1
|
Lei L, Wang YF, Chen CY, Wang YT, Zhang Y. Novel insight into astrocyte-mediated gliotransmission modulates the synaptic plasticity in major depressive disorder. Life Sci 2024; 355:122988. [PMID: 39153595 DOI: 10.1016/j.lfs.2024.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Major depressive disorder (MDD) is a form of glial cell-based synaptic dysfunction disease in which glial cells interact closely with neuronal synapses and perform synaptic information processing. Glial cells, particularly astrocytes, are active components of the brain and are responsible for synaptic activity through the release gliotransmitters. A reduced density of astrocytes and astrocyte dysfunction have both been identified the brains of patients with MDD. Furthermore, gliotransmission, i.e., active information transfer mediated by gliotransmitters between astrocytes and neurons, is thought to be involved in the pathogenesis of MDD. However, the mechanism by which astrocyte-mediated gliotransmission contributes to depression remains unknown. This review therefore summarizes the alterations in astrocytes in MDD, including astrocyte marker, connexin 43 (Cx43) expression, Cx43 gap junctions, and Cx43 hemichannels, and describes the regulatory mechanisms of astrocytes involved in synaptic plasticity. Additionally, we investigate the mechanisms acting of the glutamatergic, gamma-aminobutyric acidergic, and purinergic systems that modulate synaptic function and the antidepressant mechanisms of the related receptor antagonists. Further, we summarize the roles of glutamate, gamma-aminobutyric acid, d-serine, and adenosine triphosphate in depression, providing a basis for the identification of diagnostic and therapeutic targets for MDD.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Bansal Y, Codeluppi SA, Banasr M. Astroglial Dysfunctions in Mood Disorders and Rodent Stress Models: Consequences on Behavior and Potential as Treatment Target. Int J Mol Sci 2024; 25:6357. [PMID: 38928062 PMCID: PMC11204179 DOI: 10.3390/ijms25126357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Astrocyte dysfunctions have been consistently observed in patients affected with depression and other psychiatric illnesses. Although over the years our understanding of these changes, their origin, and their consequences on behavior and neuronal function has deepened, many aspects of the role of astroglial dysfunction in major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) remain unknown. In this review, we summarize the known astroglial dysfunctions associated with MDD and PTSD, highlight the impact of chronic stress on specific astroglial functions, and how astroglial dysfunctions are implicated in the expression of depressive- and anxiety-like behaviors, focusing on behavioral consequences of astroglial manipulation on emotion-related and fear-learning behaviors. We also offer a glance at potential astroglial functions that can be targeted for potential antidepressant treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Sierra A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M2J 4A6, Canada
| |
Collapse
|
3
|
Yu T, Cui J, Chen S. Electrochemical detection of the neurotransmitter glutamate and the effect of the psychotropic drug riluzole on its oxidation response. Anal Bioanal Chem 2024; 416:1707-1716. [PMID: 38363306 DOI: 10.1007/s00216-024-05175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain and plays a leading role in degenerative diseases, such as motor neuron diseases. Riluzole is a glutamate regulator and a therapeutic drug for motor neuron diseases. In this work, the interaction between glutamate and riluzole was studied using cyclic voltammetry and square-wave voltammetry at a glassy carbon electrode (GCE). It was shown that glutamate underwent a two-electron transfer reaction on the GCE surface, and the electrochemical detection limits of glutamate and riluzole were 483 μmol/L and 11.47 μmol/L, respectively. The results confirm that riluzole can promote the redox reaction of glutamate. This work highlights the significance of electrochemical technology in the sensing detection of the interaction between glutamate and related psychotropic drugs.
Collapse
Affiliation(s)
- Tao Yu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jingjie Cui
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| |
Collapse
|
4
|
Miguel-Hidalgo JJ. Neuroprotective astroglial response to neural damage and its relevance to affective disorders. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:328-345. [PMID: 37920189 PMCID: PMC10622120 DOI: 10.37349/ent.2023.00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 11/04/2023]
Abstract
Astrocytes not only support neuronal function with essential roles in synaptic neurotransmission, action potential propagation, metabolic support, or neuroplastic and developmental adaptations. They also respond to damage or dysfunction in surrounding neurons and oligodendrocytes by releasing neurotrophic factors and other molecules that increase the survival of the supported cells or contribute to mechanisms of structural and molecular restoration. The neuroprotective responsiveness of astrocytes is based on their ability to sense signals of degeneration, metabolic jeopardy and structural damage, and on their aptitude to locally deliver specific molecules to remedy threats to the molecular and structural features of their cellular partners. To the extent that neuronal and other glial cell disturbances are known to occur in affective disorders, astrocyte responsiveness to those disturbances may help to better understand the roles astrocytes play in affective disorders. The astrocytic sensing apparatus supporting those responses involves receptors for neurotransmitters, purines, cell adhesion molecules and growth factors. Astrocytes also share with the immune system the capacity of responding to cytokines released upon neuronal damage. In addition, in responses to specific signals astrocytes release unique factors such as clusterin or humanin that have been shown to exert potent neuroprotective effects. Astrocytes integrate the signals above to further deliver structural lipids, removing toxic metabolites, stabilizing the osmotic environment, normalizing neurotransmitters, providing anti-oxidant protection, facilitating synaptogenesis and acting as barriers to contain varied deleterious signals, some of which have been described in brain regions relevant to affective disorders and related animal models. Since various of the injurious signals that activate astrocytes have been implicated in different aspects of the etiopathology of affective disorders, particularly in relation to the diagnosis of depression, potentiating the corresponding astrocyte neuroprotective responses may provide additional opportunities to improve or complement available pharmacological and behavioral therapies for affective disorders.
Collapse
|
5
|
Datta S, Rashid Z, Naskar S, Chattarji S. Administration of the glutamate-modulating drug, riluzole, after stress prevents its delayed effects on the amygdala in male rats. PNAS NEXUS 2023; 2:pgad166. [PMID: 37266396 PMCID: PMC10230288 DOI: 10.1093/pnasnexus/pgad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Extracellular glutamate levels are elevated across brain regions immediately after stress. Despite sharing common features in their genesis, the patterns of stress-induced plasticity that eventually take shape are strikingly different between these brain areas. While stress causes structural and functional deficits in the hippocampus, it has the opposite effect on the amygdala. Riluzole, an FDA-approved drug known to modulate glutamate release and facilitate glutamate clearance, prevents stress-induced deficits in the hippocampus. But whether the same drug is also effective in countering the opposite effects of stress in the amygdala remains unexplored. We addressed this question by using a rat model wherein even a single 2-h acute immobilization stress causes a delayed expression of anxiety-like behavior, 10 days later, alongside stronger excitatory synaptic connectivity in the basolateral amygdala (BLA). This temporal profile-several days separating the acute stressor and its delayed impact-allowed us to test if these effects can be prevented by administering riluzole in drinking water after acute stress. Poststress riluzole not only prevented the delayed increase in anxiety-like behavior on the elevated plus maze but also blocked the increase in spine density on BLA neurons 10 days later. Further, stress-induced increase in the frequency of miniature excitatory postsynaptic currents recorded in BLA slices, 10 days later, was also blocked by the same poststress riluzole administration. Together, these findings underscore the importance of therapeutic strategies, aimed at glutamate uptake and modulation, in correcting the delayed behavioral, physiological, and morphological effects of stress on the amygdala.
Collapse
Affiliation(s)
| | | | - Saptarnab Naskar
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
6
|
Bansal Y, Fee C, Misquitta KA, Codeluppi SA, Sibille E, Berman RM, Coric V, Sanacora G, Banasr M. Prophylactic Efficacy of Riluzole against Anxiety- and Depressive-Like Behaviors in Two Rodent Stress Models. Complex Psychiatry 2023; 9:57-69. [PMID: 37101541 PMCID: PMC10123365 DOI: 10.1159/000529534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Chronic stress-related illnesses such as major depressive disorder and post-traumatic stress disorder share symptomatology, including anxiety, anhedonia, and helplessness. Across disorders, neurotoxic dysregulated glutamate (Glu) signaling may underlie symptom emergence. Current first-line antidepressant drugs, which do not directly target Glu signaling, fail to provide adequate benefit for many patients and are associated with high relapse rates. Riluzole modulates glutamatergic neurotransmission by increasing metabolic cycling and modulating signal transduction. Clinical studies exploring riluzole's efficacy in stress-related disorders have provided varied results. However, the utility of riluzole for treating specific symptom dimensions or as a prophylactic treatment has not been comprehensively assessed. Methods We investigated whether chronic prophylactic riluzole (∼12-15 mg/kg/day p.o.) could prevent the emergence of behavioral deficits induced by unpredictable chronic mild stress (UCMS) in mice. We assessed (i) anxiety-like behavior using the elevated-plus maze, open-field test, and novelty-suppressed feeding, (ii) mixed anxiety/anhedonia-like behavior in the novelty-induced hypophagia test, and (iii) anhedonia-like behavior using the sucrose consumption test. Z-scoring summarized changes across tests measuring similar dimensions. In a separate learned helplessness (LH) cohort, we investigated whether chronic prophylactic riluzole treatment could block the development of helplessness-like behavior. Results UCMS induced an elevation in anhedonia-like behavior and overall behavioral emotionality that was blocked by prophylactic riluzole. In the LH cohort, prophylactic riluzole blocked the development of helplessness-like behavior. Discussion/Conclusion This study supports the utility of riluzole as a prophylactic medication for preventing anhedonia and helplessness symptoms associated with stress-related disorders.
Collapse
Affiliation(s)
- Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Corey Fee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Keith A. Misquitta
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Sierra A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | | | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Felger JC. Increased Inflammation and Treatment of Depression: From Resistance to Reuse, Repurposing, and Redesign. ADVANCES IN NEUROBIOLOGY 2023; 30:387-416. [PMID: 36928859 DOI: 10.1007/978-3-031-21054-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Based on mounting clinical and translational evidence demonstrating the impact of exogenously administered inflammatory stimuli on the brain and behavior, increased endogenous inflammation has received attention as one pathophysiologic process contributing to psychiatric illnesses and particularly depression. Increased endogenous inflammation is observed in a significant proportion of depressed patients and has been associated with reduced responsiveness to standard antidepressant therapies. This chapter presents recent evidence that inflammation affects neurotransmitters and neurocircuits to contribute to specific depressive symptoms including anhedonia, motor slowing, and anxiety, which may preferentially improve after anti-cytokine therapies in patients with evidence of increased inflammation. Existing and novel pharmacological strategies that target inflammation or its downstream effects on the brain and behavior will be discussed in the context of a need for intelligent trial design in order to meaningfully translate these concepts and develop more precise therapies for depressed patients with increased inflammation.
Collapse
|
8
|
Vasiliu O. Investigational Drugs for the Treatment of Depression (Part 2): Glutamatergic, Cholinergic, Sestrin Modulators, and Other Agents. Front Pharmacol 2022; 13:884155. [PMID: 35847011 PMCID: PMC9284317 DOI: 10.3389/fphar.2022.884155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
Many investigational drugs with antidepressant activity are currently explored in different phases of clinical research, with indications such as major depressive disorder, treatment-resistant major depression, bipolar depression, post-partum depression, and late-life depression. Although the vast majority of the antidepressants in clinical use are based on the monoaminergic hypothesis of depression, recent data supported the launching on the market of two new, non-monoamine-modulating drugs. Esketamine for treatment-resistant major depression and brexanolone for post-partum depression are two exceptions from the monoaminergic model, although their use is still limited by high costs, unique way of administration (only intravenously for brexanolone), physicians’ reluctance to prescribe new drugs, and patients’ reticence to use them. Glutamatergic neurotransmission is explored based on the positive results obtained by intranasal esketamine, with subanesthetic intravenous doses of ketamine, and D-cycloserine, traxoprodil, MK-0657, AXS-05, AVP-786, combinations of cycloserine and lurasidone, or dextromethorphan and quinidine, explored as therapeutic options for mono- or bipolar depression. Sestrin modulators, cholinergic receptor modulators, or onabotulinumtoxinA have also been investigated for potential antidepressant activity. In conclusion, there is hope for new treatments in uni- and bipolar depression, as it became clear, after almost 7 decades of monoamine-modulating antidepressants, that new pathogenetic pathways should be targeted to increase the response rate in this population.
Collapse
|
9
|
Naskar S, Datta S, Chattarji S. Riluzole prevents stress-induced spine plasticity in the hippocampus but mimics it in the amygdala. Neurobiol Stress 2022; 18:100442. [PMID: 35330860 PMCID: PMC8938913 DOI: 10.1016/j.ynstr.2022.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Stress elicits divergent patterns of structural plasticity in the amygdala and hippocampus. Despite these contrasting effects, at least one of the immediate consequences of stress - elevated levels of extracellular glutamate - is similar in both brain areas. This raises the possibility that the contrasting effects of stress on neuronal plasticity is shaped by differences in astrocytic glutamate clearance in these two brain areas. Although astrocytes play a key role in glutamate reuptake, past analyses of, and interventions against, stress-induced plasticity have focused largely on neurons. Hence, we tested the impact of riluzole, which potentiates glutamate clearance by astrocytic glutamate transporters, on principal neurons and astrocytes in the basal amygdala (BA) and hippocampal area CA1. Chronic immobilization stress reduced spine-density on CA1 pyramidal neurons of male rats. Riluzole, administered in the drinking water during chronic stress, prevented this decrease; but, the drug by itself had no effect. In contrast, the same chronic stress enhanced spine-density on BA principal neurons, and this effect, unlike area CA1, was not reversed by riluzole. Strikingly, riluzole treatment alone also caused spinogenesis in the BA. Thus, the same riluzole treatment that prevented the effect of stress on spines in the hippocampus, mimicked its effect in the amygdala. Further, chronic stress and riluzole alone decreased the neuropil volume occupied by astrocytes in both the BA and CA1 area. Riluzole treatment in stressed animals, however, did not reverse or further add to this reduction in either region. Thus, while the effects on astrocytes were similar, neuronal changes were distinct between the two areas following stress, riluzole and the two together. Therefore, similar to the impact of repeated stress, pharmacological potentiation of glutamate clearance, with or without stress, also leads to differential effects on dendritic spines in principal neurons of the amygdala and hippocampus. This highlights differences in the astrocytic glutamate reuptake machinery that are likely to have important functional consequences for stress-induced dysfunction, and its reversal, in two brain areas implicated in stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Saptarnab Naskar
- National Centre for Biological Sciences, Bangalore, 560065, India
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60610, USA
| | - Siddhartha Datta
- National Centre for Biological Sciences, Bangalore, 560065, India
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Bangalore, 560065, India
- Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH89XD, UK
| |
Collapse
|
10
|
Chen Y, Shen M, Liu X, Xu J, Wang C. The Regulation of Glutamate Transporter 1 in the Rapid Antidepressant-Like Effect of Ketamine in Mice. Front Behav Neurosci 2022; 16:789524. [PMID: 35309681 PMCID: PMC8926310 DOI: 10.3389/fnbeh.2022.789524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that glutamate clearance plays a critical role in the pathophysiology and treatment of depression. Preclinical and clinical studies have demonstrated that ketamine provides an immediate and sustained antidepressant effect. However, the precise mechanism of its action remains to be elucidated. Glutamate transporter 1 (GLT1) participates in glutamate clearance; therefore, we hypothesized that GLT1 may play an important role in the antidepressant effect of ketamine. In this study, we determined that GLT1 inhibition blocks the antidepressant-like properties of ketamine and alters the phosphorylation of the mammalian target of rapamycin (mTOR) in the prefrontal cortex (PFC). Our results show that pretreatment with dihydrokainic acid (DHK), a GLT1 inhibitor, alleviated the antidepressant-like effect of ketamine, and decreased the level of phosphorylated mTOR (pmTOR) in mice (which is normally upregulated by ketamine). In addition, inhibition of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor and L-type voltage-dependent calcium channel (L-VDCC) significantly abolished the antidepressant-like effect of ketamine. Moreover, inhibition of L-VDCC significantly blocked the upregulation of GLT1 and BDNF in the PFC of mice. The inhibition of the AMPA receptor only significantly alleviated BDNF. Our results provide insight into the role of GLT1 as the critical presynaptic molecule participating in the pathophysiological mechanism of depression and contributing to the antidepressant-like effect of ketamine. In addition, our study confirms that both AMPA receptor and L-VDCC are crucial factors in the immediate antidepressant-like effect of ketamine.
Collapse
Affiliation(s)
- Yaping Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengxin Shen
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Xu Liu
- Department of Pharmacy, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Jiangping Xu, , orcid.org/0000-0002-0447-9229
| | - Chuang Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
- Chuang Wang, , , orcid.org/0000-0002-3816-230X
| |
Collapse
|
11
|
de la Rubia Ortí JE, Fernández D, Platero F, García-Pardo MP. Can Ketogenic Diet Improve Alzheimer's Disease? Association With Anxiety, Depression, and Glutamate System. Front Nutr 2021; 8:744398. [PMID: 34778340 PMCID: PMC8579917 DOI: 10.3389/fnut.2021.744398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Alzheimer's disease is the most common neurodegenerative disorder in our society, mainly characterized by loss of cognitive function. However, other symptoms such as anxiety and depression have been described in patients. The process is mediated by alterations in the synaptic and extrasynaptic activity of the neurotransmitter glutamate, which are linked to a hypometabolism of glucose as the main source of brain energy. In that respect, Ketogenic diet (KD) has been proposed as a non-pharmacological treatment serving as an alternative energy source to the neurons increasing the fat percentage and reducing the carbohydrates percentage, showing promising results to improve the cognitive symptoms associated with different neurodegenerative disorders, including AD. However, the association of this type of diet with emotional symptoms and the modulation of glutamate neurotransmission systems after this dietary reduction of carbohydrates are unknown. Objective: The aim of this short review is to provide update studies and discuss about the relationship between KD, anxiety, depression, and glutamate activity in AD patients. Discussion: The main results suggest that the KD is an alternative energy source for neurons in AD with positive consequences for the brain at different levels such as epigenetic, metabolic and signaling, and that the substitution of carbohydrates for fats is also associated with emotional symptoms and glutamate activity in AD.
Collapse
Affiliation(s)
| | - David Fernández
- Department of Nursing, Catholic University of Valencia, Valencia, Spain
| | - Félix Platero
- Department of Medicine, University of Valencia, Valencia, Spain
| | | |
Collapse
|
12
|
Lucido MJ, Bekhbat M, Goldsmith DR, Treadway MT, Haroon E, Felger JC, Miller AH. Aiding and Abetting Anhedonia: Impact of Inflammation on the Brain and Pharmacological Implications. Pharmacol Rev 2021; 73:1084-1117. [PMID: 34285088 PMCID: PMC11060479 DOI: 10.1124/pharmrev.120.000043] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Exogenous administration of inflammatory stimuli to humans and laboratory animals and chronic endogenous inflammatory states lead to motivational deficits and ultimately anhedonia, a core and disabling symptom of depression present in multiple other psychiatric disorders. Inflammation impacts neurotransmitter systems and neurocircuits in subcortical brain regions including the ventral striatum, which serves as an integration point for reward processing and motivational decision-making. Many mechanisms contribute to these effects of inflammation, including decreased synthesis, release and reuptake of dopamine, increased synaptic and extrasynaptic glutamate, and activation of kynurenine pathway metabolites including quinolinic acid. Neuroimaging data indicate that these inflammation-induced neurotransmitter effects manifest as decreased activation of ventral striatum and decreased functional connectivity in reward circuitry involving ventral striatum and ventromedial prefrontal cortex. Neurocircuitry changes in turn mediate nuanced effects on motivation that include decreased willingness to expend effort for reward while maintaining the ability to experience reward. Taken together, the data reveal an inflammation-induced pathophysiologic phenotype that is agnostic to diagnosis. Given the many mechanisms involved, this phenotype represents an opportunity for development of novel and/or repurposed pharmacological strategies that target inflammation and associated cellular and systemic immunometabolic changes and their downstream effects on the brain. To date, clinical trials have failed to capitalize on the unique nature of this transdiagnostic phenotype, leaving the field bereft of interpretable data for meaningful clinical application. However, novel trial designs incorporating established targets in the brain and/or periphery using relevant outcome variables (e.g., anhedonia) are the future of targeted therapy in psychiatry. SIGNIFICANCE STATEMENT: Emerging understanding of mechanisms by which peripheral inflammation can affect the brain and behavior has created unprecedented opportunities for development of pharmacological strategies to treat deficits in motivation including anhedonia, a core and disabling symptom of depression well represented in multiple psychiatric disorders. Mechanisms include inflammation and cellular and systemic immunometabolism and alterations in dopamine, glutamate, and kynurenine metabolites, revealing a target-rich environment that nevertheless has yet to be fully exploited by current clinical trial designs and drugs employed.
Collapse
Affiliation(s)
- Michael J Lucido
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Mandy Bekhbat
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - David R Goldsmith
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Michael T Treadway
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Ebrahim Haroon
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Jennifer C Felger
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Andrew H Miller
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| |
Collapse
|
13
|
Garakani A, Murrough JW, Freire RC, Thom RP, Larkin K, Buono FD, Iosifescu DV. Pharmacotherapy of Anxiety Disorders: Current and Emerging Treatment Options. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2021; 19:222-242. [PMID: 34690588 PMCID: PMC8475923 DOI: 10.1176/appi.focus.19203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
(Appeared originally in Frontiers in Psychiatry 2020 Dec 23; 11:595584)
Collapse
|
14
|
Abstract
Bipolar disorders are severe and have a high prevalence; despite this, the neurobiological mechanisms are far from being elucidated, and this limits the development of new treatments. Although the aetiology of bipolar disorders is not yet fully understood, it is accepted that the disorder(s) may result from the interaction between genetic factors that cause susceptibility and predisposing, precipitating and perpetuating environmental factors, such as stress and traumatic events. A pathophysiological formulation of the disease suggests that dysfunctions in intracellular biochemical cascades, oxidative stress and mitochondrial dysfunction impair the processes linked to neuronal plasticity, leading to cell damage and the consequent loss of brain tissue that has been identified in post-mortem and neuroimaging studies. The data we have reviewed suggests that peripheral biomarkers related to hormones, inflammation, oxidative stress and neurotrophins are altered in bipolar disorders, especially during acute mood episodes. Together, these changes have been associated with a systemic toxicity of the disease and the damage resulting from multiple episodes. Systemic toxicity related to recurrent episodes in bipolar disorder may influence brain anatomical changes associated with the progression of stress and neuroplasticity in bipolar disorder and the response to treatment.
Collapse
Affiliation(s)
- Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
15
|
Małgorzata P, Paweł K, Iwona ML, Brzostek T, Andrzej P. Glutamatergic dysregulation in mood disorders: opportunities for the discovery of novel drug targets. Expert Opin Ther Targets 2020; 24:1187-1209. [PMID: 33138678 DOI: 10.1080/14728222.2020.1836160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Recently, a considerable attention has been paid to glutamatergic conception of mood disorders. The development of new treatment strategies targeted at glutamate provides new opportunities for the treatment of mood disorders. It is expected that these novel therapeutic options will provide a fast and sustained antidepressant effect and will be better tolerated by patients than the currently available antidepressants. AREAS COVERED This paper discusses glutamatergic abnormalities in mood disorders and reviews novel glutamate-based drugs developed for the treatment of these disorders. We have searched the PubMed and EMBASE databases, presented the results of relevant clinical studies and also describe novel glutamate-based agents that are under investigation. EXPERT OPINION The glutamatergic system plays many important roles in energy metabolism of the brain and neurotransmission; therefore, any attempt to identify novel therapeutic targets within this system seems justified. The effective development of new glutamate-based drugs requires, among others, a more in-depth exploration and understanding of the anatomy, function, and localization of different glutamatergic receptors in the brain. In our opinion, novel glutamate-based antidepressants will find application in the treatment of mood disorders and present an option will be widely used in clinical practice in the future.
Collapse
Affiliation(s)
- Panek Małgorzata
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture , Kraków, Poland
| | - Kawalec Paweł
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University , Kraków, Poland
| | - Malinowska Lipień Iwona
- Department of Internal Medicine and Community Nursing, Faculty of Health Sciences, Jagiellonian University Medical College , Kraków, Poland
| | - Tomasz Brzostek
- Department of Internal Medicine and Community Nursing, Faculty of Health Sciences, Jagiellonian University Medical College , Kraków, Poland
| | - Pilc Andrzej
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University , Kraków, Poland.,Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences , Kraków, Poland
| |
Collapse
|
16
|
Predictors of Depression in Caucasian Patients with Amyotrophic Lateral Sclerosis in Romania. Brain Sci 2020; 10:brainsci10080470. [PMID: 32707986 PMCID: PMC7465215 DOI: 10.3390/brainsci10080470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022] Open
Abstract
Depression remains an underdiagnosed comorbidity which significantly decreases the quality of life in amyotrophic lateral sclerosis (ALS) patients. We aimed to investigate the prevalence of depression in a cohort of ALS patients with more than one year of disease evolution. A total of 50 ALS patients were evaluated with the Beck Depression Inventory II (BDI-II) and cognition, using the Mini-Cog Standardized Instrument (MCSI). The clinical disability was evaluated using the ALS Functional Rating Scale (ALSFRS). The prevalence of depression was 42.8%. A lower BDI-II score was significantly correlated with a higher education level, the spouse as a caregiver, spiritual devotion, and employment status (p < 0.05). A multiple linear regression analysis between the BDI-II score as the dependent variable and various independent variables such as spirituality, caregiver status, educational level, and occupational status revealed that only the type of caregiver (spouse or parent/child) significantly affected the BDI-II total score (p = 0.006). The functional disability significantly correlated with loss of appetite and loss of libido (p < 0.001). A high education, spiritual devotion, high ALSFRS, and the presence of the spouse as the caregiver were associated with the absence of depression.
Collapse
|
17
|
Yao R, Wang H, Yuan M, Wang G, Wu C. Efficacy and safety of riluzole for depressive disorder: A systematic review and meta-analysis of randomized placebo-controlled trials. Psychiatry Res 2020; 284:112750. [PMID: 31958711 DOI: 10.1016/j.psychres.2020.112750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 02/08/2023]
Abstract
Glutamatergic modulators may have therapeutic potential in the treatment of depressive disorder (DD), riluzole, as a modulating drug of the glutamatergic system, its antidepressant efficacy and safety of riluzole for DD are inconsistent. This meta-analysis was performed to determine the efficacy and safety of riluzole used for DD. A systematic literature search was performed using PubMed, Embase, Cochrane Library, Web of Science, VIP and other databases from 1980 to 2019. The primary outcome was change in depression severity and meta-analysis was performed using comprehensive meta-analysis software. Seven randomized controlled trials (RCTs) were included. There was some difference in depression severity change in riluzole-citalopram therapy. No significant differences were observed in response rate, remission rate, relapse rate and adverse events, while, the relapse time in riluzole group was longer than placebo group. In this meta-analysis riluzole showed no antidepressant efficacy compared to placebo in monotherapy or riluzole-ketamine combined therapy, while it might relieve depression severity to some extent in riluzole-citalopram therapy. Furthermore, riluzole showed favorable safety for DD. The longer relapse time of riluzole group might have clinical significance to some extent, although this had no statistical difference. More studies are needed to clarify the potential association between riluzole and DD.
Collapse
Affiliation(s)
- Ruzhan Yao
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane Chengdu, Sichuan 610041, China
| | - Haiquan Wang
- Department of Neurosurgery, The People's Hospital of Guang'an City, Guangan 638001, China
| | - Mingqi Yuan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanglin Wang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane Chengdu, Sichuan 610041, China.
| | - Chengxi Wu
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane Chengdu, Sichuan 610041, China
| |
Collapse
|
18
|
Garakani A, Murrough JW, Freire RC, Thom RP, Larkin K, Buono FD, Iosifescu DV. Pharmacotherapy of Anxiety Disorders: Current and Emerging Treatment Options. Front Psychiatry 2020; 11:595584. [PMID: 33424664 PMCID: PMC7786299 DOI: 10.3389/fpsyt.2020.595584] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Anxiety disorders are the most prevalent psychiatric disorders and a leading cause of disability. While there continues to be expansive research in posttraumatic stress disorder (PTSD), depression and schizophrenia, there is a relative dearth of novel medications under investigation for anxiety disorders. This review's first aim is to summarize current pharmacological treatments (both approved and off-label) for panic disorder (PD), generalized anxiety disorder (GAD), social anxiety disorder (SAD), and specific phobias (SP), including selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), azapirones (e.g., buspirone), mixed antidepressants (e.g., mirtazapine), antipsychotics, antihistamines (e.g., hydroxyzine), alpha- and beta-adrenergic medications (e.g., propranolol, clonidine), and GABAergic medications (benzodiazepines, pregabalin, and gabapentin). Posttraumatic stress disorder and obsessive-compulsive disorder are excluded from this review. Second, we will review novel pharmacotherapeutic agents under investigation for the treatment of anxiety disorders in adults. The pathways and neurotransmitters reviewed include serotonergic agents, glutamate modulators, GABAergic medications, neuropeptides, neurosteroids, alpha- and beta-adrenergic agents, cannabinoids, and natural remedies. The outcome of the review reveals a lack of randomized double-blind placebo- controlled trials for anxiety disorders and few studies comparing novel treatments to existing anxiolytic agents. Although there are some recent randomized controlled trials for novel agents including neuropeptides, glutamatergic agents (such as ketamine and d-cycloserine), and cannabinoids (including cannabidiol) primarily in GAD or SAD, these trials have largely been negative, with only some promise for kava and PH94B (an inhaled neurosteroid). Overall, the progression of current and future psychopharmacology research in anxiety disorders suggests that there needs to be further expansion in research of these novel pathways and larger-scale studies of promising agents with positive results from smaller trials.
Collapse
Affiliation(s)
- Amir Garakani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Silver Hill Hospital, New Canaan, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - James W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rafael C Freire
- Department of Psychiatry and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Robyn P Thom
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kaitlyn Larkin
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Frank D Buono
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dan V Iosifescu
- Clinical Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
19
|
Sakurai H, Dording C, Yeung A, Foster S, Jain F, Chang T, Trinh NH, Bernard R, Boyden S, Iqbal SZ, Wilkinson ST, Mathew SJ, Mischoulon D, Fava M, Cusin C. Longer-term open-label study of adjunctive riluzole in treatment-resistant depression. J Affect Disord 2019; 258:102-108. [PMID: 31400624 PMCID: PMC6710149 DOI: 10.1016/j.jad.2019.06.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/03/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND While riluzole has been investigated for the treatment of depression, little is known about its longer-term efficacy and optimal treatment duration in treatment-resistant depression (TRD). The objective of this study is to characterize the longer-term outcome of adjunctive riluzole therapy for TRD in an open-label extension of an 8-week acute treatment trial. METHODS The data from 66 patients with TRD who received adjunctive riluzole in a 12-week open-label extension phase were analyzed. Response rates (⩾50% reduction in the Mongomery-Asberg Depression Rating Scale [MADRS] score), relapse rates (a MADRS score of ⩾22 in patients who had previously achieved response), and adverse events were examined in patients who had achieved response at the end of the acute phase and those who had not. RESULTS Among acute phase responders, the maintained response rate was 66.7% (8/12) and the relapse rate was 8.3% (1/12). In acute phase non-responders, the response rate was 24.1% (13/54). The most commonly reported adverse event was fatigue (9.1%). Three cases were considered serious adverse events; vomiting (n = 1), shortness of breath (n = 1), and aborted suicide attempt (n = 1). LIMITATIONS This longer-term study was open-label and uncontrolled. The sample size was relatively small. CONCLUSIONS Longer-term adjunctive riluzole appears relatively well tolerated and beneficial for maintaining previous response. Additionally, approximately one fourth of patients who did not respond to 8-week antidepressant treatment might respond if treated with riluzole for 12 weeks. Those findings warrant further investigation because adjunctive riluzole could represent an option for treatment of depression when standard antidepressants have failed.
Collapse
Affiliation(s)
- Hitoshi Sakurai
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Christina Dording
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Albert Yeung
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Simmie Foster
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Felipe Jain
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Trina Chang
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Nhi-Ha Trinh
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Richard Bernard
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Sean Boyden
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Syed Z Iqbal
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sanjay J Mathew
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - David Mischoulon
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Maurizio Fava
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Cristina Cusin
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, 1 Bowdoin Square, 6th Floor, Boston, MA, USA.
| |
Collapse
|
20
|
The Effect of Glutamatergic Modulators on Extracellular Glutamate: How Does this Information Contribute to the Discovery of Novel Antidepressants? Curr Ther Res Clin Exp 2019; 91:25-32. [PMID: 31871505 PMCID: PMC6911922 DOI: 10.1016/j.curtheres.2019.100566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/29/2019] [Indexed: 01/19/2023] Open
Abstract
The complexity of glutamatergic signaling challenges glutamate modulator usage. Functional biomarkers are needed to understand the MOA of glutamate modulators. Evaluating drug effect on EAATs' kinetics may add to antidepressant discovery.
Background In the search for new antidepressants, clinical researchers have been using drugs that simultaneously modulate multiple targets. During preclinical and clinical trials, the glutamatergic modulators riluzole and ketamine have received particular attention. Glutamatergic agents have a modulatory effect on synaptic transmission, so they can act on both neurons and astrocytes. In addition to influencing the quantity of glutamate released, these modulators can also affect the expression, localization, and functionality of glutamate-binding sites. Objective This review discusses the complexity of the glutamatergic system, the ambiguity of data regarding glutamate levels in patients with depression, as well as the mechanisms of action for riluzole and ketamine, which includes their relation to the physiology of glutamatergic transmission. The principal aim is to contribute to the development of novel glutamatergic antidepressant medications whilst emphasizing the need for innovative approaches that evaluate their effects on extracellular glutamate. Methods Literature was obtained via PubMed by searching the term depression in combination with each of the following terms: riluzole, ketamine, and glutamate. The search was restricted to full-text articles published in English between 1985 and 2018 relating to both the modulatory mechanisms of glutamatergic-binding proteins and the antidepressant actions of these medicines. Articles about mechanisms associated with synaptic plasticity and antidepressant effects were excluded. Results Although experimental data relates glutamatergic signaling to the pathophysiology of major depression and bipolar disorder, the role of glutamate—as well as its extracellular concentration in patients with said disorders—is still unclear. Riluzole's antidepressant action is ascribed to its capacity to reduce glutamate levels in the synaptic cleft, and ketamine's effect has been associated with increased extracellular glutamate levels. Conclusions The strategy of using glutamatergic modulators as therapeutic agents requires a better understanding of the role of glutamate in the pathophysiology of depression. Gaining such understanding is a challenge because it entails evaluating different targets as well as the effects of these modulators on the kinetics of glutamate uptake. Essentially, glutamate transport is a dynamic process and, currently, it is still necessary to develop new approaches to assay glutamate in the synaptic cleft. ORCID: 0000-0002-3358-6939.
Collapse
|
21
|
Phillips RS, Rubin JE. Effects of persistent sodium current blockade in respiratory circuits depend on the pharmacological mechanism of action and network dynamics. PLoS Comput Biol 2019; 15:e1006938. [PMID: 31469828 PMCID: PMC6742421 DOI: 10.1371/journal.pcbi.1006938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/12/2019] [Accepted: 06/15/2019] [Indexed: 02/05/2023] Open
Abstract
The mechanism(s) of action of most commonly used pharmacological blockers of voltage-gated ion channels are well understood; however, this knowledge is rarely considered when interpreting experimental data. Effects of blockade are often assumed to be equivalent, regardless of the mechanism of the blocker involved. Using computer simulations, we demonstrate that this assumption may not always be correct. We simulate the blockade of a persistent sodium current (INaP), proposed to underlie rhythm generation in pre-Bötzinger complex (pre-BötC) respiratory neurons, via two distinct pharmacological mechanisms: (1) pore obstruction mediated by tetrodotoxin and (2) altered inactivation dynamics mediated by riluzole. The reported effects of experimental application of tetrodotoxin and riluzole in respiratory circuits are diverse and seemingly contradictory and have led to considerable debate within the field as to the specific role of INaP in respiratory circuits. The results of our simulations match a wide array of experimental data spanning from the level of isolated pre-BötC neurons to the level of the intact respiratory network and also generate a series of experimentally testable predictions. Specifically, in this study we: (1) provide a mechanistic explanation for seemingly contradictory experimental results from in vitro studies of INaP block, (2) show that the effects of INaP block in in vitro preparations are not necessarily equivalent to those in more intact preparations, (3) demonstrate and explain why riluzole application may fail to effectively block INaP in the intact respiratory network, and (4) derive the prediction that effective block of INaP by low concentration tetrodotoxin will stop respiratory rhythm generation in the intact respiratory network. These simulations support a critical role for INaP in respiratory rhythmogenesis in vivo and illustrate the importance of considering mechanism when interpreting and simulating data relating to pharmacological blockade. The application of pharmacological agents that affect transmembrane ionic currents in neurons is a commonly used experimental technique. A simplistic interpretation of experiments involving these agents suggests that antagonist application removes the impacted current and that subsequently observed changes in activity are attributable to the loss of that current’s effects. The more complex reality, however, is that different drugs may have distinct mechanisms of action, some corresponding not to a removal of a current but rather to a changing of its properties. We use computational modeling to explore the implications of the distinct mechanisms associated with two drugs, riluzole and tetrodotoxin, that are often characterized as sodium channel blockers. Through this approach, we offer potential explanations for disparate findings observed in experiments on neural respiratory circuits and show that the experimental results are consistent with a key role for the persistent sodium current in respiratory rhythm generation.
Collapse
Affiliation(s)
- Ryan S. Phillips
- Department of Mathematics and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Jonathan E. Rubin
- Department of Mathematics and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
22
|
Kerckhove N, Busserolles J, Stanbury T, Pereira B, Plence V, Bonnetain F, Krakowski I, Eschalier A, Pezet D, Balayssac D. Effectiveness assessment of riluzole in the prevention of oxaliplatin-induced peripheral neuropathy: RILUZOX-01: protocol of a randomised, parallel, controlled, double-blind and multicentre study by the UNICANCER-AFSOS Supportive Care intergroup. BMJ Open 2019; 9:e027770. [PMID: 31182448 PMCID: PMC6561607 DOI: 10.1136/bmjopen-2018-027770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Most patients (>70%) experience acute neuropathic symptoms shortly after oxaliplatin infusions. These symptoms are not always resolved between infusions. Overall, 30%-50% of patients suffer from chronic oxaliplatin-induced peripheral neuropathy (OIPN). This cumulative and dose-dependent sensory neuropathy limits compliance or results in oxaliplatin-based chemotherapies to be substituted with less neurotoxic agents. These treatment changes impair clinical outcomes, and may be associated with comorbidities, such as distress, depression and anxiety. Currently, no drug used to prevent or treat OIPN is sufficiently effective to be used routinely in clinical practice. There is, thus, an unmet therapeutic need to reduce the intensity of and/or prevent OIPN. We hypothesised that riluzole would be an excellent candidate to address this public health issue. Riluzole is approved for treating amyotrophic lateral sclerosis. In animals, there is a beneficial effect on sensorimotor and pain disorders, as well as related comorbidities, after repeated administration of oxaliplatin. In humans, riluzole has shown neuroprotective, anxiolytic and antidepressive effects. METHODS AND ANALYSIS RILUZOX-01 trial was designed as a randomised, controlled, double-blind study to evaluate the efficacy of riluzole to prevent OIPN. Patients with colorectal cancer and initiating adjuvant oxaliplatin-based chemotherapy are eligible. Patients (n=210) will be randomly assigned to either riluzole or placebo, concomitantly with chemotherapy. The primary endpoint is the change in OIPN intensity, assessed by the sensory scale of the QLQ-CIPN20, after six 2-week cycles of chemotherapy. Secondary endpoints include incidence and severity of neuropathy, grade of sensory neuropathy, intensity and features of neuropathic pain, health-related quality of life, disease-free survival, overall survival and safety. ETHICS AND DESSIMINATION The study was approved by a French ethics committee (ref:39/18_1, 'Comité de Protection des Personnes' Ouest-IV, France) and plans to start enroling patients in September 2019. The trial is registered in EudraCT and clinicaltrials.gov. TRIAL REGISTRATION NUMBER N°2017-002320-25; NCT03722680.
Collapse
Affiliation(s)
- Nicolas Kerckhove
- Medical pharmacology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
- Institut Analgesia, Faculty of medicine, Clermont-Ferrand, France
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
| | - Jérome Busserolles
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
| | | | - Bruno Pereira
- DRCI, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | | | | | | | - Alain Eschalier
- Institut Analgesia, Faculty of medicine, Clermont-Ferrand, France
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
| | - Denis Pezet
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
- University Hospital of Clermont-Ferrand, Digestive and hepatobiliary surgery, Clermont-Ferrand, France
| | - David Balayssac
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
- DRCI, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
23
|
Baek JH, Vignesh A, Son H, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ. Glutamine Supplementation Ameliorates Chronic Stress-induced Reductions in Glutamate and Glutamine Transporters in the Mouse Prefrontal Cortex. Exp Neurobiol 2019; 28:270-278. [PMID: 31138994 PMCID: PMC6526116 DOI: 10.5607/en.2019.28.2.270] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2019] [Accepted: 04/07/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic immobilization stress (CIS) induces low levels of glutamate (Glu) and glutamine (Gln) and hypoactive glutamatergic signaling in the mouse prefrontal cortex (PFC), which is closely related to the Glu-Gln cycle. A Gln-supplemented diet ameliorates CIS-induced deleterious changes. Here, we investigated the effects of CIS and Gln supplementation on Glu-Gln cycle-related proteins to characterize the underlying mechanisms. Using the CIS-induced depression mouse model, we examined the expression of 11 proteins involved in the Glu-Gln cycle in the PFC. CIS decreased levels of glutamate transporter 1 (GLT1) and sodium-coupled neutral amino acid transporter (SNAT) 1, SANT2, SNAT3, and SNAT5. Gln supplementation did not affect the non-stressed group but significantly increased GLT1 and SNATs of the stressed group. By immunohistochemical analysis, we confirmed that SNAT1 and SNAT2 were decreased in neurons and GLT1, SNAT3, and SNAT5 were decreased in astrocytes in the medial PFC of the stressed group, but Gln-supplemented diet ameliorated these decrements. Collectively, these results suggest that CIS may cause depressive-like behaviors by decreasing Glu and Gln transportation in the PFC and that a Gln-supplemented diet could prevent the deleterious effects of CIS.
Collapse
Affiliation(s)
- Ji Hyeong Baek
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Arul Vignesh
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Hyeonwi Son
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| |
Collapse
|
24
|
Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells 2019; 8:E184. [PMID: 30791579 PMCID: PMC6406900 DOI: 10.3390/cells8020184] [Citation(s) in RCA: 413] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/26/2023] Open
Abstract
Glutamate is one of the most prevalent neurotransmitters released by excitatory neurons in the central nervous system (CNS); however, residual glutamate in the extracellular space is, potentially, neurotoxic. It is now well-established that one of the fundamental functions of astrocytes is to uptake most of the synaptically-released glutamate, which optimizes neuronal functions and prevents glutamate excitotoxicity. In the CNS, glutamate clearance is mediated by glutamate uptake transporters expressed, principally, by astrocytes. Interestingly, recent studies demonstrate that extracellular glutamate stimulates Ca2+ release from the astrocytes' intracellular stores, which triggers glutamate release from astrocytes to the adjacent neurons, mostly by an exocytotic mechanism. This released glutamate is believed to coordinate neuronal firing and mediate their excitatory or inhibitory activity. Therefore, astrocytes contribute to glutamate homeostasis in the CNS, by maintaining the balance between their opposing functions of glutamate uptake and release. This dual function of astrocytes represents a potential therapeutic target for CNS diseases associated with glutamate excitotoxicity. In this regard, we summarize the molecular mechanisms of glutamate uptake and release, their regulation, and the significance of both processes in the CNS. Also, we review the main features of glutamate metabolism and glutamate excitotoxicity and its implication in CNS diseases.
Collapse
Affiliation(s)
- Shaimaa Mahmoud
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Marjan Gharagozloo
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Camille Simard
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Denis Gris
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
25
|
Fasipe OJ. The emergence of new antidepressants for clinical use: Agomelatine paradox versus other novel agents. IBRO Rep 2019; 6:95-110. [PMID: 31211282 PMCID: PMC6562183 DOI: 10.1016/j.ibror.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 01/05/2019] [Indexed: 01/12/2023] Open
Abstract
This study was designed with the rational aim of discussing the emerging antidepressant agents that are likely to bring positive landmark, tremendous improvement and significant impact to the management of patients with depression disorders. It also elaborates on the Agomelatine paradox vis-a-vis the other novel antidepressant agents. The emerging antidepressants are: selective monoamine oxidase inhibitors (MAOIs) such as bifemelane, pirlindole, toloxatone, selegiline, rasagiline and safinamide; serotonin-norepinephrine reuptake inhibitors (SNRIs) such as ansofaxine, nefopam and levomilnacipran; norepinephrine reuptake inhibitors (NRIs) such as Reboxetine, viloxazine, teniloxazine (also known as sulfoxazine or sufoxazine), and atomoxetine; Vilazodone (a serotonin 5-HT1A autoreceptor partial agonist with serotonin reuptake inhibition [SPARI]); Vortioxetine (a serotonin receptors antagonist with serotonin reuptake inhibition [SARI]); atypical antipsychotics such as olanzapine, quetiapine, risperidone, lurasidone, aripiprazole and brexpiprazole; N-methyl-d-aspartate (NMDA)-glutamatergic neurotransmission system blockers such as ketamine, CP-101,606 (traxoprodil), GLYX-13 (rapastinel), NRX-1074 (Apimostinel) and Riluzole. While Agomelatine (a melatonergic MT1 and MT2 receptors agonist and a selective serotonergic 5-HT2B and 5-HT2C receptors antagonist [MASSA]) remains a paradoxical agent that doesn't fit into any of the currently available classes of antidepressant agents and its pharmacological properties also deemed it unfit and inappropriate to be classified into another separate novel class of antidepressants contrary to the reports published in previous reference literatures. Lastly, this review remarkably advocates for the incorporation of the atypical antipsychotics and NMDA-glutamatergic ionoceptor blockers as new member classes of the antidepressant agents because of their clinically significant roles in the management of depression disorders.
Collapse
Affiliation(s)
- Olumuyiwa John Fasipe
- Medical Lecturer and Senior Physician, Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| |
Collapse
|
26
|
Fasipe O, Akhideno P, Owhin O, Ibiyemi-Fasipe O. Announcing the first novel class of rapid-onset antidepressants in clinical practice. JOURNAL OF MEDICAL SCIENCES 2019. [DOI: 10.4103/jmedsci.jmedsci_36_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Nooraee N, Molenberghs G, Ormel J, Van den Heuvel ER. Strategies for handling missing data in longitudinal studies with questionnaires. J STAT COMPUT SIM 2018. [DOI: 10.1080/00949655.2018.1520854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nazanin Nooraee
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Geert Molenberghs
- I-BioStat, Katholieke Universiteit Leuven, Leuven, Belgium
- I-BioStat, Universiteit Hasselt, Diepenbeek, Belgium
| | - Johan Ormel
- Interdisciplinary Center of Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Edwin R. Van den Heuvel
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
28
|
Lazarevic V, Yang Y, Ivanova D, Fejtova A, Svenningsson P. Riluzole attenuates the efficacy of glutamatergic transmission by interfering with the size of the readily releasable neurotransmitter pool. Neuropharmacology 2018; 143:38-48. [PMID: 30222983 DOI: 10.1016/j.neuropharm.2018.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/11/2018] [Accepted: 09/12/2018] [Indexed: 01/02/2023]
Abstract
Riluzole is a potent neuroprotective agent which primarily inhibits excitatory neurotransmission interfering with presynaptic release, uptake and postsynaptic actions of glutamate by mechanisms that are not well understood. Riluzole and related prodrugs with improved blood brain barrier penetrance, are shown to be effective for the treatment of amyotrophic lateral sclerosis, ataxias, epilepsy and mood disorders. Our study was undertaken to decipher molecular and subcellular mechanisms of riluzole's antiglutamatergic effect, particularly focusing on presynaptic active zone structure and function. Applying multifarious live cell imaging techniques and amperometric glutamate recordings, we measured the impact of riluzole on presynaptic activity, synaptic vesicle recycling and glutamate release. Our in vitro and in vivo data revealed a unique mechanism whereby riluzole reduces the efficacy of glutamatergic transmission by selectively lowering the size of the readily releasable pool. This effect was correlated with the inhibition of protein kinase C-dependent Munc18-1 phosphorylation which is known to interfere with neurotransmitter release.
Collapse
Affiliation(s)
- Vesna Lazarevic
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Yunting Yang
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Daniela Ivanova
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anna Fejtova
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Per Svenningsson
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
29
|
Mathew SJ, Gueorguieva R, Brandt C, Fava M, Sanacora G. A Randomized, Double-Blind, Placebo-Controlled, Sequential Parallel Comparison Design Trial of Adjunctive Riluzole for Treatment-Resistant Major Depressive Disorder. Neuropsychopharmacology 2017; 42:2567-2574. [PMID: 28553836 PMCID: PMC5686483 DOI: 10.1038/npp.2017.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Riluzole is a glutamate-modulating agent with neuroprotective properties approved for use in amyotrophic lateral sclerosis. The efficacy and safety of riluzole vs placebo as an adjunct to antidepressant medication in outpatients with major depressive disorder (MDD) was examined in a 3-site, 8-week, randomized, double-blind, placebo-controlled, fixed-dose trial using a sequential parallel comparison design comprised of two phases of 4 weeks. Patients with MDD in a current major depressive episode (N=104) with an inadequate response to either a prospective or a historical trial of an antidepressant medication were randomized in a 2 : 3 : 3 ratio to the treatment sequences of riluzole/riluzole, placebo/placebo, and placebo/riluzole, respectively. The primary outcome was change in depression severity, as assessed by the Montgomery-Åsberg Depression Rating Scale (MADRS). Secondary efficacy outcomes included the response rate, defined as at least a 50% improvement in MADRS, Clinical Global Impressions severity and improvement subscales, and patient-reported measures of depression and cognitive function. Eighty-five patients completed the randomized treatment phases. Treatment groups did not differ in mean change in MADRS scores, response rate, or in any secondary efficacy outcomes. Riluzole was generally well tolerated, with a side effect profile consistent with its clinical use. In conclusion, a fixed dose of riluzole (100 mg/day) did not show adjunctive antidepressant efficacy compared to placebo. The trial was adequately powered to detect a moderate riluzole effect, and the risk for exaggerated placebo responses was mitigated. The lack of efficacy suggests that mechanisms underlying riluzole's neuroprotective effects are insufficient for clinical response in treatment-resistant depression.
Collapse
Affiliation(s)
- Sanjay J Mathew
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA,Mental Health Care Line, Michael E. DeBakey VA Medical Center or Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza; MS: BCM350, Houston, TX 77030, USA, Tel: +713 798 5877, Fax: +713 798 3465, E-mail:
| | - Ralitza Gueorguieva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Cynthia Brandt
- Departments of Emergency Medicine and Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
O'Mahony SM, Clarke G, Dinan TG, Cryan JF. Irritable Bowel Syndrome and Stress-Related Psychiatric Co-morbidities: Focus on Early Life Stress. Handb Exp Pharmacol 2017; 239:219-246. [PMID: 28233180 DOI: 10.1007/164_2016_128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome is a functional gastrointestinal disorder, with stress playing a major role in onset and exacerbation of symptoms such as abdominal pain and altered bowel movements. Stress-related disorders including anxiety and depression often precede the development of irritable bowel syndrome and vice versa. Stressor exposure during early life has the potential to increase an individual's susceptibility to both irritable bowel syndrome and psychiatric disease indicating that there may be a common origin for these disorders. Moreover, adverse early life events significantly impact upon many of the communication pathways within the brain-gut-microbiota axis, which allows bidirectional interaction between the central nervous system and the gastrointestinal tract. This axis is proposed to be perturbed in irritable bowel syndrome and studies now indicate that dysfunction of this axis is also seen in psychiatric disease. Here we review the co-morbidity of irritable bowel syndrome and psychiatric disease with their common origin in mind in relation to the impact of early life stress on the developing brain-gut-microbiota axis. We also discuss the therapeutic potential of targeting this axis in these diseases.
Collapse
Affiliation(s)
- Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland. .,APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Pfau ML, Ménard C, Russo SJ. Inflammatory Mediators in Mood Disorders: Therapeutic Opportunities. Annu Rev Pharmacol Toxicol 2017; 58:411-428. [PMID: 28992428 DOI: 10.1146/annurev-pharmtox-010617-052823] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mood disorders such as depression are among the most prevalent psychiatric disorders in the United States, but they are inadequately treated in a substantial proportion of patients. Accordingly, neuropsychiatric research has pivoted from investigation of monoaminergic mechanisms to exploration of novel mediators, including the role of inflammatory processes. Subsets of mood disorder patients exhibit immune-related abnormalities, including elevated levels of proinflammatory cytokines, monocytes, and neutrophils in the peripheral circulation; dysregulation of neuroglia and blood-brain barrier function; and disruption of gut microbiota. The field of psychoneuroimmunology is one of great therapeutic opportunity, yielding experimental therapeutics for mood disorders, such as peripheral cytokine targeting antibodies, microglia and astrocyte targeting therapies, and probiotic treatments for gut dysbiosis, and producing findings that identify therapeutic targets for future development.
Collapse
Affiliation(s)
- Madeline L Pfau
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
| | - Caroline Ménard
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
| | - Scott J Russo
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
| |
Collapse
|
32
|
Subramaniapillai M, Carmona NE, Rong C, McIntyre RS. Inflammation: opportunities for treatment stratification among individuals diagnosed with mood disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28566945 PMCID: PMC5442361 DOI: 10.31887/dcns.2017.19.1/rmcintyre] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mood disorders continue to be a significant burden to those affected, resulting in significant illness-associated disability and premature mortality. In addition to mood disturbance, individuals also suffer from other transdiagnostic impairments (eg, anhedonia and cognitive impairment). Although there have been significant advancements in psychiatric treatment over the last few decades, treatment efficacy (eg, symptom remission, lack of functional recovery, and disease modification) continues to be an important limitation. Consequently, there is an urgent need to identify novel approaches capable of addressing the foregoing needs, providing the basis for the exploration of conceptual models and treatment opportunities that consider inflammation to be a key factor in mood disorder development. In part driven by metabolic comorbidities, a large proportion of individuals with mood disorders also have an imbalance in the inflammatory milieu. The aim of this review is to highlight evidence implicating inflammation in various effector systems in mood disorders, with a particular focus on the intercommunication with glutamatergic signaling, immune system signaling, as well as metabolic parameters (eg, L-methyl folate bioavailability). This article also briefly reviews novel and repurposed agents that are capable of targeting the innate immune inflammatory system and possibly correcting an abnormal immune/inflammatory milieu (eg, infliximab).
Collapse
Affiliation(s)
| | | | | | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada ; Department of Pharmacology, University of Toronto, Toronto, Canada
| |
Collapse
|
33
|
Abstract
BACKGROUND Glutamatergic system abnormalities are implicated in the pathophysiology and treatment of both major depressive disorder and bipolar depression (BDep). Subsequent to studies demonstrating the rapid and robust antidepressant effects of ketamine, an N-methyl-D-aspartate receptor antagonist, other glutamatergic modulators are now being studied in clinical trials of mood disorders. A previous open-label study found that riluzole, administered in combination with the mood stabilizer lithium, had antidepressant effects. METHODS We conducted a randomized, double-blind, placebo-controlled trial of riluzole monotherapy for the treatment of BDep. Nineteen subjects aged 18 to 70 years with bipolar disorder currently experiencing a depressive episode were tapered off of excluded medications and randomized to receive riluzole (50-200 mg/d) or placebo for 8 weeks. Rating scale scores (Montgomery-Åsberg Depression Rating Scale, Hamilton Rating Scale for Depression, Hamilton Rating Scale for Anxiety, and Young Mania Rating Scale) were obtained weekly. RESULTS No significant differences in depressive symptoms were observed between subjects treated with riluzole and those receiving placebo (P = 0.12). Anxiety scores were significantly lower in the placebo group (P = 0.046). An interim analysis was conducted that resulted in stopping the study because of futility; no subjects had achieved treatment response. CONCLUSIONS Although we found no change in severity of depressive symptoms in BDep patients receiving riluzole compared with placebo, this trial was limited by the relatively high number of subject withdrawals and the small sample size. Thus, while riluzole monotherapy did not demonstrate efficacy for BDep, further studies examining riluzole as adjunctive therapy for this disorder may be warranted.Clinical Trials Identifier NCT00054704.
Collapse
|
34
|
Kleeblatt J, Betzler F, Kilarski LL, Bschor T, Köhler S. Efficacy of off-label augmentation in unipolar depression: A systematic review of the evidence. Eur Neuropsychopharmacol 2017; 27:423-441. [PMID: 28318897 DOI: 10.1016/j.euroneuro.2017.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/09/2017] [Accepted: 03/05/2017] [Indexed: 12/28/2022]
Abstract
Treatment of unipolar depression with currently available antidepressants is still unsatisfactory. Augmentation with lithium or second generation antipsychotics is an established practice in non-responders to antidepressant monotherapy, but is also associated with a substantial non-response rate and with non-tolerance. Based on a systematic review of the literature, including meta-analyses, randomized controlled trials (RCTs), non-randomized comparative studies and case studies, off-label augmentation agents (administered in addition to an antidepressant, without FDA approval for treatment of MDD) were identified and evaluated regarding their efficacy using levels of evidence. The agents had to be added to an existing antidepressant regime with the aim of achieving an improved clinical response to an ongoing antidepressant treatment (augmentation) or an earlier onset of effect when starting antidepressant and augmentation agent simultaneously (acceleration). Five substances, modafinil, ketamine, pindolol, testosterone and estrogen (the latter two in hormone-deficient patients) were shown to be clinically effective in high evidence studies. For the six drugs dexamethasone, mecamylamine, riluzole, amantadine, pramipexole and yohimbine clear proof of efficacy was not possible due to low levels of evidence, small sample sizes or discordant results. For the two agents methylphenidate and memantine only studies with negative outcomes could be found. Overall, the quality of study designs was low and results were often contradictory. However, the use of pindolol, ketamine, modafinil, estrogen and testosterone might be an option for depressed patients who are not responding to antidepressant monotherapy or established augmentation strategies. Further high quality studies are necessary and warranted.
Collapse
Affiliation(s)
- Julia Kleeblatt
- Charité, Department of Psychiatry and Psychotherapy, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Felix Betzler
- Charité, Department of Psychiatry and Psychotherapy, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Laura L Kilarski
- University Hospital of Cologne, Department of Psychosomatic Medicine and Psychotherapy, Cologne, Germany
| | - Tom Bschor
- Schlosspark-Klinik, Department of Psychiatry, Berlin, Germany; Department of Psychiatry and Psychotherapy, Technical University Dresden, Dresden, Germany
| | - Stephan Köhler
- Charité, Department of Psychiatry and Psychotherapy, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
35
|
Huang YJ, Lane HY, Lin CH. New Treatment Strategies of Depression: Based on Mechanisms Related to Neuroplasticity. Neural Plast 2017; 2017:4605971. [PMID: 28491480 PMCID: PMC5405587 DOI: 10.1155/2017/4605971] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder is a severe and complex mental disorder. Impaired neurotransmission and disrupted signalling pathways may influence neuroplasticity, which is involved in the brain dysfunction in depression. Traditional neurobiological theories of depression, such as monoamine hypothesis, cannot fully explain the whole picture of depressive disorders. In this review, we discussed new treatment directions of depression, including modulation of glutamatergic system and noninvasive brain stimulation. Dysfunction of glutamatergic neurotransmission plays an important role in the pathophysiology of depression. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has rapid and lasting antidepressive effects in previous studies. In addition to ketamine, other glutamatergic modulators, such as sarcosine, also show potential antidepressant effect in animal models or clinical trials. Noninvasive brain stimulation is another new treatment strategy beyond pharmacotherapy. Growing evidence has demonstrated that superficial brain stimulations, such as transcranial magnetic stimulation, transcranial direct current stimulation, cranial electrotherapy stimulation, and magnetic seizure therapy, can improve depressive symptoms. The antidepressive effect of these brain stimulations may be through modulating neuroplasticity. In conclusion, drugs that modulate neurotransmission via NMDA receptor and noninvasive brain stimulation may provide new directions of treatment for depression. Furthermore, exploring the underlying mechanisms will help in developing novel therapies for depression in the future.
Collapse
Affiliation(s)
- Yu-Jhen Huang
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Ionescu DF, Papakostas GI. Experimental medication treatment approaches for depression. Transl Psychiatry 2017; 7:e1068. [PMID: 28323287 PMCID: PMC5416676 DOI: 10.1038/tp.2017.33] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022] Open
Abstract
Depression is one of the most common psychiatric conditions. Symptoms can lead to significant disability, which result in impairments in overall quality of life. Though there are many approved antidepressant treatments for depression-including selective serotonin reuptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors-about a third of patients do not respond to these medications. Therefore, it is imperative for drug discovery to continue towards the development of novel and rapidly acting compounds, especially for patients with treatment-resistant depression. After a brief review of the efficacy of approved antidepressant therapies, we will discuss experimental medication treatments for depression. Specifically, we examine novel medications that are thought to primarily modulate the glutamatergic, cholinergic and opioid systems to achieve antidepressant efficacy. We also give examples of anti-inflammatories, neurokinin-1 modulators, vasopressin antagonists and neurogenesis enhancers that may have a therapeutic role in treatment-resistant depression. The current pipeline of antidepressant treatments is shifting towards medications with novel mechanisms, which may lead to important, life-changing discoveries for patients with severe disease.
Collapse
Affiliation(s)
- D F Ionescu
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - G I Papakostas
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Clinical Trials Network and Institute, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
37
|
Lener MS, Kadriu B, Zarate CA. Ketamine and Beyond: Investigations into the Potential of Glutamatergic Agents to Treat Depression. Drugs 2017; 77:381-401. [PMID: 28194724 PMCID: PMC5342919 DOI: 10.1007/s40265-017-0702-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clinical and preclinical studies suggest that dysfunction of the glutamatergic system is implicated in mood disorders such as major depressive disorder and bipolar depression. In clinical studies of individuals with major depressive disorder and bipolar depression, rapid reductions in depressive symptoms have been observed in response to subanesthetic-dose ketamine, an agent whose mechanism of action involves the modulation of glutamatergic signaling. The findings from these studies have prompted the repurposing and/or development of other glutamatergic modulators for antidepressant efficacy, both as monotherapy or as an adjunct to conventional monoaminergic antidepressants. This review highlights the evidence supporting the antidepressant effects of subanesthetic-dose ketamine as well as other glutamatergic modulators, such as D-cycloserine, riluzole, CP-101,606, CERC-301 (previously known as MK-0657), basimglurant, JNJ-40411813, dextromethorphan, nitrous oxide, GLYX-13, and esketamine.
Collapse
Affiliation(s)
- Marc S Lener
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 7-5545, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 7-5545, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 7-5545, Bethesda, MD, USA
| |
Collapse
|
38
|
Strasburger SE, Bhimani PM, Kaabe JH, Krysiak JT, Nanchanatt DL, Nguyen TN, Pough KA, Prince TA, Ramsey NS, Savsani KH, Scandlen L, Cavaretta MJ, Raffa RB. What is the mechanism of Ketamine's rapid-onset antidepressant effect? A concise overview of the surprisingly large number of possibilities. J Clin Pharm Ther 2017; 42:147-154. [PMID: 28111761 DOI: 10.1111/jcpt.12497] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Abundant clinical data now confirm that ketamine produces a remarkable rapid-onset antidepressant effect - hours or days - in contrast to the delayed onset (typically weeks) of current antidepressant drugs. This surprising and revolutionary finding may lead to the development of life-saving pharmacotherapy for depressive illness by reducing the high suicide risk associated with the delayed onset of effect of current drugs. As ketamine has serious self-limiting drawbacks that restrict its widespread use for this purpose, a safer alternative is needed. Our objective is to review the proposed mechanism(s) of ketamine's rapid-onset antidepressant action for new insights into the physiological basis of depressive illness that may lead to new and novel targets for antidepressant drug discovery. METHODS A search was conducted on published literature (e.g. PubMed) and Internet sources to identify information relevant to ketamine's rapid-acting antidepressant action and, specifically, to the possible mechanism(s) of this action. Key search words included 'ketamine', 'antidepressant', 'mechanism of action', 'depression' and 'rapid acting', either individually or in combination. Information was sought that would include less well-known, as well as well-known, basic pharmacologic properties of ketamine and that identified and evaluated the several hypotheses about ketamine's mechanism of antidepressant action. RESULTS Whether the mechanistic explanation for ketamine's rapid-onset antidepressant action is related to its well-known antagonism of the NMDA (N-Methyl-d-aspartate) subtype of glutamate receptor or to something else has not yet been fully elucidated. The evidence from pharmacologic, medicinal chemistry, animal model and drug-discovery sources reveals a wide variety of postulated mechanisms. WHAT IS NEW AND CONCLUSION The surprising discovery of ketamine's rapid-onset antidepressant effect is a game-changer for the understanding and treatment of depressive illness. There is some convergence on NMDA receptor antagonism as a likely, but to date unproven, common mechanism. The surprising number of other mechanisms, and the several novel biochemical aetiologies of depression proposed, suggests exciting new drug-discovery targets.
Collapse
Affiliation(s)
| | - P M Bhimani
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | - J H Kaabe
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | - J T Krysiak
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | - D L Nanchanatt
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | - T N Nguyen
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | - K A Pough
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | - T A Prince
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | - N S Ramsey
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | - K H Savsani
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | - L Scandlen
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | - M J Cavaretta
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | - R B Raffa
- Temple University School of Pharmacy, Philadelphia, PA, USA.,University of Arizona College of Pharmacy, Tucson, AZ, USA
| |
Collapse
|
39
|
Cetin M, Aricioglu F. Unmet needs in psychiatry and emerging novel pharmacological agents. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20130927064824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mesut Cetin
- Klinik Psikofarmakoloji Bülteni-Bulletin of Clinical Pychopharmacology, GATA Haydarpasa Training Hospital, Department of Psychiatry, Istanbul-Turkey
| | - Feyza Aricioglu
- Marmara University, School of Pharmacy Department of Pharmacology and Psychopharmacology Research Unit, Istanbul-Turkey
| |
Collapse
|
40
|
de Sousa RT, Zanetti MV, Brunoni AR, Machado-Vieira R. Challenging Treatment-Resistant Major Depressive Disorder: A Roadmap for Improved Therapeutics. Curr Neuropharmacol 2016; 13:616-35. [PMID: 26467411 PMCID: PMC4761633 DOI: 10.2174/1570159x13666150630173522] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Major
depressive disorder (MDD) is associated with a significant burden and costs to
the society. As remission of depressive symptoms is achieved in only one-third
of the MDD patients after the first antidepressant trial, unsuccessful
treatments contribute largely to the observed suffering and social costs of MDD.
The present article provides a summary of the therapeutic strategies that have
been tested for treatment-resistant depression (TRD). A computerized search on
MedLine/PubMed database from 1975 to September 2014 was performed, using the
keywords “treatment-resistant depression”, “major depressive disorder”,
“adjunctive”, “refractory” and “augmentation”. From the 581 articles retrieved,
two authors selected 79 papers. A manual searching further considered relevant
articles of the reference lists. The evidence found supports adding or switching
to another antidepressant from a different class is an effective strategy in
more severe MDD after failure to an initial antidepressant trial. Also, in
subjects resistant to two or more classes of antidepressants, some augmentation
strategies and antidepressant combinations should be considered, although the
overall response and remission rates are relatively low, except for fast acting
glutamatergic modulators. The wide range of available treatments for TRD
reflects the complexity of MDD, which does not underlie diverse key features of
the disorder. Larger and well-designed studies applying dimensional approaches
to measure efficacy and effectiveness are warranted.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Machado-Vieira
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of Sao Paulo, Brazil, Address: Instituto de Psiquiatria do HC-FMUSP, 3o andar, LIM-27, Rua Dr. Ovidio Pires de Campos, 785, Postal code 05403- 010, Sao Paulo, SP, Brazil
| |
Collapse
|
41
|
Salardini E, Zeinoddini A, Mohammadinejad P, Khodaie-Ardakani MR, Zahraei N, Zeinoddini A, Akhondzadeh S. Riluzole combination therapy for moderate-to-severe major depressive disorder: A randomized, double-blind, placebo-controlled trial. J Psychiatr Res 2016; 75:24-30. [PMID: 26800392 DOI: 10.1016/j.jpsychires.2016.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/13/2015] [Accepted: 01/04/2016] [Indexed: 02/08/2023]
Abstract
Recent evidences suggest that glutamatergic dysregulation implicated in neural plasticity and cellular resilience may contribute to the pathophysiology of Major Depressive Disorder (MDD). Riluzole, which exerts its effect by targeting glutamate neurotransmission, has shown antidepressant effect in recent preclinical, observational and open label studies. This study aimed to assess the efficacy and tolerability of riluzole in patients with MDD. Sixty-four inpatients with diagnosis of moderate to severe major depressive disorder participated in a parallel, randomized, controlled trial, and sixty patients underwent 6 weeks treatment with either riluzole (50 mg/bid) plus citalopram (40 mg/day) or placebo plus citalopram (40 mg/day). All participants were inpatients for the whole duration of the study. Patients were assessed using Hamilton depression rating scale (HDRS) at baseline and weeks 2, 4 and 6. The primary outcome measure was to assess the efficacy of riluzole compared to placebo in improving the depressive symptoms. General linear model repeated measures demonstrated significant effect for time × treatment interaction on HDRS [F (1.86, 107.82) = 8.63, p < 0.001]. Significantly greater improvement was observed in HDRS scores in the riluzole group compared to the placebo group from baseline HDRS score at weeks 2, 4 and 6 (p < 0.001, p = 0.001, p = 0.002, respectively). Significantly greater response with greater speed to treatment was observed in the riluzole group than the placebo group. No serious adverse event occurred. This study showed a favorable safety and efficacy profile in patients with major depressive disorder. Larger controlled studies with longer treatment periods are needed to investigate long term safety, efficacy and optimal dosing.
Collapse
Affiliation(s)
- Elaheh Salardini
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Zeinoddini
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadinejad
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nagmeh Zahraei
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Zeinoddini
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Remus JL, Dantzer R. Inflammation Models of Depression in Rodents: Relevance to Psychotropic Drug Discovery. Int J Neuropsychopharmacol 2016; 19:pyw028. [PMID: 27026361 PMCID: PMC5043641 DOI: 10.1093/ijnp/pyw028] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/23/2016] [Indexed: 01/06/2023] Open
Abstract
Inflammation and depression are closely inter-related; inflammation induces symptoms of depression and, conversely, depressed mood and stress favor an inflammatory phenotype. The mechanisms that mediate the ability of inflammation to induce symptoms of depression are intensively studied at the preclinical level. This review discusses how it has been possible to build animal models of inflammation-induced depression based on clinical data and to explore critical mechanisms downstream of inflammation. Namely, we focus on the ability of inflammation to increase the activity of the tryptophan-degrading enzyme, indoleamine 2,3 dioxygenase, which leads to the production of kynurenine and downstream neuroactive metabolites. By acting on glutamatergic neurotransmission, these neuroactive metabolites play a key role in the development of depression-like behaviors. An important outcome of the preclinical research on inflammation-induced depression is the identification of potential novel targets for antidepressant treatments, which include targeting the kynurenine system and production of downstream metabolites, altering transport of kynurenine into the brain, and modulating glutamatergic transmission.
Collapse
Affiliation(s)
- Jennifer L Remus
- Laboratory of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Robert Dantzer
- Laboratory of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
43
|
Saitoh A, Makino Y, Hashimoto T, Yamada M, Gotoh L, Sugiyama A, Ohashi M, Tsukagoshi M, Oka JI, Yamada M. The voltage-gated sodium channel activator veratrine induces anxiogenic-like behaviors in rats. Behav Brain Res 2015; 292:316-22. [DOI: 10.1016/j.bbr.2015.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
|
44
|
Towards new mechanisms: an update on therapeutics for treatment-resistant major depressive disorder. Mol Psychiatry 2015; 20:1142-50. [PMID: 26148812 DOI: 10.1038/mp.2015.92] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/24/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
Depression is a devastating disorder that places a significant burden on both the individual and society. As such, the discovery of novel therapeutics and innovative treatments--especially for treatment-resistant depression (TRD)--are essential. Research into antidepressant therapies for TRD has evolved from explorations of antidepressants with primary mechanisms of action on the monoaminergic neurotransmitter system to augmentation agents with primary mechanisms both within and outside of the serotonin/norepinephrine system. Now the field of antidepressant research has changed trajectories yet again; this time, compounds with primary mechanisms of action on the glutamatergic, cholinergic and opioid systems are in the forefront of antidepressant exploration. In this review, we will discuss the most recent research surrounding these novel compounds. In addition, we will discuss novel device-based therapeutics, with a particular focus on transcranial magnetic stimulation. In many cases of antidepressant drug discovery, the role of serendipity coupled with meticulous clinical observation in drug development in medicine was crucial. Moving forward, we must look toward the combination of innovation plus improvements on the remarkable discoveries thus far to advance the field of antidepressant research.
Collapse
|
45
|
Sex differences in glutamate receptor gene expression in major depression and suicide. Mol Psychiatry 2015; 20:1057-68. [PMID: 26169973 DOI: 10.1038/mp.2015.91] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Abstract
Accumulating data indicate that the glutamate system is disrupted in major depressive disorder (MDD), and recent clinical research suggests that ketamine, an antagonist of the N-methyl-d-aspartate (NMDA) glutamate receptor (GluR), has rapid antidepressant efficacy. Here we report findings from gene expression studies of a large cohort of postmortem subjects, including subjects with MDD and controls. Our data reveal higher expression levels of the majority of glutamatergic genes tested in the dorsolateral prefrontal cortex (DLPFC) in MDD (F21,59=2.32, P=0.006). Posthoc data indicate that these gene expression differences occurred mostly in the female subjects. Higher expression levels of GRIN1, GRIN2A-D, GRIA2-4, GRIK1-2, GRM1, GRM4, GRM5 and GRM7 were detected in the female patients with MDD. In contrast, GRM5 expression was lower in male MDD patients relative to male controls. When MDD suicides were compared with MDD non-suicides, GRIN2B, GRIK3 and GRM2 were expressed at higher levels in the suicides. Higher expression levels were detected for several additional genes, but these were not statistically significant after correction for multiple comparisons. In summary, our analyses indicate a generalized disruption of the regulation of the GluRs in the DLPFC of females with MDD, with more specific GluR alterations in the suicides and in the male groups. These data reveal further evidence that, in addition to the NMDA receptor, the AMPA, kainate and the metabotropic GluRs may be targets for the development of rapidly acting antidepressant drugs.
Collapse
|
46
|
Takahashi K, Foster JB, Lin CLG. Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci 2015; 72:3489-506. [PMID: 26033496 PMCID: PMC11113985 DOI: 10.1007/s00018-015-1937-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the central nervous system. Excitatory amino acid transporter 2 (EAAT2) is primarily responsible for clearance of extracellular glutamate to prevent neuronal excitotoxicity and hyperexcitability. EAAT2 plays a critical role in regulation of synaptic activity and plasticity. In addition, EAAT2 has been implicated in the pathogenesis of many central nervous system disorders. In this review, we summarize current understanding of EAAT2, including structure, pharmacology, physiology, and functions, as well as disease relevancy, such as in stroke, Parkinson's disease, epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, major depressive disorder, and addiction. A large number of studies have demonstrated that up-regulation of EAAT2 protein provides significant beneficial effects in many disease models suggesting EAAT2 activation is a promising therapeutic approach. Several EAAT2 activators have been identified. Further understanding of EAAT2 regulatory mechanisms could improve development of drug-like compounds that spatiotemporally regulate EAAT2.
Collapse
Affiliation(s)
- Kou Takahashi
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| | - Joshua B. Foster
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
47
|
Pittenger C, Bloch MH, Wasylink S, Billingslea E, Simpson R, Jakubovski E, Kelmendi B, Sanacora G, Coric V. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: a pilot randomized placebo-controlled trial. J Clin Psychiatry 2015; 76. [PMID: 26214725 PMCID: PMC4560666 DOI: 10.4088/jcp.14m09123] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) affects approximately 2.5% of the population and is associated with significant morbidity. Many patients receive little benefit from the best available treatments, and even those who do respond often suffer from significant residual symptoms. Convergent evidence suggests that abnormalities in glutamate homeostasis and neurotransmission may contribute to OCD and that glutamate-modulating medications may be of benefit in patients whose symptoms are refractory to standard interventions. Small open-label trials of augmentation of serotonin reuptake inhibitor (SRI) pharmacotherapy with the glutamate modulator riluzole have suggested benefit in adults with refractory symptoms. We report a pilot randomized placebo-controlled trial of riluzole augmentation of ongoing SRI treatment in SRI-refractory patients. METHOD Outpatients (n = 27) and inpatients (n = 11) with DSM-IV OCD on stable SRI pharmacotherapy were randomized between November 2006 and December 2012 to receive riluzole 50 mg or placebo twice a day and followed for 12 weeks after a 2-week placebo lead-in phase. RESULTS Riluzole was well tolerated; 1 patient experienced moderate nausea, but none discontinued treatment due to side effects. While there was nominally greater Y-BOCS improvement in the riluzole group (our primary outcome) compared to placebo, it did not reach statistical significance. In the outpatient subsample, a trend suggesting benefit from riluzole augmentation for obsessions (P = .056, 2-tailed, uncorrected) was found in a secondary analysis. Among outpatients, more achieved at least a partial response (> 25% improvement) with riluzole than with placebo (P = .02 in a secondary analysis). CONCLUSIONS Riluzole may be of benefit to a subset of patients. Larger samples would be required to detect effects of the order suggested by the nominal improvement in our outpatient subsample. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00523718.
Collapse
Affiliation(s)
| | - Michael H. Bloch
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Yale Child Study Center, Yale University School of Medicine, New Haven, CT
| | - Suzanne Wasylink
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Eileen Billingslea
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Ryan Simpson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Ewgeni Jakubovski
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT
| | - Ben Kelmendi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Vladimir Coric
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
48
|
Miller OH, Moran JT, Hall BJ. Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: Direct inhibition and disinhibition. Neuropharmacology 2015. [PMID: 26211972 DOI: 10.1016/j.neuropharm.2015.07.028] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A single, low dose of ketamine evokes antidepressant actions in depressed patients and in patients with treatment-resistant depression (TRD). Unlike classic antidepressants, which regulate monoamine neurotransmitter systems, ketamine is an antagonist of the N-methyl-D-aspartate (NMDA) family of glutamate receptors. The effectiveness of NMDAR antagonists in TRD unveils a new set of targets for therapeutic intervention in major depressive disorder (MDD) and TRD. However, a better understanding of the cellular mechanisms underlying these effects is required for guiding future therapeutic strategies, in order to minimize side effects and prolong duration of efficacy. Here we review the evidence for and against two hypotheses that have been proposed to explain how NMDAR antagonism initiates protein synthesis and increases excitatory synaptic drive in corticolimbic brain regions, either through selective antagonism of inhibitory interneurons and cortical disinhibition, or by direct inhibition of cortical pyramidal neurons. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Oliver H Miller
- Neuroscience Program, Tulane University, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.
| | - Jacqueline T Moran
- Neuroscience Program, Tulane University, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.
| | - Benjamin J Hall
- Neuroscience Program, Tulane University, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
49
|
Hertz L, Rothman DL, Li B, Peng L. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci 2015; 9:25. [PMID: 25750618 PMCID: PMC4335176 DOI: 10.3389/fnbeh.2015.00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/23/2015] [Indexed: 11/13/2022] Open
Abstract
It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI's exert their therapeutic effects. It has recently been demonstrated that 5-HT2B receptor stimulation is needed for the antidepressant effect of fluoxetine in vivo. The ability of all five currently used SSRIs to stimulate the 5-HT2B receptor equipotentially in cultured astrocytes has been known for several years, and increasing evidence has shown the importance of astrocytes and astrocyte-neuronal interactions for neuroplasticity and complex brain activity. This paper reviews acute and chronic effects of 5-HT2B receptor stimulation in cultured astrocytes and in astrocytes freshly isolated from brains of mice treated with fluoxetine for 14 days together with effects of anti-depressant therapy on turnover of glutamate and GABA and metabolism of glucose and glycogen. It is suggested that these events are causally related to the mechanism of action of SSRIs and of interest for development of newer antidepressant drugs.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Diagnostic Radiology and Biomedical Engineering, Yale University New Haven, CT, USA
| | - Baoman Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Liang Peng
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|
50
|
Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol 2015; 23:1-21. [PMID: 25643025 PMCID: PMC4428540 DOI: 10.1037/a0038550] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a chronic, recurring, and debilitating mental illness that is the most common mood disorder in the United States. It has been almost 50 years since the monoamine hypothesis of depression was articulated, and just over 50 years since the first pharmacological treatment for MDD was discovered. Several monoamine-based pharmacological drug classes have been developed and approved for the treatment of MDD; however, remission rates are low (often less than 60%) and there is a delayed onset before remission of depressive symptoms is achieved. As a result of a "proof-of-concept" study in 2000 with the noncompetitive NMDA antagonist ketamine, a number of studies have examined the glutamatergic systems as viable targets for the treatment of MDD. This review will provide a brief history on the development of clinically available antidepressant drugs, and then review the possible role of glutamatergic systems in the pathophysiology of MDD. Specifically, the glutamatergic review will focus on the N-methyl-D-aspartate (NMDA) receptor and the efficacy of drugs that target the NMDA receptor for the treatment of MDD. The noncompetitive NMDA receptor antagonist ketamine, which has consistently produced rapid and sustained antidepressant effects in MDD patients in a number of clinical studies, has shown the most promise as a novel glutamatergic-based treatment for MDD. However, compounds that target other glutamatergic mechanisms, such as GLYX-13 (a glycine-site partial agonist at NMDA receptors) appear promising in early clinical trials. Thus, the clinical findings to date are encouraging and support the continued search for and the development of novel compounds that target glutamatergic mechanisms.
Collapse
Affiliation(s)
- Todd M. Hillhouse
- the Department of Psychology at Virginia Commonwealth University at the time this review was written and is now at the University of Michigan in the Department of Pharmacology
| | - Joseph H. Porter
- the Department of Psychology at Virginia Commonwealth University
| |
Collapse
|