional differences between mast cells and histamine-induced anaphylactoid reactions may occur less often than commonly believed. Opioid-induced histamine release rarely if ever provokes bronchospasm and histamine released by opioids in normal doses does not lead to anaphylactoid reactions or result in IgE-mediated reactions in normal patients. Hypersensitivities to opioids, mainly some skin reactions and occasional type I hypersensitivities, chiefly anaphylaxis and urticaria, are uncommon. Hypersensitivities to morphine, codeine, heroin, methadone, meperidine, fentanyl, remifentanil, buprenorphine, tramadol, and dextromethorphan are summarized. In 2016, the FDA issued a Drug Safety Communication concerning the association of opioids with serotonin syndrome, a toxicity associated with raised intra-synaptic concentrations of serotonin in the CNS, inhibition of serotonin reuptake, and activation of 5-HT receptors. Opioids may provoke serotonin toxicity especially if administered in conjunction with other serotonergic medications. The increasing use of opioid analgesics and widespread prescribing of antidepressants and psychiatric medicines, indicates the likelihood of an increased incidence of serotonin toxicity in opioid-treated patients.
Collapse
Affiliation(s)
- Brian A Baldo
- Molecular Immunology Unit, Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, NSW, 2070, Australia.
- Department of Medicine, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Rudin D, Liechti ME, Luethi D. Molecular and clinical aspects of potential neurotoxicity induced by new psychoactive stimulants and psychedelics. Exp Neurol 2021; 343:113778. [PMID: 34090893 DOI: 10.1016/j.expneurol.2021.113778] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
New psychoactive stimulants and psychedelics continue to play an important role on the illicit new psychoactive substance (NPS) market. Designer stimulants and psychedelics both affect monoaminergic systems, although by different mechanisms. Stimulant NPS primarily interact with monoamine transporters, either as inhibitors or as substrates. Psychedelic NPS most potently interact with serotonergic receptors and mediate their mind-altering effects mainly through agonism at serotonin 5-hydroxytryptamine-2A (5-HT2A) receptors. Rarely, designer stimulants and psychedelics are associated with potentially severe adverse effects. However, due to the high number of emerging NPS, it is not possible to investigate the toxicity of each individual substance in detail. The brain is an organ particularly sensitive to substance-induced toxicity due to its high metabolic activity. In fact, stimulant and psychedelic NPS have been linked to neurological and cognitive impairments. Furthermore, studies using in vitro cell models or rodents indicate a variety of mechanisms that could potentially lead to neurotoxic damage in NPS users. Cytotoxicity, mitochondrial dysfunction, and oxidative stress may potentially contribute to neurotoxicity of stimulant NPS in addition to altered neurochemistry. Serotonin 5-HT2A receptor-mediated toxicity, oxidative stress, and activation of mitochondrial apoptosis pathways could contribute to neurotoxicity of some psychedelic NPS. However, it remains unclear how well the current preclinical data of NPS-induced neurotoxicity translate to humans.
Collapse
Affiliation(s)
- Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland; Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Dino Luethi
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland; Institute of Pharmacology, Medical University of Vienna, Vienna, Austria; Institute of Applied Physics, TU Wien, Vienna, Austria.
| |
Collapse
|
22
|
Affiliation(s)
- Nicolas Garel
- From the Psychiatry residency program, PGY4, McGill University, Montreal, Canada (Garel, Greenway); the Department of Psychiatry, McGill University, Montreal, Canada (Tabbane); and the Douglas Mental Health University Institute, Montreal, Canada (Joober)
| | - Kyle T. Greenway
- From the Psychiatry residency program, PGY4, McGill University, Montreal, Canada (Garel, Greenway); the Department of Psychiatry, McGill University, Montreal, Canada (Tabbane); and the Douglas Mental Health University Institute, Montreal, Canada (Joober)
| | - Karim Tabbane
- From the Psychiatry residency program, PGY4, McGill University, Montreal, Canada (Garel, Greenway); the Department of Psychiatry, McGill University, Montreal, Canada (Tabbane); and the Douglas Mental Health University Institute, Montreal, Canada (Joober)
| | - Ridha Joober
- From the Psychiatry residency program, PGY4, McGill University, Montreal, Canada (Garel, Greenway); the Department of Psychiatry, McGill University, Montreal, Canada (Tabbane); and the Douglas Mental Health University Institute, Montreal, Canada (Joober)
| |
Collapse
|
23
|
Oliveira AC, Fascineli ML, Andrade TS, Sousa-Moura D, Domingues I, Camargo NS, Oliveira R, Grisolia CK, Villacis RAR. Exposure to tricyclic antidepressant nortriptyline affects early-life stages of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111868. [PMID: 33421720 DOI: 10.1016/j.ecoenv.2020.111868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Psychiatric drugs are among the leading medications prescribed for humans, with their presence in aquatic environments raising concerns relating to potentially harmful effects on non-target organisms. Nortriptyline (NTP) is a selective serotonin-norepinephrine reuptake inhibitor antidepressant, widely used in clinics and found in environmental water matrices. In this study, we evaluated the toxic effects of NTP on zebrafish (Danio rerio) embryos and early larval stages. Developmental and mortality analyses were performed on zebrafish exposed to NTP for 168 h at concentrations ranging from 500 to 46,900 µg/L. Locomotor behaviour and acetylcholinesterase (AChE) activity were evaluated by exposing embryos/larvae to lower NTP concentrations (0.006-500 µg/L). The median lethal NTP concentration after 168 h exposure was 2190 µg/L. Although we did not identify significant developmental changes in the treated groups, lack of equilibrium was already visible in surviving larvae exposed to ≥ 500 µg/L NTP. The behavioural analyses showed that NTP was capable of modifying zebrafish larvae swimming behaviour, even at extremely low (0.006 and 0.088 µg/L) environmentally relevant concentrations. We consistently observed a significant reduction in AChE activity in the animals exposed to 500 µg/L NTP. Our results highlight acute toxic effects of NTP on the early-life stages of zebrafish. Most importantly, exposure to environmentally relevant NTP concentrations may affect zebrafish larvae locomotor behaviour, which in turn could reduce the fitness of the species. More studies involving chronic exposure and sensitive endpoints are warranted to better understand the effect of NTP in a more realistic exposure scenario.
Collapse
Affiliation(s)
- Ana C Oliveira
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900 Brasília, Distrito Federal, Brazil
| | - Maria L Fascineli
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900 Brasília, Distrito Federal, Brazil
| | - Thayres S Andrade
- Universidade Federal do Ceará, UFC, Campus de Crateús, 63700-000 Crateús, Ceará, Brazil
| | - Diego Sousa-Moura
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900 Brasília, Distrito Federal, Brazil
| | - Inês Domingues
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Níchollas S Camargo
- Faculdade da Ceilândia, Universidade de Brasília, 72220-90 Brasília, Distrito Federal, Brazil
| | - Rhaul Oliveira
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900 Brasília, Distrito Federal, Brazil; Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, 13484-332 Limeira, São Paulo, Brazil
| | - Cesar K Grisolia
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900 Brasília, Distrito Federal, Brazil
| | - Rolando A R Villacis
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900 Brasília, Distrito Federal, Brazil.
| |
Collapse
|
24
|
Duarte P, Cuadrado A, León R. Monoamine Oxidase Inhibitors: From Classic to New Clinical Approaches. Handb Exp Pharmacol 2021; 264:229-259. [PMID: 32852645 DOI: 10.1007/164_2020_384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monoamine oxidases (MAOs) are involved in the oxidative deamination of different amines and neurotransmitters. This pointed them as potential targets for several disorders and along the last 70 years a wide variety of MAO inhibitors have been developed as successful drugs for the treatment of complex diseases, being the first drugs approved for depression in the late 1950s. The discovery of two MAO isozymes (MAO-A and B) with different substrate selectivity and tissue expression patterns led to novel therapeutic approaches and to the development of new classes of inhibitors, such as selective irreversible and reversible MAO-B inhibitors and reversible MAO-A inhibitors. Significantly, MAO-B inhibitors constitute a widely studied group of compounds, some of them approved for the treatment of Parkinson's disease. Further applications are under development for the treatment of Alzheimer's disease, amyotrophic lateral sclerosis, and cardiovascular diseases, among others. This review summarizes the most important aspects regarding the development and clinical use of MAO inhibitors, going through mechanistic and structural details, new indications, and future perspectives. Monoamine oxidases (MAOs) catalyze the oxidative deamination of different amines and neurotransmitters. The two different isozymes, MAO-A and MAO-B, are located at the outer mitochondrial membrane in different tissues. The enzymatic reaction involves formation of the corresponding aldehyde and releasing hydrogen peroxide (H2O2) and ammonia or a substituted amine depending on the substrate. MAO's role in neurotransmitter metabolism made them targets for major depression and Parkinson's disease, among other neurodegenerative diseases. Currently, these compounds are being studied for other diseases such as cardiovascular ones.
Collapse
Affiliation(s)
- Pablo Duarte
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Antonio Cuadrado
- Departmento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain.
- Instituto de Química Médica, Consejo Superior de Investigaciones CientÚficas (IQM-CSIC), Madrid, Spain.
| |
Collapse
|
25
|
Betari N, Sahlholm K, Morató X, Godoy-Marín H, Jáuregui O, Teigen K, Ciruela F, Haavik J. Inhibition of Tryptophan Hydroxylases and Monoamine Oxidase-A by the Proton Pump Inhibitor, Omeprazole- In Vitro and In Vivo Investigations. Front Pharmacol 2020; 11:593416. [PMID: 33324221 PMCID: PMC7726444 DOI: 10.3389/fphar.2020.593416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/16/2020] [Indexed: 01/06/2023] Open
Abstract
Serotonin (5-HT) is a hormone and neurotransmitter that modulates neural activity as well as a wide range of other physiological processes including cardiovascular function, bowel motility, and platelet aggregation. 5-HT synthesis is catalyzed by tryptophan hydroxylase (TPH) which exists as two distinct isoforms; TPH1 and TPH2, which are responsible for peripheral and central 5-HT, respectively. Due to the implication of 5-HT in a number of pathologies, including depression, anxiety, autism, sexual dysfunction, irritable bowel syndrome, inflammatory bowel disease, and carcinoid syndrome, there has been a growing interest in finding modulators of these enzymes in recent years. We thus performed high-throughput screening (HTS) using a fluorescence-based thermal shift assay (DSF) to search the Prestwick Chemical Library containing 1,280 compounds, mostly FDA-approved drugs, for TPH1 binders. We here report the identification of omeprazole, a proton pump inhibitor, as an inhibitor of TPH1 and TPH2 with low micromolar potency and high selectivity over the other aromatic amino acid hydroxylases. The S-enantiomer of omeprazole, esomeprazole, has recently also been described as an inhibitor of monoamine oxidase-A (MAO-A), the main enzyme responsible for 5-HT degradation, albeit with lower potency compared to the effect on TPH1 and TPH2. In order to investigate the net effect of simultaneous inhibition of TPH and MAO-A in vivo, we administered high-dose (100 mg/kg) omeprazole to CD-1 mice for 4 days, after which the animals were subjected to the tail suspension test. Finally, central (whole brain) and peripheral (serum) 5-HT content was measured using liquid chromatography-mass spectrometry (LC-MS). Omeprazole treatment significantly increased 5-HT concentrations, both in brain and in serum, and reduced the time spent immobile in the tail suspension test relative to vehicle control. Thus, the MAO-A inhibition afforded by high-dose omeprazole appears to overcome the opposing effect on 5-HT produced by inhibition of TPH1 and TPH2. Further modification of proton pump inhibitor scaffolds may yield more selective modulators of 5-HT metabolism.
Collapse
Affiliation(s)
- Nibal Betari
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Kristoffer Sahlholm
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Morató
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Héctor Godoy-Marín
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Olga Jáuregui
- Scientific and Technological Centers of University of Barcelona (CCiTUB), Barcelona, Spain
| | - Knut Teigen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Division of Psychiatry, Bergen Center of Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
26
|
Shin SS, Borg D, Stripp R. Developing and Validating a Fast and Accurate Method to Quantify 18 Antidepressants in Oral Fluid Samples Using SPE and LC-MS-MS. J Anal Toxicol 2020; 44:610-617. [PMID: 32115632 DOI: 10.1093/jat/bkz117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 11/12/2022] Open
Abstract
Antidepressant drugs are one of the most widely used medicines for treating major depressive disorders for long time periods. Oral fluid (OF) testing offers an easy and non-invasive sample collection. Detection of antidepressants in OF is important in clinical and forensic settings, such as therapeutic drug monitoring and roadside testing for driving under influence. We developed and validated a comprehensive liquid chromatography-tandem mass spectrometry method for 18 antidepressants (amitriptyline, bupropion, citalopram, clomipramine, cyclobenzaprine, desipramine, desvenlafaxine, doxepin, duloxetine, fluoxetine, imipramine, mirtazapine, nortriptyline, paroxetine, sertraline, trazodone, trimipramine, venlafaxine) in oral fluid collected by Quantisal® oral collection devices. One-half milliliter of Quantisal® OF (125 μL of neat OF) was submitted to solid-phase extraction. The chromatographic separation was performed employing a biphenyl column in gradient mode with a total run time of 5 min. The MS detection was achieved by multiple-reaction monitoring with two transitions per compound. The range for linearity of all analytes was from 10 to 1,000 ng/mL, with a limit of detection of 10 ng/mL. Intra and inter-day accuracy and precision (n = 15) were all within acceptable limits, ±20% error and ±15% relative standard deviation. Analyte recovery at 400 ng/mL concentration (n = 15) ranged from 91 to 129%. Matrix effect ranged from 73.7 to 157%. The internal proficiency test detected all antidepressants with accuracy ranging from 83.1 to 112.1%. The authentic patient sample showed a percentage difference compared to the previously calculated concentration of 86.3-111%. This method provides for the rapid detection of 18 antidepressants and metabolites in OF, which is readily applicable to a routine laboratory.
Collapse
Affiliation(s)
- Sanghee Sarah Shin
- Toxicology Department, Houston Forensic Science Center, 500 Jefferson St 13th Floor, Houston, TX 77002, USA
| | - Damon Borg
- Research and Development Laboratory, Cordant Health Solutions, 789 Park Ave, Huntington, NY 11743, USA
| | - Richard Stripp
- Research and Development Laboratory, Cordant Health Solutions, 789 Park Ave, Huntington, NY 11743, USA
| |
Collapse
|
27
|
CELOFIGA ANDREJA, HLADEN TOMOBRUS. Serotonin syndrome associated with methadone and milk thistle seeds: a case report. ARCH CLIN PSYCHIAT 2020. [DOI: 10.1590/0101-60830000000238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
28
|
de Beer F, Petzer JP, Petzer A. Monoamine oxidase inhibition by selected dye compounds. Chem Biol Drug Des 2020; 95:355-367. [PMID: 31834986 DOI: 10.1111/cbdd.13654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 12/07/2019] [Indexed: 11/28/2022]
Abstract
Monoamine oxidase (MAO) is an important drug target as the MAO isoforms play key roles in neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as in neuropsychiatric diseases such as depression. Methylene blue is an inhibitor of MAO-A, while azure B, the major metabolite of methylene blue, and various other structural analogues retain the ability to inhibit MAO-A. Based on this, the present study evaluated 22 dyes, many of which are structurally related to methylene blue, as potential inhibitors of human MAO-A and MAO-B. The results highlighted three dye compounds as good potency competitive and reversible MAO inhibitors, and which exhibit higher MAO inhibition than methylene blue: acridine orange, oxazine 170 and Darrow red. Acridine orange was found to be a MAO-A specific inhibitor (IC50 = 0.017 μM), whereas oxazine 170 is a MAO-B specific inhibitor (IC50 = 0.0065 μM). Darrow red was found to be a non-specific MAO inhibitor (MAO-A, IC50 = 0.059 μM; MAO-B, IC50 = 0.065 μM). These compounds may be advanced for further testing and preclinical development, or be used as possible lead compounds for the future design of MAO inhibitors.
Collapse
Affiliation(s)
- Franciska de Beer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| |
Collapse
|
29
|
The anaesthetist, opioid analgesic drugs, and serotonin toxicity: a mechanistic and clinical review. Br J Anaesth 2019; 124:44-62. [PMID: 31653394 DOI: 10.1016/j.bja.2019.08.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 11/23/2022] Open
Abstract
Most cases of serotonin toxicity are provoked by therapeutic doses of a combination of two or more serotonergic drugs, defined as drugs affecting the serotonin neurotransmitter system. Common serotonergic drugs include many antidepressants, antipsychotics, and opioid analgesics, particularly fentanyl, tramadol, meperidine (pethidine), and methadone, but rarely morphine and other related phenanthrenes. Symptoms of serotonin toxicity are attributable to an effect on monoaminergic transmission caused by an increased synaptic concentration of serotonin. The serotonin transporter (SERT) maintains low serotonin concentrations and is important for the reuptake of the neurotransmitter into the presynaptic nerve terminals. Some opioids inhibit the reuptake of serotonin by inhibiting SERT, thus increasing the plasma and synaptic cleft serotonin concentrations that activate the serotonin receptors. Opioids that are good inhibitors of SERT (tramadol, dextromethorphan, methadone, and meperidine) are most frequently associated with serotonin toxicity. Tramadol also has a direct serotonin-releasing action. Fentanyl produces an efflux of serotonin, and binds to 5-hydroxytryptamine (5-HT)1A and 5-HT2A receptors, whilst methadone, meperidine, and more weakly tapentadol, bind to 5-HT2A but not 5-HT1A receptors. The perioperative period is a time where opioids and other serotonergic drugs are frequently administered in rapid succession, sometimes to patients with other serotonergic drugs in their system. This makes the perioperative period a relatively risky time for serotonin toxicity to occur. The intraoperative recognition of serotonin toxicity is challenging as it can mimic other serious syndromes, such as malignant hyperthermia, sepsis, thyroid storm, and neuroleptic malignant syndrome. Anaesthetists must maintain a heightened awareness of its possible occurrence and a readiness to engage in early treatment to avoid poor outcomes.
Collapse
|
30
|
Orlova Y, Rizzoli P, Loder E. Association of Coprescription of Triptan Antimigraine Drugs and Selective Serotonin Reuptake Inhibitor or Selective Norepinephrine Reuptake Inhibitor Antidepressants With Serotonin Syndrome. JAMA Neurol 2019; 75:566-572. [PMID: 29482205 DOI: 10.1001/jamaneurol.2017.5144] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance In 2006, the US Food and Drug Administration (FDA) issued an advisory warning on the risk of serotonin syndrome with concomitant use of triptans and selective serotonin reuptake inhibitor (SSRI) or selective norepinephrine reuptake inhibitor (SNRI) antidepressants, but the true risk of serotonin syndrome in these patients remains unknown. Objective To assess the risk of serotonin syndrome with concomitant use of triptans and SSRI or SNRI antidepressants. Design, Setting, and Participants This study used electronic health record data from the Partners Research Data Registry (RPDR) to identify patients who had received an International Classification of Diseases, Ninth Revision diagnosis compatible with serotonin syndrome who had been coprescribed triptans and SSRI or SNRI antidepressants in the Greater Boston, Massachusetts, area from January 1, 2001, through December 31, 2014 (14 years). Clinical information was extracted to determine whether the case met formal diagnostic criteria and had coprescription within a calendar year. Both conservative and broad case definitions were used to better characterize the spectrum of risk. Data analysis was performed from November 23, 2016, to July 15, 2017. Main Outcomes and Measures Incidence of serotonin syndrome. Results The RPDR search revealed 47 968 (±3) unique patients who were prescribed triptans during the 14-year period of the study. A total of 19 017 (±3) patients were coprescribed triptans and antidepressants during the study, with a total of 30 928 person-years of exposure. Serotonin syndrome was suspected in 17 patients. Only 2 patients were classified as having definite serotonin syndrome (incidence rate, 0.6 cases per 10 000 person-years of exposure; 95% CI, 0.0-1.5). Five patients were classified as having possible serotonin syndrome (incidence rate with these 5 cases added to the 2 definite cases, 2.3 cases per 10 000 person-years of exposure; 95% CI, 0.6-3.9). The proportion of patients with triptan prescriptions who were coprescribed an SSRI or SNRI antidepressant was relatively stable during the study, ranging from 21% to 29%. Conclusions and Relevance The risk of serotonin syndrome associated with concomitant use of triptans and SSRIs or SNRIs was low. Coprescription of these drugs is common and did not decrease after the 2006 FDA advisory. Our results cast doubt on the validity of the FDA advisory and suggest that it should be reconsidered.
Collapse
Affiliation(s)
- Yulia Orlova
- Graham Headache Center, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Neurology, University of Florida College of Medicine, Gainesville
| | - Paul Rizzoli
- Graham Headache Center, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Loder
- Division of Headache, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Scotton WJ, Hill LJ, Williams AC, Barnes NM. Serotonin Syndrome: Pathophysiology, Clinical Features, Management, and Potential Future Directions. Int J Tryptophan Res 2019; 12:1178646919873925. [PMID: 31523132 PMCID: PMC6734608 DOI: 10.1177/1178646919873925] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Serotonin syndrome (SS) (also referred to as serotonin toxicity) is a potentially life-threatening drug-induced toxidrome associated with increased serotonergic activity in both the peripheral (PNS) and central nervous systems (CNS). It is characterised by a dose-relevant spectrum of clinical findings related to the level of free serotonin (5-hydroxytryptamine [5-HT]), or 5-HT receptor activation (predominantly the 5-HT1A and 5-HT2A subtypes), which include neuromuscular abnormalities, autonomic hyperactivity, and mental state changes. Severe SS is only usually precipitated by the simultaneous initiation of 2 or more serotonergic drugs, but the syndrome can also occur after the initiation of a single serotonergic drug in a susceptible individual, the addition of a second or third agent to long-standing doses of a maintenance serotonergic drug, or after an overdose. The combination of a monoamine oxidase inhibitor (MAOI), in particular MAO-A inhibitors that preferentially inhibit the metabolism of 5-HT, with serotonergic drugs is especially dangerous, and may lead to the most severe form of the syndrome, and occasionally death. This review describes our current understanding of the pathophysiology, clinical presentation and management of SS, and summarises some of the drugs and interactions that may precipitate the condition. We also discuss the newer novel psychoactive substances (NPSs), a growing public health concern due to their increased availability and use, and their potential risk to evoke the syndrome. Finally, we discuss whether the inhibition of tryptophan hydroxylase (TPH), in particular the neuronal isoform (TPH2), may provide an opportunity to pharmacologically target central 5-HT synthesis, and so develop new treatments for severe, life-threatening SS.
Collapse
Affiliation(s)
- William J Scotton
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Nicholas M Barnes
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
32
|
Cherrington B, Englich U, Niruntari S, Grant W, Hodgman M. Monoamine oxidase A inhibition by toxic concentrations of metaxalone. Clin Toxicol (Phila) 2019; 58:383-387. [PMID: 31373522 DOI: 10.1080/15563650.2019.1648815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Context: Serotonin toxicity is a reported complication associated with both therapeutic use and overdose of metaxalone while on therapeutic doses of serotonergic drugs such as serotonin reuptake inhibitors. Monoamine oxidase A (MAO-A) inhibition by metaxalone has been proposed as the etiology of this toxicity. Metaxalone concentrations reported with cases of serotonin toxicity range from 31 to 61 mcg/ml (140-276 µM). We investigated the effect of metaxalone on MAO-A activity using an in vitro model.Methods: Metaxalone at concentrations ranging from 1.56 to 400 µM were incubated with a proprietary MAO substrate and recombinant human MAO-A for 1 h. After that, an esterase and luciferase were added and luminescence measured. Clorgyline, a known MAO-A inhibitor, was used as a positive control. Luminescence was measured using a Biotek Synergy HT microplate reader.Results: Metaxalone demonstrated significant dose-related inhibition of MAO-A activity. Four-parameter logistic regression analysis demonstrated a strong dose-response relationship at increasing concentrations.Conclusions: Our in vitro model shows that at toxic concentrations similar to those reported in case reports metaxalone shows significant MAO-A inhibition. Clinicians should be aware of this mechanism and understand the potentially lethal interactions metaxalone can have when prescribed with other serotonergic drugs and consider this as a potential cause of serotonin toxicity, especially in overdose scenarios.
Collapse
Affiliation(s)
- Brett Cherrington
- Upstate New York Poison Center, Syracuse, NY, USA.,Department of Emergency Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ulrich Englich
- Department of Chemistry, Forensic and National Security Sciences Institute, Syracuse University, Syracuse, NY, USA
| | - Supa Niruntari
- Upstate New York Poison Center, Syracuse, NY, USA.,Department of Emergency Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - William Grant
- Department of Emergency Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael Hodgman
- Upstate New York Poison Center, Syracuse, NY, USA.,Department of Emergency Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
33
|
Prakash S, Rathore C, Rana KK, Dave A, Joshi H, Patel J. Refining the Clinical Features of Serotonin Syndrome: A Prospective Observational Study of 45 Patients. Ann Indian Acad Neurol 2019; 22:52-60. [PMID: 30692760 PMCID: PMC6327697 DOI: 10.4103/aian.aian_344_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Introduction: Serotonin syndrome (SS) is a drug-induced clinical syndrome that results from the excess intrasynaptic concentration of serotonin. Prospective observations are limited for SS. Methods: We prospectively recruited 45 consecutive adult patients (>18 years) fulfilling the Hunter's criteria for SS. All patients were subjected to a detailed clinical history and examinations. Patients were subjected to appropriate investigations to find out the other causes. The causation of SS to serotonergic drugs was assessed according to Naranjo adverse drug reaction probability scale. Results: The mean age was 37.3 years (range: 18–59 years). Sixty-two percent of patients were male. There were 15 different underlying clinical syndromes for which serotonergic drugs were started. Psychiatry conditions (36%) and cough/respiratory tract infection (16%) were the two most common clinical conditions for starting serotonergic drugs. We noted 49 different symptoms and physical signs. Overall, tremor (78%) and dizziness (47%) were the two most common symptoms. Headache (16%) and dizziness (16%) were the two most common initial (or first) symptoms. However, gait difficulty and febrile encephalopathy were the two most common reasons to visit the hospital. We noted 18 different drugs causing SS. Thirty-eight percent of patients received single serotonergic agent antidepressants, pain medicines and cough syrups were other important drugs causing SS. Conclusions: This study represents the largest clinic-based study on SS. SS is not rare in clinical practice. However, various aspects of this syndrome are still to be determined. All patients on serotonergic drugs should be physically examined for the presence of SS on the development of any new symptom.
Collapse
Affiliation(s)
- Sanjay Prakash
- Department of Neurology, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Chaturbhuj Rathore
- Department of Neurology, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Kaushik Kumar Rana
- Department of Neurology, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Ankit Dave
- Department of Neurology, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Hemant Joshi
- Department of Neurology, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Jay Patel
- Department of Neurology, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| |
Collapse
|
34
|
Delport A, Harvey BH, Petzer A, Petzer JP. Methylene Blue Analogues with Marginal Monoamine Oxidase Inhibition Retain Antidepressant-like Activity. ACS Chem Neurosci 2018; 9:2917-2928. [PMID: 29976053 DOI: 10.1021/acschemneuro.8b00042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methylene blue (MB) possesses diverse medical applications. Among these, MB presents with antidepressant-like effects in animals and has shown promise in clinical trials for the treatment of mood disorders. As an antidepressant, MB may act via various mechanisms which include modulation of the nitric oxide cyclic guanosine monophosphate (NO-cGMP) cascade, enhancement of mitochondrial respiration and antioxidant effects. MB is also, however, a high potency inhibitor of monoamine oxidase (MAO) A, which most likely contributes to its antidepressant effect, but also to its adverse effects profile (e.g., serotonin toxicity). The latter has raised the question whether it is possible to design out the MAO inhibition properties of MB yet retaining its clinically useful attributes. This study explores this idea further by characterizing five newly synthesized low MAO-A active MB analogues and examining their antidepressant-like properties in the acute forced swim test (FST) in rats, with comparison to imipramine and MB. The results show that all five analogues exhibit antidepressant-like properties in the FST without confounding effects on locomotor activity. The magnitude of these effects is comparable to those of imipramine and MB. Moreover, these newly synthesized MB analogues are markedly less potent MAO-A inhibitors (IC50 = 0.518-4.73 μM) than MB (IC50 = 0.07 μM). We postulate that such lower potency MAO-A inhibitors may present with a reduced risk of adverse effects associated with MAO-A inhibition. While low level MAO-A inhibition still may produce an antidepressant effect, we posit that other MB-related mechanisms may underlie their antidepressant effects, thereby representing a novel group of antidepressant compounds.
Collapse
Affiliation(s)
- Anzelle Delport
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Brian H. Harvey
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jacobus P. Petzer
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
35
|
Gillman PK. A reassessment of the safety profile of monoamine oxidase inhibitors: elucidating tired old tyramine myths. J Neural Transm (Vienna) 2018; 125:1707-1717. [PMID: 30255284 DOI: 10.1007/s00702-018-1932-y] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/17/2018] [Indexed: 01/24/2023]
Abstract
This review appraises over 150 recent original papers reporting data that demonstrate the greatly reduced tyramine content of modern-day 'foods', about which the medical literature has a paucity of information. It discusses the cardiovascular pharmacology of tyramine and the characteristics, extent, risks, and treatment of the blood pressure increases that sometimes result from tyramine ingestion (the pressor response). In past decades, cheese was the only food associated with documented fatalities resulting from hypertension. Today, few foods contain problematically high tyramine levels, which is a result of changes in international food production techniques (especially the use of starter cultures), and hygiene regulations. Nowadays, even 'matured' cheeses are usually safe in healthy-sized portions. The mechanism by which tyramine may be produced in foods (by certain micro-organisms) is explained and hundreds of recent estimations of cheeses are reviewed. Numerous other previously inadequately documented foods are reviewed, including fish and soy sauces, salami-type sausages, dried meats, beers, wines, and various condiments. Evidence that the risk of harm from the pressor response has previously been overstated is reviewed, and the iatrogenic harms from hasty and aggressive treatment of hypertensive urgency are re-evaluated. Evidence now suggests that MAOIs are of comparable safety to many newer drugs and are straightforward to use. Previously held concerns about MAOIs are misplaced and some are of over-estimated consequence. The variability of pressor sensitivity to tyramine between individuals means that the knowledge and judgement of doctors, and some care, are still required.
Collapse
|
36
|
Culbertson VL, Rahman SE, Bosen GC, Caylor ML, Echevarria MM, Xu D. Implications of Off-Target Serotoninergic Drug Activity: An Analysis of Serotonin Syndrome Reports Using a Systematic Bioinformatics Approach. Pharmacotherapy 2018; 38:888-898. [PMID: 29972695 PMCID: PMC6160353 DOI: 10.1002/phar.2163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Study Objective Serotonergic adverse drug events (ADEs) are caused by enhanced intrasynaptic concentrations of 5‐hydroxytryptamine (5‐HT). No systematic process currently exists for evaluating cumulative 5‐HT and off‐target toxicity of serotonergic drugs. The primary study aim was to create a Serotonergic Expanded Bioactivity Matrix (SEBM) by using a molecular bioinformatics, polypharmacologic approach for assessment of the participation of individual 5‐HT drugs in serotonin syndrome (SS) reports. Data Sources Publicly available databases including the U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS), ChEMBL, DrugBank, PubChem, and Kyoto Encyclopedia of Genes and Genomes (KEGG) were queried for computational and pharmacologic data. Design An in‐house bioinformatics TargetSearch program ( http://dxulab.org/software) was used to characterize 71 serotonergic drugs interacting at 13 serotonin receptor subtypes and serotonin reuptake transporter protein (SERT). In addition, off‐target interactions at norepinephrine transporter (NET), monoamine oxidase (MAO), and muscarinic receptors were included to define seven polypharmacological drug cohorts. Serotonin syndrome reports for each serotonergic drug were extracted from FAERS by using the Sternbach and Hunter criteria. Measurements and Main Results A proportional reporting adverse drug reaction (ADR) ratio (PRR) was calculated from each drug's total ADEs and SS case reports and aggregated by drug bioactivity cohorts. Triple‐receptor interactions had a disproportionately higher number of SS cases using both the Hunter criteria (mean PRR 1.72, 95% CI 1.05–2.39) and Sternbach (mean PRR 1.54, 95% CI 1.29–1.79). 5‐Hydroxytryptamine agonists were associated with a significantly lower proportion of SS cases using the Hunter and Sternbach criteria, respectively (mean PRR 0.49, 95% CI 0.17–0.81 and mean PRR 0.49, 95% CI 0.15–0.83). Drugs with disproportionately higher participation in SS vary considerably between the two diagnostic criteria. Conclusion The SEBM model suggests a possible polypharmacological role in SS. Although further research is needed, off‐target receptor activity may help explain differences in severity of toxicity and clinical presentation.
Collapse
Affiliation(s)
- Vaughn L Culbertson
- Kasiska Division of Health Sciences, Department of Pharmacy Practice, College of Pharmacy, Idaho State University, Meridian, Idaho
| | - Shaikh E Rahman
- Kasiska Division of Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Meridian, Idaho
| | - Grayson C Bosen
- Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Meridian, Idaho
| | - Matthew L Caylor
- Kasiska Division of Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Meridian, Idaho
| | - Megan M Echevarria
- Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Meridian, Idaho
| | - Dong Xu
- Kasiska Division of Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Meridian, Idaho
| |
Collapse
|
37
|
Opioid analgesic drugs and serotonin toxicity (syndrome): mechanisms, animal models, and links to clinical effects. Arch Toxicol 2018; 92:2457-2473. [DOI: 10.1007/s00204-018-2244-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
|
38
|
Affiliation(s)
- Ai-Leng Foong
- University of Waterloo School of Pharmacy, Waterloo, Ontario
| | - Tejal Patel
- University of Waterloo School of Pharmacy, Waterloo, Ontario
| | - Jamie Kellar
- University of Waterloo School of Pharmacy, Waterloo, Ontario
| | | |
Collapse
|
39
|
Abstract
Serotonin syndrome is an iatrogenic drug-induced synaptic serotonin concentration related toxidrome. A 29-year-old man developed agitation, tachycardia and myoclonus of limbs after an intramuscular injection of 100 mg tramadol. He had recently been given multiple medications, including dextromethorphan (DXM) by a private doctor for flu-like symptoms. The patient was stabilised with diazepam, midazolam and supportive treatment. Both tramadol and DXM could cause the serotonin syndrome, but usually in combination with monoamine oxidase inhibitors or serotonin reuptake inhibitors. This was the first reported case in the English literature of serotonin syndrome with tramadol and DXM. Therefore, a detailed drug history and knowledge of potential serotonergic drugs are important.
Collapse
|
40
|
|
41
|
Delport A, Harvey BH, Petzer A, Petzer JP. Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 2017; 32:1357-1382. [PMID: 28762173 DOI: 10.1007/s11011-017-0081-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
Methylene Blue (MB) is considered to have diverse medical applications and is a well-described treatment for methemoglobinemias and ifosfamide-induced encephalopathy. In recent years the focus has shifted to MB as an antimalarial agent and as a potential treatment for neurodegenerative disorders such as Alzheimer's disease. Of interest are reports that MB possesses antidepressant and anxiolytic activity in pre-clinical models and has shown promise in clinical trials for schizophrenia and bipolar disorder. MB is a noteworthy inhibitor of monoamine oxidase A (MAO-A), which is a well-established target for antidepressant action. MB is also recognized as a non-selective inhibitor of nitric oxide synthase (NOS) and guanylate cyclase. Dysfunction of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) cascade is strongly linked to the neurobiology of mood, anxiety and psychosis, while the inhibition of NOS and/or guanylate cyclase has been associated with an antidepressant response. This action of MB may contribute significantly to its psychotropic activity. However, these disorders are also characterised by mitochondrial dysfunction and redox imbalance. By acting as an alternative electron acceptor/donor MB restores mitochondrial function, improves neuronal energy production and inhibits the formation of superoxide, effects that also may contribute to its therapeutic activity. Using MB in depression co-morbid with neurodegenerative disorders, like Alzheimer's and Parkinson's disease, also represents a particularly relevant strategy. By considering their physicochemical and pharmacokinetic properties, analogues of MB may provide therapeutic potential as novel multi-target strategies in the treatment of depression. In addition, low MAO-A active analogues may provide equal or improved response with a lower risk of adverse effects.
Collapse
Affiliation(s)
- Anzelle Delport
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
42
|
Borroni E, Bohrmann B, Grueninger F, Prinssen E, Nave S, Loetscher H, Chinta SJ, Rajagopalan S, Rane A, Siddiqui A, Ellenbroek B, Messer J, Pähler A, Andersen JK, Wyler R, Cesura AM. Sembragiline: A Novel, Selective Monoamine Oxidase Type B Inhibitor for the Treatment of Alzheimer's Disease. J Pharmacol Exp Ther 2017; 362:413-423. [PMID: 28642233 DOI: 10.1124/jpet.117.241653] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/23/2017] [Indexed: 12/26/2022] Open
Abstract
Monoamine oxidase B (MAO-B) has been implicated in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative disorders. Increased MAO-B expression in astroglia has been observed adjacent to amyloid plaques in AD patient brains. This phenomenon is hypothesized to lead to increased production of hydrogen peroxide and reactive oxygen species (ROS), thereby contributing to AD pathology. Therefore, reduction of ROS-induced oxidative stress via inhibition of MAO-B activity may delay the progression of the disease. In the present study we report the pharmacological properties of sembragiline, a novel selective MAO-B inhibitor specifically developed for the treatment of AD, and on its effect on ROS-mediated neuronal injury and astrogliosis in MAO-B transgenic animals. Sembragiline showed potent and long-lasting MAO-B-selective inhibition and did not inhibit MAO-A at doses where full inhibition of MAO-B was observed. Such selectivity should translate into a favorable clinical safety profile. Indeed, sembragiline neither induced the serotonin syndrome when administered together with the serotonin precursor l-5-hydroxytryptophan in combination with antidepressants such as fluoxetine, nor potentiated the pressor effect of tyramine. Additionally, in experiments using a transgenic animal model conditionally overexpressing MAO-B in astroglia, sembragiline protected against neuronal loss and reduced both ROS formation and reactive astrogliosis. Taken together, these findings warrant further investigation of the potential therapeutic benefit of MAO-B inhibitors in patients with AD and other neurologic disorders.
Collapse
Affiliation(s)
- Edilio Borroni
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Bernd Bohrmann
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Fiona Grueninger
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Eric Prinssen
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Stephane Nave
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Hansruedi Loetscher
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Shankar J Chinta
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Subramanian Rajagopalan
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Anand Rane
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Almas Siddiqui
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Bart Ellenbroek
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Juerg Messer
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Axel Pähler
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Julie K Andersen
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Rene Wyler
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Andrea M Cesura
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| |
Collapse
|
43
|
Prakash S, Adroja B, Parekh H. Serotonin syndrome in patients with headache disorders. BMJ Case Rep 2017; 2017:bcr-2017-221383. [PMID: 28784913 DOI: 10.1136/bcr-2017-221383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Serotonin syndrome (SS) is an iatrogenic, drug-induced syndrome caused by serotoninergic agent. Various serotonergic drugs are used in different headache disorders. Therefore, a possibility of developing SS exists in patients with headache. Herein, we are reporting two patients with headache disorders who developed SS.Case 1: a 49-year-old man had a 6-year history of episodic cluster headache (CH). However, he had never been diagnosed with CH before reporting to us. He had been receiving amitriptyline, tramadol/acetaminophen combination and flunarizine. Lithium was started for CH. He developed features consistent with SS. The patient responded to cyprohepatdine.Case 2: a 36-year-old chronic migraineur was on amitriptyline. Addition of sodium valproate led to the development of new features that fulfilled the criteria of SS. The patient responded to cyprohepatdine.As SS may be fatal, there is a need to increase awareness about SS in physicians treating patients with headache.
Collapse
Affiliation(s)
- Sanjay Prakash
- Department of Neurology, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara, India
| | - Banshi Adroja
- Department of Medicine, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara, India
| | - Haresh Parekh
- Department of Neurology, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara, India
| |
Collapse
|
44
|
Ulrich S, Ricken R, Adli M. Tranylcypromine in mind (Part I): Review of pharmacology. Eur Neuropsychopharmacol 2017; 27:697-713. [PMID: 28655495 DOI: 10.1016/j.euroneuro.2017.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
It has been over 50 years since a review has focused exclusively on the monoamine oxidase (MAO) inhibitor tranylcypromine (TCP). A new review has therefore been conducted for TCP in two parts which are written to be read preferably in close conjunction: Part I - pharmacodynamics, pharmacokinetics, drug interactions, toxicology; and Part II - clinical studies with meta-analysis of controlled studies in depression, practice of TCP treatment, place in therapy. Pharmacological data of this review part I characterize TCP as an irreversible and nonselective MAO-A/B inhibitor at low therapeutic doses of 20mg/day with supplementary norepinephrine reuptake inhibition at higher doses of 40-60mg/day. Serotonin, norepinephrine, dopamine, and trace amines, such as the "endogenous amphetamine" phenylethylamine, are increased in brain, which leads to changes in neuroplasticity by e.g. increased neurotrophic growth factors and translates to reduced stress-induced hypersecretion of corticotropin releasing factor (CRF) and positive testing in animal studies of depression. TCP has a pharmacokinetic half-life (t1/2) of only 2h which is considerably lower than for most other antidepressant drugs. However, a very long pharmacodynamic half-life of about one week is found because of the irreversible MAO inhibition. New studies show that, except for cytochrome P450 (CYP) 2A6, no other drug metabolizing CYP-enzymes are inhibited by TCP at therapeutic doses which defines a low potential of pharmacokinetic interactions in the direction from TCP to other drugs. Insufficient information is available, however, for plasma concentrations of TCP influenced by comedication. More quantitative data are also needed for TCP metabolites such as p-hydroxytranylcypromine and N-acetyltranylcypromine. Pharmacodynamic drug interactions comprise for instance severe serotonin toxicity (SST) with serotonergic drugs and hypertensive crisis with indirect sympathomimetics. Because of the risk of severe food interaction, TCP treatment remains beset with the need for a mandatory tyramine-restricted diet. Toxicity in overdose is similar to amitriptyline and imipramine according to the distance of therapeutic to toxic doses. In conclusion, TCP is characterized by an exceptional pharmacology which is different to most other antidepressant drugs, and a more special evaluation of clinical efficacy and safety may therefore be needed.
Collapse
Affiliation(s)
- Sven Ulrich
- Aristo Pharma GmbH, Wallenroder Str. 8-10, 13435 Berlin, Germany.
| | - Roland Ricken
- Department of Psychiatry and Psychotherapy, Charité, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
45
|
Ricken R, Ulrich S, Schlattmann P, Adli M. Tranylcypromine in mind (Part II): Review of clinical pharmacology and meta-analysis of controlled studies in depression. Eur Neuropsychopharmacol 2017; 27:714-731. [PMID: 28579071 DOI: 10.1016/j.euroneuro.2017.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 01/03/2023]
Abstract
It has been over 50 years since a review has focused exclusively on the monoamine oxidase (MAO) inhibitor tranylcypromine (TCP). A new review has therefore been conducted for TCP in two parts which are written to be read preferably in close conjunction: part I - pharmacodynamics, pharmacokinetics, drug interactions, toxicology; and part II - clinical studies with meta-analysis of controlled studies in depression, practice of TCP treatment, place in therapy. The irreversible and nonselective MAO-A/B inhibitor TCP has been confirmed as an efficacious and safe antidepressant drug. For the first time, a meta-analysis of controlled clinical trials in depression demonstrated that TCP is superior to placebo (pooled logOR=0.509, 95%CI=0.026 to 0.993, 4 studies) and equal to other antidepressants (pooled logOR=0.208, 95%CI=-0.128 to 0.544, 10 studies). In treatment resistant depression (TRD) after tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs), TCP was superior to placebo (logOR=2.826, 95%CI=1.494 to 4.158, one study) and non-established antidepressants (pooled logOR=1.976, 95%CI=0.907 to 3.045, 4 studies), and was equal to other MAO inhibitors and an antidepressant combination (pooled logOR=-0.366, 95%CI=-0.869 to 0.137, 4 studies). Controlled studies revealed that TCP might provide a special advantage in the treatment of atypical depression, which was supported by a recent PET study of MAO-A activity in brain. However, TCP treatment remains beset with the need for a mandatory tyramine-restricted diet and is therefore limited to use as a third-line antidepressant according to recent treatment algorithms and guidelines for depression treatment. On the other hand, the effort needed to maintain a tyramine-restricted diet may have been overestimated in the perception of both doctors and patients, which may have led to relative underuse of TCP. Interaction with serotonergic drugs bears the risk of severe serotonin toxicity (SST) and combination with indirect sympathomimetic drugs may result in hypertensive crisis which both adds to the risks of TCP. At the same time, TCP has low to no risks of central anticholinergic, sedative, cardiac conduction, body weight, hemostatic effects, or pharmacokinetic drug interactions. Neuroprotection by MAO inhibitors due to reduced oxidative stress is becoming increasingly studied. Taken together, TCP is being increasingly recognized as an important option in systematic treatment approaches for patients suffering from severe courses of depression, such as TRD and atypical depression, by offering a MAO-related pathophysiological rationale.
Collapse
Affiliation(s)
- Roland Ricken
- Department of Psychiatry and Psychotherapy, Charité, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | - Sven Ulrich
- Aristo Pharma GmbH, Wallenroder Str. 8-10, 13435 Berlin, Germany
| | - Peter Schlattmann
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University Jena, Bachstraße 18, 07743 Jena, Germany
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
46
|
Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes. Neurotoxicol Teratol 2017; 62:27-33. [DOI: 10.1016/j.ntt.2017.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
|
47
|
Delport A, Harvey BH, Petzer A, Petzer JP. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue. Toxicol Appl Pharmacol 2017; 325:1-8. [DOI: 10.1016/j.taap.2017.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 12/25/2022]
|
48
|
Sher Y, Zimbrean P. Psychiatric Aspects of Organ Transplantation in Critical Care: An Update. Crit Care Clin 2017; 33:659-679. [PMID: 28601140 DOI: 10.1016/j.ccc.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transplant patients face challenging medical journeys, with many detours to the intensive care unit. Before and after transplantation, they have significant psychological and cognitive comorbidities, which decrease their quality of life and potentially compromise their medical outcomes. Critical care staff are essential in these journeys. Being cognizant of relevant psychosocial and mental health aspects of transplant patients' experiences can help critical care personnel take comprehensive care of these patients. This knowledge can empower them to understand their patients' psychological journeys, recognize patients' mental health needs, provide initial interventions, and recognize need for expert consultations.
Collapse
Affiliation(s)
- Yelizaveta Sher
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Suite 2320, Stanford, CA, 94305, USA.
| | - Paula Zimbrean
- Departments of Psychiatry and Surgery (Transplant), Yale New Haven Hospital, 20 York Street, Fitkin 611, New Haven, CT 06511, USA
| |
Collapse
|
49
|
Abstract
Respiratory conditions are some of the most common indications for admission to critical care units. Psychiatric disorders and symptoms are highly comorbid with lung disease. They can occur as a risk factor to lung disease, as a co-occurring condition, as a consequence of a pulmonary condition, or as a treatment side effect either from medications or assistive devices. Patients can experience a myriad of mood, anxiety, and cognitive disorder symptoms and conditions in critical care units. Intensivists and psychiatrists must be aware of the interplay between pulmonary and psychiatric symptoms as well as medication effects and interactions.
Collapse
Affiliation(s)
- Yelizaveta Sher
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Suite 2320, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Clarissa Samara V, Warner J. Rare case of severe serotonin syndrome leading to bilateral compartment syndrome. BMJ Case Rep 2017; 2017:bcr-2016-218842. [PMID: 28258180 DOI: 10.1136/bcr-2016-218842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The term 'serotonin syndrome' describes a constellation of symptoms caused by serotonergic overstimulation. Its characteristic clinical presentation consists of encephalopathy, neuromuscular signs and autonomic hyperactivity. After removal of the offending agent, the clinical course is usually self-limited but can occasionally lead to severe symptoms. We report the case of a 68-year-old woman who presented emergently with encephalopathy. Home medications included paroxetine and dextroamphetamine/amphetamine. Physical examination revealed tachycardia, tachypnoea, diaphoresis, rigidity, hyperreflexia and clonus. Given the fast onset of symptoms, a diagnosis of serotonin syndrome was made. Laboratory studies showed acute-on-chronic kidney injury and elevated creatine kinase. The patient's mental status quickly returned to baseline with supportive care. Her rhabdomyolysis, however, persisted and led to acute compartment syndrome in her lower extremities. After bilateral leg fasciotomies and treatment of a severe wound infection with intravenous antibiotics, the patient has now recovered with complete resolution of her symptoms.
Collapse
Affiliation(s)
| | - Judith Warner
- University of Utah, Salt Lake City, Utah, USA.,Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|