1
|
Palagini L, Miniati M, Marazziti D, Hickie I, Crouse JJ, Geoffroy PA. Evening chronotype is associated with impulsivity and diminished resilience in bipolar disorder: Potential link with early life stressors may affect mood features and suicidal risk. J Affect Disord 2025; 379:845-851. [PMID: 40088988 DOI: 10.1016/j.jad.2025.03.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
The study aimed at investigating the possible effects of early stressful experiences on chronotype and the clinical features associated with bipolar disorder (BD). A sample of 203 adults with BD depressive episode (mean age 46.7 + 13.5, females 57.1 %) was assessed by the Beck Depression Inventory-II (BDI-II), the Early Trauma Inventory Self Report-Short Form (ETISR-SF), the Difficulties in Emotion Regulation Scale (DERS), the Morningness-Eveningness Questionnaire (MEQ), the Resilience Scale for Adults (RSA), the Scale for Suicide Ideation (SSI) and the Young Mania Rating Scale (YMRS). Patients with evening chronotype showed greater early life stressors and greater severity of depressive symptoms, anxiety comorbidity, higher suicidal risk, emotional impulsivity and low resilience. In logistic regression models, evening chronotype (MEQ) was a significant predictor of depressive symptoms (BDI-II > 13; odds ratio [OR] = 4.41; 95 % CI 1.89-9.01; p < 0.001), mixed features (YMRS>5; OR = 2.60; 95 % CI 1.36-4.97; p = 0.004), a higher risk of suicidality (SSI > 6; OR = 2.27; p = 0.020), emotional dysregulation (DERS; OR = 2.01; 95 % CI 1.09-3.74; p = 0.027), and low resilience (RSA < 89; OR = 1.99; 95 % CI 1.12 = 3.93, p = 0.046). Mediation analyses revealed that an evening chronotype might play a mediating role in the relationship between early life stressors and high suicidal risk (Z = 2.0, SE = 0.62, p = 0.044), emotional impulsivity (Z = 2.07, SE = 0.33, p = 0.038), and low resilience in social competence (Z = 2.08, SE = 0.02, p = 0.037). Addressing circadian rhythm alterations in subjects exposed to early stressors may help preventing consequences of those stressors on BD.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy.
| | - Mario Miniati
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy
| | - Donatella Marazziti
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy
| | - Ian Hickie
- Youth Mental Health and Technology Team, Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Jacob J Crouse
- Youth Mental Health and Technology Team, Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Pierre A Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018 Paris, France; Centre ChronoS, GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France,; Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| |
Collapse
|
2
|
Geoffroy PA, Maruani J. Chronobiology of Mood Disorders: The Role of the biological clock in Depression and Bipolar Disorder. Biol Psychiatry 2025:S0006-3223(25)01189-8. [PMID: 40381827 DOI: 10.1016/j.biopsych.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/25/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
Mood disorders, including major depressive disorder (MDD), bipolar disorder (BD), and seasonal affective disorder (SAD), exhibit significant heterogeneity, with disturbances in biological rhythms playing a central role. These disturbances not only contribute to the onset and progression of mood disorders but also serve as important predictors of relapse (Chronos syndrome) and treatment response. Circadian disruptions, influenced by factors such as seasonality, jet lag, shift work, and childbirth, are hallmarks of mood episodes and pivotal in transitions between mood states. Longitudinal studies reveal a bidirectional relationship between circadian dysregulation and mood disorders, suggesting that biological clock abnormalities may both signal and predispose individuals to mood episodes. Despite their significance, no single circadian biomarker has demonstrated sufficient specificity or sensitivity for diagnostic precision. This underscores the urgent need for multimodal approaches that integrate circadian markers with other physiological and behavioral dimensions. Advancing mood disorder care requires biomarkers that capture individualized biological signatures, revealing circadian dysregulation and its interactions with multiple other physiological systems to enable precise subtyping and improved interventions. This review emphasizes the potential of integrating biological rhythms into a dimensional framework, leveraging advanced digital tools and mathematical models to provide ecologically valid insights into mood disorder mechanisms. Such approaches aim to bridge the gap between clinical observations and biological underpinnings, paving the way for biologically informed classifications and personalized treatment strategies. By addressing the complexity of circadian disruptions and their interplay with other systems, this paradigm shift offers a promising path to enhancing mood disorder diagnostics and therapeutics.
Collapse
Affiliation(s)
- Pierre A Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; Centre ChronoS, GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France; CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, F-67000, Strasbourg, France.
| | - Julia Maruani
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; Centre ChronoS, GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France
| |
Collapse
|
3
|
Geoffroy PA, Edán-Sánchez A, Sánchez-Rico M, Mauries S, Palagini L, Peyre H, Lejoyeux M, Maruani J, Hoertel N. Sex differences in insomnia and hypersomnia complaints during major depressive episode: Results from a national sample. J Affect Disord 2025; 369:202-210. [PMID: 39353513 DOI: 10.1016/j.jad.2024.09.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Sex differences in sleep disturbances during major depressive episodes (MDE) have been suggested. This study compares the prevalence, sociodemographic characteristics, and psychiatric comorbidity associated with sleep complaints specific to each sex among adults with MDE. These findings are crucial for precise diagnosis, personalized treatment, and improved clinical outcomes. METHODS In a large nationally representative prospective survey, we used multi-adjusted logistic regression models including sociodemographic characteristics, psychiatric comorbidity, and depression severity to examine whether associations differ between men and women. RESULTS Among women, 93.3 % reported at least one type of sleep complaints (i.e., trouble falling asleep, early morning awakening or hypersomnia) while 91.0 % of men did, with respectively 78.3 % and 77.2 % of insomnia complaints, and 46.2 % and 41.3 % of hypersomnia complaints. Women with sleep complaints were more likely to be black, with lower individual incomes, have histrionic personality disorder or a specific phobia. Conversely, men with sleep complaints were more likely to have a lifetime diagnosis of mania spectrum disorder, generalized anxiety disorder, drug use disorder, as well as dependent and schizotypal personality disorders. Surprisingly, being "never married" has emerged as a protective factor against sleep complaints in women, while posing as a risk factor in men compared to other marital statuses. Differences and specificities were also noted concerning subtypes of insomnia and hypersomnia complaints. LIMITATIONS The cross-sectional design means the associations found do not imply causality. CONCLUSIONS These findings provide insights into the complex relationship between sleep and depression in men and women, highlighting the need for personalized interventions.
Collapse
Affiliation(s)
- Pierre A Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Centre ChronoS, GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France.
| | - Alejandro Edán-Sánchez
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Université Paris Cité, Paris, France
| | - Marina Sánchez-Rico
- Centre ChronoS, GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France; Department of Psychobiology and Behavioural Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sibylle Mauries
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Centre ChronoS, GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France
| | - Laura Palagini
- Department of Experimental and Clinical Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Hugo Peyre
- Autism Reference Centre of Languedoc-Roussillon CRA-LR, Excellence Centre for Autism and Neurodevelopmental disorders CeAND, Montpellier University Hospital, MUSE University, France; Université Paris-Saclay, UVSQ, Inserm, CESP, Team DevPsy, 94807 Villejuif, France
| | - Michel Lejoyeux
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Centre ChronoS, GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France
| | - Julia Maruani
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Centre ChronoS, GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France
| | - Nicolas Hoertel
- Université Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Corentin-Celton, DMU Psychiatrie et Addictologie, Département de Psychiatrie, Issy-les-Moulineaux, France; INSERM, Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, Paris, France
| |
Collapse
|
4
|
Huang K, Li S, Yang M, Teng Z, Xu B, Wang B, Chen J, Zhao L, Wu H. The epigenetic mechanism of metabolic risk in bipolar disorder. Obes Rev 2024; 25:e13816. [PMID: 39188090 DOI: 10.1111/obr.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Bipolar disorder (BD) is a complex and severe mental illness that causes significant suffering to patients. In addition to the burden of depressive and manic symptoms, patients with BD are at an increased risk for metabolic syndrome (MetS). MetS includes factors associated with an increased risk of atherosclerotic cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM), which may increase the mortality rate of patients with BD. Several studies have suggested a link between BD and MetS, which may be explained at an epigenetic level. We have focused on epigenetic mechanisms to review the causes of metabolic risk in BD.
Collapse
Affiliation(s)
- Kexin Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baoyan Xu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Hebei Provincial Mental Health Center, Hebei Key Laboratory of Major Mental and Behavioral Disorders, The Sixth Clinical Medical College of Hebei University, Baoding, Hebei, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liping Zhao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Tonon AC, Nexha A, Mendonça da Silva M, Gomes FA, Hidalgo MP, Frey BN. Sleep and circadian disruption in bipolar disorders: From psychopathology to digital phenotyping in clinical practice. Psychiatry Clin Neurosci 2024; 78:654-666. [PMID: 39210713 PMCID: PMC11804932 DOI: 10.1111/pcn.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Sleep and biological rhythms are integral to mood regulation across the lifespan, particularly in bipolar disorder (BD), where alterations in sleep phase, structure, and duration occur in all mood states. These disruptions are linked to poorer quality of life, heightened suicide risk, impaired cognitive function, and increased relapse rates. This review highlights the pathophysiology of sleep disturbances in BD and aims to consolidate understanding and clinical applications of these phenomena. It also summarizes the evolution of sleep and biological rhythms assessment methods, including ecological momentary assessment (EMA) and digital phenotyping. It underscores the importance of recognizing circadian rhythm involvement in mood regulation, suggesting potential therapeutic targets. Future research directions include elucidating circadian clock gene mechanisms, understanding environmental impacts on circadian rhythms, and investigating the bidirectional relationship between sleep disturbances and mood regulation in BD. Standardizing assessment methods and addressing privacy concerns related to EMA technology and digital phenotyping are essential for advancing research. Collaborative efforts are crucial for enhancing clinical applicability and understanding the broader implications of biological rhythms in BD diagnosis and treatment. Overall, recognizing the significance of sleep and biological rhythms in BD offers promise for improved outcomes through targeted interventions and a deeper understanding of the disorder's underlying mechanisms.
Collapse
Affiliation(s)
- André C. Tonon
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| | - Adile Nexha
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| | - Mariana Mendonça da Silva
- Laboratório de Cronobiologia e SonoPorto Alegre Clinicas Hospital, Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Fabiano A. Gomes
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e SonoPorto Alegre Clinicas Hospital, Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
- Graduate Program in Psychiatry and Behavioral SciencesFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Benicio N. Frey
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
6
|
Basquin L, Maruani J, Leseur J, Mauries S, Bazin B, Pineau G, Henry C, Lejoyeux M, Geoffroy PA. Study of the different sleep disturbances during the prodromal phase of depression and mania in bipolar disorders. Bipolar Disord 2024; 26:454-467. [PMID: 38653574 DOI: 10.1111/bdi.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND One of the challenges in bipolar disorder (BD) lies in early detection of the illness and its recurrences, to improve prognosis. Sleep disturbances (SD) have been proposed as reliable predictive markers of conversion. While preliminary studies have explored the relationship between SD and the onset of mood episodes, the results remain heterogeneous and a few have specifically examined patients' perception of prodromal symptoms and their progression until the episode occurs. Identifying prodromes represents a crucial clinical challenge, as it enables early intervention, thereby reducing the severity of BD. Therefore, the objective of this study is to better characterize and evaluate the progressive nature of SD as prodromal symptoms of mood episodes, and patients' perception of it. METHODS Patients diagnosed with BD, either hospitalized or seeking treatment for a (hypo)manic or depressive episode benefited from standardized questionnaires, structured interviews, and self-report questionnaires to evaluate SD prior to the current episode, as well as sociodemographic and clinical information. RESULTS Out of the 41 patients included, 59% spontaneously reported SD prior to the episode, appearing 90 days before depression and 35 days before mania (pre-indexed/spontaneous reports: 51.22% insomnia complaints, 4.88% hypersomnolence complaints, 7.32% parasomnias, 2.44% sleep movements). After inquiry about specific SD, the percentage of patients reporting prodromal SD increased significantly to 83%, appearing 210 days before depression and 112.5 days before mania (post-indexed reports: 75.61% presented with insomnia complaints appearing 150 days before depression and 20 days before mania, 46.34% had hypersomnolence complaints appearing 60 days before depression, 43.9% had parasomnias appearing 210 days before depression and 22.5 days before mania, 36.59% had sleep movements appearing 120 days before depression and 150 days before mania). Of note, bruxism appeared in 35% of patients before mania, and restless legs syndrome in 20% of patients before depression. CONCLUSION This study highlights the very high prevalence of SD prior to a mood episode in patients with BD with differences between depressive and manic episodes. The more systematic screening of sleep alterations of the prodromal phase improved the recognition and characterization of different symptoms onset by patients. This underscores the need for precise questioning regarding sleep patterns in patients, to better identify the moment of transition toward a mood episode, referred to as "Chronos syndrome". The study emphasizes the importance of educating patients about the disorder and its sleep prodromal symptoms to facilitate early intervention and prevent recurrences.
Collapse
Affiliation(s)
- Louise Basquin
- Département de Psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris, France
- NeuroDiderot, Inserm, FHU I2-D2, Université Paris Cité, Paris, France
| | - Julia Maruani
- Département de Psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris, France
- NeuroDiderot, Inserm, FHU I2-D2, Université Paris Cité, Paris, France
- GHU Paris - Psychiatrie & Neurosciences, Paris, France
| | - Jeanne Leseur
- Département de Psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris, France
| | - Sibylle Mauries
- Département de Psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris, France
- NeuroDiderot, Inserm, FHU I2-D2, Université Paris Cité, Paris, France
- GHU Paris - Psychiatrie & Neurosciences, Paris, France
| | | | - Guillaume Pineau
- Département de Psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris, France
| | - Chantal Henry
- GHU Paris - Psychiatrie & Neurosciences, Paris, France
- Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie & Neurosciences, Paris, France
- Université de Paris, Paris, France
| | - Michel Lejoyeux
- Département de Psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris, France
- NeuroDiderot, Inserm, FHU I2-D2, Université Paris Cité, Paris, France
- GHU Paris - Psychiatrie & Neurosciences, Paris, France
| | - Pierre A Geoffroy
- Département de Psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris, France
- NeuroDiderot, Inserm, FHU I2-D2, Université Paris Cité, Paris, France
- GHU Paris - Psychiatrie & Neurosciences, Paris, France
- CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, Strasbourg, France
| |
Collapse
|
7
|
Maruani J, Stern E, Boiret C, Leseur J, Romier A, Lejoyeux M, Geoffroy PA. Predictors of cognitive behavioral therapy for insomnia (CBT-I) effects in insomnia with major depressive episode. Psychiatry Res 2023; 329:115527. [PMID: 37839317 DOI: 10.1016/j.psychres.2023.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Insomnia plays a critical role in the onset and maintenance of Major Depressive Episode (MDE). Cognitive behavioral therapy for insomnia (CBT-I) can successfully improve the sleep of patients with insomnia and MDE. Nonetheless, the factors influencing CBT-I's effects in MDE remain uncertain. This study aimed to identify predictors of insomnia improvement following CBT-I, as well as predictors of insomnia response, remission in patients with MDE and specific insomnia subtypes. Initially, we compared a 4-session weekly CBT-I treatment to baseline sleep education (SE) in a control group. This confirmed CBT-I's positive effects and the need to explore predictive factors. Notably, treatment-resistant depression (TRD) predicted reduced insomnia severity with CBT-I. Patients exhibiting seasonal fluctuations in depressive symptoms and sleep patterns throughout the year, or having daytime dysfunction, experienced enhanced CBT-I efficacy, especially for early awakenings insomnia. Conversely, shorter sleep duration predicted a less favorable response to CBT-I, less improvement in daytime dysfunction and sleep disturbance worries. Additionally, MDE with suicide attempts predicted a poorer improvement of daytime dysfunction. Further research is essential to comprehensively grasp the mechanisms behind CBT-I's heightened effectiveness in MDE patients with TRD and seasonal fluctuations.
Collapse
Affiliation(s)
- Julia Maruani
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris F-75018, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, Paris F-75019, France; Centre ChronoS, GHU Paris - Psychiatrie & Neurosciences, 1 rue Cabanis, Paris 75014, France.
| | - Emilie Stern
- Centre ChronoS, GHU Paris - Psychiatrie & Neurosciences, 1 rue Cabanis, Paris 75014, France; Université Paris Cité, Laboratoire de Psychopathologie et Processus de Santé, Boulogne-Billancourt F-92100, France
| | - Charlotte Boiret
- Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, Paris F-75019, France
| | - Jeanne Leseur
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris F-75018, France
| | - Alix Romier
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris F-75018, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, Paris F-75019, France
| | - Michel Lejoyeux
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris F-75018, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, Paris F-75019, France; Centre ChronoS, GHU Paris - Psychiatrie & Neurosciences, 1 rue Cabanis, Paris 75014, France
| | - Pierre A Geoffroy
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, Paris F-75018, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, Paris F-75019, France; Centre ChronoS, GHU Paris - Psychiatrie & Neurosciences, 1 rue Cabanis, Paris 75014, France; CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, Strasbourg F-67000, France.
| |
Collapse
|
8
|
Que M, Li Y, Wang X, Zhan G, Luo X, Zhou Z. Role of astrocytes in sleep deprivation: accomplices, resisters, or bystanders? Front Cell Neurosci 2023; 17:1188306. [PMID: 37435045 PMCID: PMC10330732 DOI: 10.3389/fncel.2023.1188306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Sleep plays an essential role in all studied animals with a nervous system. However, sleep deprivation leads to various pathological changes and neurobehavioral problems. Astrocytes are the most abundant cells in the brain and are involved in various important functions, including neurotransmitter and ion homeostasis, synaptic and neuronal modulation, and blood-brain barrier maintenance; furthermore, they are associated with numerous neurodegenerative diseases, pain, and mood disorders. Moreover, astrocytes are increasingly being recognized as vital contributors to the regulation of sleep-wake cycles, both locally and in specific neural circuits. In this review, we begin by describing the role of astrocytes in regulating sleep and circadian rhythms, focusing on: (i) neuronal activity; (ii) metabolism; (iii) the glymphatic system; (iv) neuroinflammation; and (v) astrocyte-microglia cross-talk. Moreover, we review the role of astrocytes in sleep deprivation comorbidities and sleep deprivation-related brain disorders. Finally, we discuss potential interventions targeting astrocytes to prevent or treat sleep deprivation-related brain disorders. Pursuing these questions would pave the way for a deeper understanding of the cellular and neural mechanisms underlying sleep deprivation-comorbid brain disorders.
Collapse
Affiliation(s)
- Mengxin Que
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Ricka N, Pellegrin G, Fompeyrine DA, Lahutte B, Geoffroy PA. Predictive biosignature of major depressive disorder derived from physiological measurements of outpatients using machine learning. Sci Rep 2023; 13:6332. [PMID: 37185788 PMCID: PMC10130089 DOI: 10.1038/s41598-023-33359-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Major Depressive Disorder (MDD) has heterogeneous manifestations, leading to difficulties in predicting the evolution of the disease and in patient's follow-up. We aimed to develop a machine learning algorithm that identifies a biosignature to provide a clinical score of depressive symptoms using individual physiological data. We performed a prospective, multicenter clinical trial where outpatients diagnosed with MDD were enrolled and wore a passive monitoring device constantly for 6 months. A total of 101 physiological measures related to physical activity, heart rate, heart rate variability, breathing rate, and sleep were acquired. For each patient, the algorithm was trained on daily physiological features over the first 3 months as well as corresponding standardized clinical evaluations performed at baseline and months 1, 2 and 3. The ability of the algorithm to predict the patient's clinical state was tested using the data from the remaining 3 months. The algorithm was composed of 3 interconnected steps: label detrending, feature selection, and a regression predicting the detrended labels from the selected features. Across our cohort, the algorithm predicted the daily mood status with 86% accuracy, outperforming the baseline prediction using MADRS alone. These findings suggest the existence of a predictive biosignature of depressive symptoms with at least 62 physiological features involved for each patient. Predicting clinical states through an objective biosignature could lead to a new categorization of MDD phenotypes.
Collapse
Affiliation(s)
| | | | | | - Bertrand Lahutte
- Psychiatry Department, Bégin Military Hospital, 94160, Saint-Mandé, France
| | - Pierre A Geoffroy
- Psychiatry and Addictology Service, Assistance Publique-Hôpitaux de Paris, GHU Paris Nord, DMU Neurosciences, Hopital Bichat-Claude Bernard, 75018, Paris, France
- GHU Paris-Psychiatry & Neurosciences, 1 rue Cabanis, 75014, Paris, France
- NeuroDiderot, Inserm, FHU I2-D2, Université de Paris, 75019, Paris, France
- CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 67000, Strasbourg, France
| |
Collapse
|
10
|
Solelhac G, Berger M, Strippoli MPF, Marchi NA, Stephan A, Petit JM, Bayon V, Imler T, Haba-Rubio J, Raffray T, Vollenweider P, Marques-Vidal P, Waeber G, Léger D, Siclari F, Geoffroy PA, Preisig M, Heinzer R. Objective polysomnography-based sleep features and major depressive disorder subtypes in the general population. Psychiatry Res 2023; 324:115213. [PMID: 37098299 DOI: 10.1016/j.psychres.2023.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/27/2023]
Abstract
Insomnia and its opposite hypersomnia are part of the diagnostic criteria for major depressive disorder (MDD). However, no study has investigated whether the postulated sleep alterations in clinical subtypes of MDD are reflected in polysomnography (PSG)-derived objective sleep measures. The objective of this study was to establish associations between the melancholic, atypical and unspecified subtypes of MDD and objective PSG-based sleep features. This cross-sectional analysis included 1820 community-dwelling individuals who underwent PSG and a semi-structured psychiatric interview to elicit diagnostic criteria for MDD and its subtypes. Adjusted robust linear regression was used to assess associations between MDD subtypes and PSG-derived objective sleep measures. Current melancholic MDD was significantly associated with decreased absolute delta power and sleep efficiency and with increased wake after sleep onset. Remitted unspecified MDD was significantly associated with increased rapid eye movements density. No other significant associations were identified. Our findings reflect that some PSG-based sleep features differed in MDD subtypes compared with no MDD. The largest number of significant differences were observed for current melancholic MDD, whereas only rapid eye movements density could represent a risk factor for MDD as it was the only sleep measure that was also associated with MDD in remitted participants.
Collapse
Affiliation(s)
- Geoffroy Solelhac
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland.
| | - Mathieu Berger
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland.
| | - Marie-Pierre F Strippoli
- Center for research in Psychiatric Epidemiology and Psychopathology (CEPP), Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland.
| | - Nicola Andrea Marchi
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland.
| | - Aurélie Stephan
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Jean-Marie Petit
- Center for Psychiatric Neuroscience (CNP), Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Virginie Bayon
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland.
| | - Théo Imler
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Jose Haba-Rubio
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland; Florimont Sleep Center, Lausanne, Switzerland.
| | - Tifenn Raffray
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland; Florimont Sleep Center, Lausanne, Switzerland.
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| | - Gerard Waeber
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| | - Damien Léger
- Université Paris Cité, VIFASOM, AP-HP, Hôtel-Dieu, Centre du Sommeil et de la Vigilance, Paris, France.
| | - Francesca Siclari
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland; The Sense Innovation and Research Center, Lausanne and Sion, Switzerland; Department of Clinical Neurosciences Lausanne University Hospital (CHUV), Lausanne, Switzerland; Netherlands Institute for Neuroscience, Amsterdam, Netherlands.
| | - Pierre A Geoffroy
- GHU Paris - Psychiatry & Neurosciences, Paris, France; Université de Paris, NeuroDiderot, Inserm, Paris, France; Département de Psychiatrie et d'Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, Paris, France
| | - Martin Preisig
- Center for research in Psychiatric Epidemiology and Psychopathology (CEPP), Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland.
| | - Raphaël Heinzer
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Geoffroy PA, Schroder CM, Bourgin P, Maruani J, Lejoyeux M, d'Ortho MP, Couffignal C. Validation of a data collection set for the psychiatric, addiction, sleep and chronobiological assessments of patients with depression: A Delphi study for the SoPsy-depression French national cohort. L'ENCEPHALE 2023; 49:117-123. [PMID: 36257850 DOI: 10.1016/j.encep.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Despite international efforts to identify biomarkers of depression, none has been transferred to clinical practice, neither for diagnosis, evolution, nor therapeutic response. This led us to build a French national cohort (through the clinical and research network named SoPsy within the French biological psychiatry society (AFPBN) and sleep society (SFRMS)), to better identify markers of sleep and biological rhythms and validate more homogeneous subgroups of patients, but also to specify the manifestations and pathogeneses of depressive disorders. Before inclusions, we sought to provide a predefined, standardized, and robust set of data to be collected in all centers. METHODS A Delphi process was performed to achieve consensus through the independent rating of invited experts, the SoPsy-depression co-investigators (n=34). The initial set open for vote included 94 questionnaires targeting adult and child psychiatry, sleep and addiction. RESULTS Two questionnaire rounds were completed with 94% participation in the first round and 100% participation in the second round. The results of the Delphi survey incorporated the consensus opinion of the 32 members who completed both rounds. Nineteen of the 94 questionnaires achieved consensus at the first round and seventy of 75 at the second round. The five remaining questionnaires were submitted to three experts involved in the steering committee during a dedicated meeting. At the end, 24 questionnaires were retained in the mandatory and 26 in the optional questionnaire set. CONCLUSIONS A validated data collection set of questionnaires is now available to assess psychiatry, addiction, sleep and chronobiology dimensions of depressive disorders.
Collapse
Affiliation(s)
- P A Geoffroy
- Département de psychiatrie et d'addictologie, GHU Paris Nord, DMU neurosciences, hôpital Bichat - Claude Bernard, AP-HP, 75018 Paris, France; GHU Paris - psychiatry & neurosciences, 1, rue Cabanis, 75014 Paris, France; NeuroDiderot, Inserm, FHU I2-D2, université Paris Cité, 75019 Paris, France; CNRS UPR 3212, Institute for cellular and integrative neurosciences, 67000 Strasbourg, France.
| | - C M Schroder
- CNRS UPR 3212, Institute for cellular and integrative neurosciences, 67000 Strasbourg, France; Department of child and adolescent psychiatry, Strasbourg university and Strasbourg university hospitals, Strasbourg, France; Sleep disorders center & CIRCSom (International Research Center for ChronoSomnology), CHRU, Strasbourg, France
| | - P Bourgin
- CNRS UPR 3212, Institute for cellular and integrative neurosciences, 67000 Strasbourg, France; Sleep disorders center & CIRCSom (International Research Center for ChronoSomnology), CHRU, Strasbourg, France
| | - J Maruani
- Département de psychiatrie et d'addictologie, GHU Paris Nord, DMU neurosciences, hôpital Bichat - Claude Bernard, AP-HP, 75018 Paris, France; GHU Paris - psychiatry & neurosciences, 1, rue Cabanis, 75014 Paris, France; NeuroDiderot, Inserm, FHU I2-D2, université Paris Cité, 75019 Paris, France
| | - M Lejoyeux
- Département de psychiatrie et d'addictologie, GHU Paris Nord, DMU neurosciences, hôpital Bichat - Claude Bernard, AP-HP, 75018 Paris, France; GHU Paris - psychiatry & neurosciences, 1, rue Cabanis, 75014 Paris, France; NeuroDiderot, Inserm, FHU I2-D2, université Paris Cité, 75019 Paris, France
| | - M-P d'Ortho
- NeuroDiderot, Inserm, FHU I2-D2, université Paris Cité, 75019 Paris, France; Service de physiologie - explorations fonctionnelles, centre du sommeil, hôpital Bichat, AP-HP, 75018 Paris, France
| | - C Couffignal
- Département de biostatistique, épidémiologie et recherche clinique, Hôpital Bichat, université Paris Cité, AP-HP, 75018 Paris, France
| | | |
Collapse
|
12
|
Bauer M, Glenn T, Achtyes ED, Alda M, Agaoglu E, Altınbaş K, Andreassen OA, Angelopoulos E, Ardau R, Aydin M, Ayhan Y, Baethge C, Bauer R, Baune BT, Balaban C, Becerra-Palars C, Behere AP, Behere PB, Belete H, Belete T, Belizario GO, Bellivier F, Belmaker RH, Benedetti F, Berk M, Bersudsky Y, Bicakci Ş, Birabwa-Oketcho H, Bjella TD, Brady C, Cabrera J, Cappucciati M, Castro AMP, Chen WL, Cheung EYW, Chiesa S, Crowe M, Cuomo A, Dallaspezia S, Del Zompo M, Desai P, Dodd S, Etain B, Fagiolini A, Fellendorf FT, Ferensztajn-Rochowiak E, Fiedorowicz JG, Fountoulakis KN, Frye MA, Geoffroy PA, Gonzalez-Pinto A, Gottlieb JF, Grof P, Haarman BCM, Harima H, Hasse-Sousa M, Henry C, Høffding L, Houenou J, Imbesi M, Isometsä ET, Ivkovic M, Janno S, Johnsen S, Kapczinski F, Karakatsoulis GN, Kardell M, Kessing LV, Kim SJ, König B, Kot TL, Koval M, Kunz M, Lafer B, Landén M, Larsen ER, Lenger M, Lewitzka U, Licht RW, Lopez-Jaramillo C, MacKenzie A, Madsen HØ, Madsen SAKA, Mahadevan J, Mahardika A, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Martiny K, Mashima Y, McLoughlin DM, Meesters Y, Melle I, Meza-Urzúa F, Mok YM, Monteith S, Moorthy M, Morken G, Mosca E, Mozzhegorov AA, et alBauer M, Glenn T, Achtyes ED, Alda M, Agaoglu E, Altınbaş K, Andreassen OA, Angelopoulos E, Ardau R, Aydin M, Ayhan Y, Baethge C, Bauer R, Baune BT, Balaban C, Becerra-Palars C, Behere AP, Behere PB, Belete H, Belete T, Belizario GO, Bellivier F, Belmaker RH, Benedetti F, Berk M, Bersudsky Y, Bicakci Ş, Birabwa-Oketcho H, Bjella TD, Brady C, Cabrera J, Cappucciati M, Castro AMP, Chen WL, Cheung EYW, Chiesa S, Crowe M, Cuomo A, Dallaspezia S, Del Zompo M, Desai P, Dodd S, Etain B, Fagiolini A, Fellendorf FT, Ferensztajn-Rochowiak E, Fiedorowicz JG, Fountoulakis KN, Frye MA, Geoffroy PA, Gonzalez-Pinto A, Gottlieb JF, Grof P, Haarman BCM, Harima H, Hasse-Sousa M, Henry C, Høffding L, Houenou J, Imbesi M, Isometsä ET, Ivkovic M, Janno S, Johnsen S, Kapczinski F, Karakatsoulis GN, Kardell M, Kessing LV, Kim SJ, König B, Kot TL, Koval M, Kunz M, Lafer B, Landén M, Larsen ER, Lenger M, Lewitzka U, Licht RW, Lopez-Jaramillo C, MacKenzie A, Madsen HØ, Madsen SAKA, Mahadevan J, Mahardika A, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Martiny K, Mashima Y, McLoughlin DM, Meesters Y, Melle I, Meza-Urzúa F, Mok YM, Monteith S, Moorthy M, Morken G, Mosca E, Mozzhegorov AA, Munoz R, Mythri SV, Nacef F, Nadella RK, Nakanotani T, Nielsen RE, O'Donovan C, Omrani A, Osher Y, Ouali U, Pantovic-Stefanovic M, Pariwatcharakul P, Petite J, Pfennig A, Ruiz YP, Pinna M, Pompili M, Porter R, Quiroz D, Rabelo-da-Ponte FD, Ramesar R, Rasgon N, Ratta-Apha W, Ratzenhofer M, Redahan M, Reddy MS, Reif A, Reininghaus EZ, Richards JG, Ritter P, Rybakowski JK, Sathyaputri L, Scippa ÂM, Simhandl C, Smith D, Smith J, Stackhouse PW, Stein DJ, Stilwell K, Strejilevich S, Su KP, Subramaniam M, Sulaiman AH, Suominen K, Tanra AJ, Tatebayashi Y, Teh WL, Tondo L, Torrent C, Tuinstra D, Uchida T, Vaaler AE, Vieta E, Viswanath B, Yoldi-Negrete M, Yalcinkaya OK, Young AH, Zgueb Y, Whybrow PC. Association between polarity of first episode and solar insolation in bipolar I disorder. J Psychosom Res 2022; 160:110982. [PMID: 35932492 PMCID: PMC7615104 DOI: 10.1016/j.jpsychores.2022.110982] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Circadian rhythm disruption is commonly observed in bipolar disorder (BD). Daylight is the most powerful signal to entrain the human circadian clock system. This exploratory study investigated if solar insolation at the onset location was associated with the polarity of the first episode of BD I. Solar insolation is the amount of electromagnetic energy from the Sun striking a surface area of the Earth. METHODS Data from 7488 patients with BD I were collected at 75 sites in 42 countries. The first episode occurred at 591 onset locations in 67 countries at a wide range of latitudes in both hemispheres. Solar insolation values were obtained for every onset location, and the ratio of the minimum mean monthly insolation to the maximum mean monthly insolation was calculated. This ratio is largest near the equator (with little change in solar insolation over the year), and smallest near the poles (where winter insolation is very small compared to summer insolation). This ratio also applies to tropical locations which may have a cloudy wet and clear dry season, rather than winter and summer. RESULTS The larger the change in solar insolation throughout the year (smaller the ratio between the minimum monthly and maximum monthly values), the greater the likelihood the first episode polarity was depression. Other associated variables were being female and increasing percentage of gross domestic product spent on country health expenditures. (All coefficients: P ≤ 0.001). CONCLUSION Increased awareness and research into circadian dysfunction throughout the course of BD is warranted.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| | - Tasha Glenn
- ChronoRecord Association, Fullerton, CA, USA
| | - Eric D Achtyes
- Michigan State University College of Human Medicine, Division of Psychiatry & Behavioral Medicine, Grand Rapids, MI, USA; Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Esen Agaoglu
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kürşat Altınbaş
- Department of Psychiatry, Selcuk University Faculty of Medicine, Mazhar Osman Mood Center, Konya, Turkey
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elias Angelopoulos
- Department of Psychiatry, National and Capodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Raffaella Ardau
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | - Memduha Aydin
- Department of Psychiatry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Yavuz Ayhan
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Christopher Baethge
- Department of Psychiatry and Psychotherapy, University of Cologne Medical School, Cologne, Germany
| | - Rita Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ceylan Balaban
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | | - Aniruddh P Behere
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Prakash B Behere
- Department of Psychiatry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed University), Wardha, India
| | - Habte Belete
- Department of Psychiatry, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Tilahun Belete
- Department of Psychiatry, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Gabriel Okawa Belizario
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, Assistance Publique - Hôpitaux de Paris, INSERM UMR-S1144, Université de Paris, FondaMental Foundation, Paris, France
| | - Robert H Belmaker
- Professor Emeritus of Psychiatry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Francesco Benedetti
- University Vita-Salute San Raffaele, Milan, Italy; Psychiatry & Clinical Psychobiology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Yuly Bersudsky
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Şule Bicakci
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey; Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
| | | | - Thomas D Bjella
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Conan Brady
- Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin, Ireland
| | - Jorge Cabrera
- Mood Disorders Clinic, Dr. Jose Horwitz Psychiatric Institute, Santiago de Chile, Chile
| | | | - Angela Marianne Paredes Castro
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wei-Ling Chen
- Department of Psychiatry, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan
| | | | - Silvia Chiesa
- Department of Mental Health and Substance Abuse, Piacenza, Italy
| | - Marie Crowe
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Alessandro Cuomo
- Department of Molecular Medicine, University of Siena School of Medicine, Siena, Italy
| | - Sara Dallaspezia
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Del Zompo
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | | | - Seetal Dodd
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia
| | - Bruno Etain
- Département de Psychiatrie et de Médecine Addictologique, Assistance Publique - Hôpitaux de Paris, INSERM UMR-S1144, Université de Paris, FondaMental Foundation, Paris, France
| | - Andrea Fagiolini
- Department of Molecular Medicine, University of Siena School of Medicine, Siena, Italy
| | - Frederike T Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | | | - Jess G Fiedorowicz
- Department of Psychiatry, School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Kostas N Fountoulakis
- 3rd Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Pierre A Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018 Paris, France; GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France; Université de Paris, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France
| | - Ana Gonzalez-Pinto
- BIOARABA. Department of Psychiatry, University Hospital of Alava, University of the Basque Country, CIBERSAM, Vitoria, Spain
| | - John F Gottlieb
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul Grof
- Mood Disorders Center of Ottawa and the Department of Psychiatry, University of Toronto, Canada
| | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hirohiko Harima
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Mathias Hasse-Sousa
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Chantal Henry
- Department of Psychiatry, GHU Paris Psychiatrie & Neurosciences, F-75014, Paris France, Université de Paris, F-75006 Paris, France
| | - Lone Høffding
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Josselin Houenou
- Université Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, APHP, Mondor Univ Hospitals, Fondation FondaMental, F-94010 Créteil, France; Université Paris Saclay, CEA, Neurospin, F-91191 Gif-sur-Yvette, France
| | | | - Erkki T Isometsä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Maja Ivkovic
- University Clinical Center of Serbia, Clinic for Psychiatry, Belgrade, Serbia
| | - Sven Janno
- Department of Psychiatry, University of Tartu, Tartu, Estonia
| | - Simon Johnsen
- Unit for Psychiatric Research, Aalborg University Hospital, Aalborg, Denmark
| | - Flávio Kapczinski
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gregory N Karakatsoulis
- 3rd Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mathias Kardell
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Seong Jae Kim
- Department of Psychiatry, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Barbara König
- BIPOLAR Zentrum Wiener Neustadt, Wiener Neustadt, Austria
| | - Timur L Kot
- Khanty-Mansiysk Clinical Psychoneurological Hospital, Khanty-Mansiysk, Russia
| | - Michael Koval
- Department of Neuroscience, Michigan State University, East Lansing, MI, USA
| | - Mauricio Kunz
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Beny Lafer
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erik R Larsen
- Mental Health Department Odense, University Clinic and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| | - Melanie Lenger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Ute Lewitzka
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Rasmus W Licht
- Psychiatry - Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carlos Lopez-Jaramillo
- Mood Disorders Program, Hospital Universitario San Vicente Fundación, Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Alan MacKenzie
- Forensic Psychiatry, University of Glasgow, NHS Greater Glasgow and Clyde, Glasgow, UK
| | | | | | - Jayant Mahadevan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Agustine Mahardika
- Department of Psychiatry, Faculty of Medicine, Mataram University, Mataram, Indonesia
| | - Mirko Manchia
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Wendy Marsh
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Monica Martinez-Cengotitabengoa
- Osakidetza, Basque Health Service, BioAraba Health Research Institute, University of the Basque Country, Spain; The Psychology Clinic of East Anglia, Norwich, United Kingdom
| | - Klaus Martiny
- Copenhagen University Hospitals, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Yuki Mashima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Declan M McLoughlin
- Dept of Psychiatry & Trinity College Institute of Neuroscience, Trinity College Dublin, St Patrick's University Hospital, Dublin, Ireland
| | - Ybe Meesters
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ingrid Melle
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fátima Meza-Urzúa
- Department of Child and Adolescent Psychiatry und Psychotherapy, SHG Klinikum, Idar-Oberstein, Germany
| | - Yee Ming Mok
- Department of Mood and Anxiety disorders, Institute of Mental Health, Singapore City, Singapore
| | - Scott Monteith
- Michigan State University College of Human Medicine, Traverse City Campus, Traverse City, MI, USA
| | - Muthukumaran Moorthy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Enrica Mosca
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | | | - Rodrigo Munoz
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Starlin V Mythri
- Makunda Christian Leprosy and General Hospital, Bazaricherra, Assam 788727, India
| | - Fethi Nacef
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Ravi K Nadella
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Takako Nakanotani
- Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - René Ernst Nielsen
- Psychiatry - Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Adel Omrani
- Tunisian Bipolar Forum, Érable Médical Cabinet 324, Lac 2, Tunis, Tunisia
| | - Yamima Osher
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Uta Ouali
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | | | - Pornjira Pariwatcharakul
- Department of Psychiatry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne Petite
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | | | - Marco Pinna
- Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy; Lucio Bini Mood Disorder Center, Cagliari, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Richard Porter
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Danilo Quiroz
- Deparment of Psychiatry, Diego Portales University, Santiago de Chile, Chile
| | | | - Raj Ramesar
- SA MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Natalie Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Palo Alto, CA, USA
| | - Woraphat Ratta-Apha
- Department of Psychiatry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Michaela Ratzenhofer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Maria Redahan
- Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin, Ireland
| | - M S Reddy
- Asha Bipolar Clinic, Asha Hospital, Hyderabad, Telangana, India
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Jenny Gringer Richards
- Departments of Psychiatry, Epidemiology, and Internal Medicine, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Leela Sathyaputri
- Departments of Psychiatry, Epidemiology, and Internal Medicine, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Ângela M Scippa
- Department of Neuroscience and Mental Health, Federal University of Bahia, Salvador, Brazil
| | - Christian Simhandl
- Bipolar Zentrum Wiener Neustadt, Sigmund Freud Privat Universität, Vienna, Austria
| | - Daniel Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - José Smith
- AREA, Assistance and Research in Affective Disorders, Buenos Aires, Argentina
| | - Paul W Stackhouse
- Science Directorate/Climate Science Branch, NASA Langley Research Center, Hampton, VA, USA
| | - Dan J Stein
- Department of Psychiatry, MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kellen Stilwell
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Sergio Strejilevich
- AREA, Assistance and Research in Affective Disorders, Buenos Aires, Argentina
| | - Kuan-Pin Su
- College of Medicine, China Medical University (CMU), Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan
| | | | - Ahmad Hatim Sulaiman
- Department of Psychological Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kirsi Suominen
- Department of Social Services and Health Care, Psychiatry, City of Helsinki, Helsinki, Finland
| | - Andi J Tanra
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Yoshitaka Tatebayashi
- Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Wen Lin Teh
- Research Division, Institute of Mental Health, Singapore
| | - Leonardo Tondo
- McLean Hospital-Harvard Medical School, Boston, MA, USA; Mood Disorder Lucio Bini Centers, Cagliari e Roma, Italy
| | - Carla Torrent
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Daniel Tuinstra
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Takahito Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Maria Yoldi-Negrete
- Subdirección de Investigaciones Clínicas. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City, Mexico
| | - Oguz Kaan Yalcinkaya
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Yosra Zgueb
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Peter C Whybrow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
13
|
Luteolin-7- O-Glucuronide Improves Depression-like and Stress Coping Behaviors in Sleep Deprivation Stress Model by Activation of the BDNF Signaling. Nutrients 2022; 14:nu14163314. [PMID: 36014820 PMCID: PMC9412559 DOI: 10.3390/nu14163314] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Stress exposure is a major risk factor for mental disorders such as depression. Because of the limitations of classical antidepressants such as side effects, low efficacy, and difficulty in long-term use, new natural medicines and bioactive molecules from plants with greater safety and efficacy have recently attracted attention. Luteolin-7-O-glucuronide (L7Gn), a bioactive molecule present in Perilla frutescens, is known to alleviate severe inflammatory responses and oxidative stress in macrophages. However, its antistress and antidepressant effects have not been elucidated. The present study aims to explore the antidepressant the effect of L7Gn on stress-induced behaviors and the underlying mechanism in a mouse sleep deprivation (SD) model. L7Gn treatment improved depression-like and stress coping behaviors induced by SD stress, as confirmed by the tail suspension test and forced swimming test. Furthermore, L7Gn treatment reduced the blood corticosterone and hippocampal proinflammatory cytokine levels which were increased by SD stress, and L7Gn also increased the mRNA and protein levels of hippocampal brain-derived neurotrophic factor (BDNF) which were reduced by SD stress. Additionally, treatment with L7Gn resulted in increases in the phosphorylation of tropomyosin-related kinase B (TrkB), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB), which are downstream molecules of BDNF signaling. These findings suggest that L7Gn have therapeutic potential for SD-induced stress, via activating the BDNF signaling.
Collapse
|
14
|
Esaki Y, Obayashi K, Saeki K, Fujita K, Iwata N, Kitajima T. Effect of nighttime bedroom light exposure on mood episode relapses in bipolar disorder. Acta Psychiatr Scand 2022; 146:64-73. [PMID: 35253206 DOI: 10.1111/acps.13422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 12/26/2022]
Abstract
OBJECTIVE A previous cross-sectional study reported that nighttime light is associated with increased occurrence of manic symptoms in bipolar disorder; however, the longitudinal association between nighttime light and subsequent mood episode relapses remains unclear. We determined whether bedroom nighttime light was associated with mood episode relapses in patients with bipolar disorder. METHODS This prospective cohort study included 172 outpatients with bipolar disorder who participated in an Association between the Pathology of Bipolar Disorder and Light Exposure in Daily Life (APPLE) cohort study. A portable photometer was used to measure illuminance in the bedroom from bedtime to rising time during 7 consecutive nights for baseline assessment. Then, the participants were assessed at a 2-year follow-up for mood episode relapses. RESULTS Of the 172 participants, 157 (91%) completed the 2-year follow-up, and 39 (22%) experienced manic or hypomanic episodes (with or without mixed features), during that time. In the Cox proportional-hazards model, the hazard ratio (HR) for manic/hypomanic episode relapses was significantly higher when the average nighttime illuminance was ≥3 lux (n = 71) than when it was <3 lux (n = 101; HR, 2.54; 95% confidence interval (CI), 1.33-4.84). In the multivariable model adjusted for a propensity score in relation to nighttime light, the relationship remained significant (HR, 2.17; 95% CI, 1.04-4.52). The association between nighttime light and depressive episode relapses was not significantly different. CONCLUSIONS Keeping the bedroom dark at night may prevent hypomanic and manic episodes.
Collapse
Affiliation(s)
- Yuichi Esaki
- Department of Psychiatry, Okehazama Hospital, Aichi, Japan.,Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Kenji Obayashi
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Kiyoshi Fujita
- Department of Psychiatry, Okehazama Hospital, Aichi, Japan.,The Neuroscience Research Center, Aichi, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Tsuyoshi Kitajima
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
15
|
Insomnia, sleep loss, and circadian sleep disturbances in mood disorders: a pathway toward neurodegeneration and neuroprogression? A theoretical review. CNS Spectr 2022; 27:298-308. [PMID: 33427150 DOI: 10.1017/s1092852921000018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present paper aims at reviewing and commenting on the relationships between sleep and circadian phasing alterations and neurodegenerative/neuroprogressive processes in mood disorder. We carried out a systematic review, according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, in PubMed, PsycINFO, and Embase electronic databases for literature related to mood disorders, sleep disturbances, and neurodegenerative/neuroprogressive processes in relation to (1) neuroinflammation, (2) activation of the stress system, (3) oxidative stress, (4) accumulation of neurotoxic proteins, and (5) neuroprotection deficit. Seventy articles were collectively selected and analyzed. Experimental and clinical studies revealed that insomnia, conditions of sleep loss, and altered circadian sleep may favor neurodegeneration and neuroprogression in mood disorders. These sleep disturbances may induce a state of chronic inflammation by enhancing neuroinflammation, both directly and indirectly, via microglia and astrocytes activation. They may act as neurobiological stressors that by over-activating the stress system may negatively influence neural plasticity causing neuronal damage. In addition, sleep disturbances may favor the accumulation of neurotoxic proteins, favor oxidative stress, and a deficit in neuroprotection hence contributing to neurodegeneration and neuroprogression. Targeting sleep disturbances in the clinical practice may hold a neuroprotective value for mood disorders.
Collapse
|
16
|
Maruani J, Geoffroy PA. Multi-Level Processes and Retina-Brain Pathways of Photic Regulation of Mood. J Clin Med 2022; 11:jcm11020448. [PMID: 35054142 PMCID: PMC8781294 DOI: 10.3390/jcm11020448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Light exerts powerful biological effects on mood regulation. Whereas the source of photic information affecting mood is well established at least via intrinsically photosensitive retinal ganglion cells (ipRGCs) secreting the melanopsin photopigment, the precise circuits that mediate the impact of light on depressive behaviors are not well understood. This review proposes two distinct retina–brain pathways of light effects on mood: (i) a suprachiasmatic nucleus (SCN)-dependent pathway with light effect on mood via the synchronization of biological rhythms, and (ii) a SCN-independent pathway with light effects on mood through modulation of the homeostatic process of sleep, alertness and emotion regulation: (1) light directly inhibits brain areas promoting sleep such as the ventrolateral preoptic nucleus (VLPO), and activates numerous brain areas involved in alertness such as, monoaminergic areas, thalamic regions and hypothalamic regions including orexin areas; (2) moreover, light seems to modulate mood through orexin-, serotonin- and dopamine-dependent pathways; (3) in addition, light activates brain emotional processing areas including the amygdala, the nucleus accumbens, the perihabenular nucleus, the left hippocampus and pathways such as the retina–ventral lateral geniculate nucleus and intergeniculate leaflet–lateral habenula pathway. This work synthetizes new insights into the neural basis required for light influence mood
Collapse
Affiliation(s)
- Julia Maruani
- Département de Psychiatrie et d’Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat—Claude Bernard, F-75018 Paris, France
- NeuroDiderot, INSERM U1141, Université de Paris, F-75019 Paris, France
- Correspondence: (J.M.); (P.A.G.); Tel.: +33-(0)1-40-25-82-62 (J.M. & P.A.G.)
| | - Pierre A. Geoffroy
- Département de Psychiatrie et d’Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat—Claude Bernard, F-75018 Paris, France
- NeuroDiderot, INSERM U1141, Université de Paris, F-75019 Paris, France
- CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 5 rue Blaise Pascal, F-67000 Strasbourg, France
- GHU Paris—Psychiatry & Neurosciences, 1 Rue Cabanis, F-75014 Paris, France
- Correspondence: (J.M.); (P.A.G.); Tel.: +33-(0)1-40-25-82-62 (J.M. & P.A.G.)
| |
Collapse
|
17
|
Xu Z, Chen L, Hu Y, Shen T, Chen Z, Tan T, Gao C, Chen S, Chen W, Chen B, Yuan Y, Zhang Z. A Predictive Model of Risk Factors for Conversion From Major Depressive Disorder to Bipolar Disorder Based on Clinical Characteristics and Circadian Rhythm Gene Polymorphisms. Front Psychiatry 2022; 13:843400. [PMID: 35898634 PMCID: PMC9309512 DOI: 10.3389/fpsyt.2022.843400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) is easy to be misdiagnosed as major depressive disorder (MDD), which may contribute to a delay in treatment and affect prognosis. Circadian rhythm dysfunction is significantly associated with conversion from MDD to BD. So far, there has been no study that has revealed a relationship between circadian rhythm gene polymorphism and MDD-to-BD conversion. Furthermore, the prediction of MDD-to-BD conversion has not been made by integrating multidimensional data. The study combined clinical and genetic factors to establish a predictive model through machine learning (ML) for MDD-to-BD conversion. METHOD By following up for 5 years, 70 patients with MDD and 68 patients with BD were included in this study at last. Single nucleotide polymorphisms (SNPs) of the circadian rhythm genes were selected for detection. The R software was used to operate feature screening and establish a predictive model. The predictive model was established by logistic regression, which was performed by four evaluation methods. RESULTS It was found that age of onset was a risk factor for MDD-to-BD conversion. The younger the age of onset, the higher the risk of BD. Furthermore, suicide attempts and the number of hospitalizations were associated with MDD-to-BD conversion. Eleven circadian rhythm gene polymorphisms were associated with MDD-to-BD conversion by feature screening. These factors were used to establish two models, and 4 evaluation methods proved that the model with clinical characteristics and SNPs had the better predictive ability. CONCLUSION The risk factors for MDD-to-BD conversion have been found, and a predictive model has been established, with a specific guiding significance for clinical diagnosis.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lei Chen
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yunyun Hu
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Tian Shen
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zimu Chen
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Tingting Tan
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Chenjie Gao
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenji Chen
- Department of General Practice, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Bisdounis L, Saunders KEA, Farley HJ, Lee CK, McGowan NM, Espie CA, Kyle SD. Psychological and behavioural interventions in bipolar disorder that target sleep and circadian rhythms: A systematic review of randomised controlled trials. Neurosci Biobehav Rev 2022; 132:378-390. [PMID: 34871635 DOI: 10.1016/j.neubiorev.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/10/2023]
Abstract
Sleep and circadian disruptions are prominent symptoms of bipolar disorder (BD) and potential targets for adjunctive interventions. The aim of this review was to appraise the effectiveness of psychological and behavioural interventions in BD that target sleep and circadian rhythms, as reported by randomised controlled trials. Nineteen studies met the inclusion/exclusion criteria. They were summarised via narrative synthesis and meta-analysis wherever appropriate. Six studies delivered bright light therapy, five interpersonal and social rhythm therapy, two blue-light blocking glasses, one cognitive behavioural therapy for insomnia, one total sleep deprivation, and four combination treatments. More than half of the studies (N = 10, 52 %) did not measure sleep or circadian rhythms despite being the principal target of the intervention. Overall, the evidence base for the effectiveness of these interventions was limited. There was a small number of studies for each intervention, and a lack of consistency in protocols and outcomes. Meta-analysis was possible for the effect of bright light therapy on depression, revealing a medium-to-large post-treatment effect (Nc = 6; g=-0.74 [95 % CI=-1.05 to -0.42], p < 0.001).
Collapse
Affiliation(s)
- Lampros Bisdounis
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Department of Psychiatry, Warneford Hospital, University of Oxford, United Kingdom.
| | - Kate E A Saunders
- Department of Psychiatry, Warneford Hospital, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Hannah J Farley
- Clinical Medical School, Medical Sciences Division, Academic Centre, John Radcliffe Hospital, University of Oxford, United Kingdom
| | - Charlotte K Lee
- Clinical Medical School, Medical Sciences Division, Academic Centre, John Radcliffe Hospital, University of Oxford, United Kingdom
| | - Niall M McGowan
- Department of Psychiatry, Warneford Hospital, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Colin A Espie
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Simon D Kyle
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
19
|
Palagini L, Geoffroy PA, Riemann D. Sleep markers in psychiatry: do insomnia and disturbed sleep play as markers of disrupted neuroplasticity in mood disorders? A proposed model. Curr Med Chem 2021; 29:5595-5605. [PMID: 34906053 DOI: 10.2174/0929867328666211214164907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Since insomnia and disturbed sleep may affect neuroplasticity, we aimed at reviewing their potential role as markers of disrupted neuroplasticity involved in mood disorders. METHOD We performed a systematic review, according to PRIMA, on PubMed, PsycINFO and Embase electronic databases for literature regarding mood disorders, insomnia, sleep loss/deprivation in relation to different pathways involved in the impairment of neuroplasticity in mood disorders such as 1] alterations in neurodevelopment 2] activation of the stress system 3] neuroinflammation 4] neurodegeneration/neuroprogression, 4] deficit in neuroprotection. RESULTS Sixty-five articles were analyzed and a narrative/ theoretical review was conducted. Studies showed that insomnia, sleep loss and sleep deprivation might impair brain plasticity of those areas involved in mood regulation throughout different pathways. Insomnia and disrupted sleep may act as neurobiological stressors that by over-activating the stress and inflammatory systems may affect neural plasticity causing neuronal damage. In addition, disturbed sleep may favor a deficit in neuroprotection hence contributing to impaired neuroplasticity. CONCLUSIONS Insomnia and disturbed sleep may play a role as markers of alteration in brain plasticity in mood disorders. Assessing and targeting insomnia in the clinical practice may potentially play a neuroprotective role, contributing to "repairing" alterations in neuroplasticity or to the functional recovery of those areas involved in mood and emotion regulation.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Experimental and Clinic Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56100, Pisa. Italy
| | - Pierre Alexis Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, Hopital Bichat - Claude Bernard, F-75018 Paris, France; Université de Paris, NeuroDiderot, Inserm U1141, F-75019 Paris. France
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg. Germany
| |
Collapse
|
20
|
Bauer M, Glenn T, Achtyes ED, Alda M, Agaoglu E, Altınbaş K, Andreassen OA, Angelopoulos E, Ardau R, Vares EA, Aydin M, Ayhan Y, Baethge C, Bauer R, Baune BT, Balaban C, Becerra-Palars C, Behere AP, Behere PB, Belete H, Belete T, Belizario GO, Bellivier F, Belmaker RH, Benedetti F, Berk M, Bersudsky Y, Bicakci Ş, Birabwa-Oketcho H, Bjella TD, Brady C, Cabrera J, Cappucciati M, Castro AMP, Chen WL, Cheung EYW, Chiesa S, Crowe M, Cuomo A, Dallaspezia S, Del Zompo M, Desai P, Dodd S, Donix M, Etain B, Fagiolini A, Fellendorf FT, Ferensztajn-Rochowiak E, Fiedorowicz JG, Fountoulakis KN, Frye MA, Geoffroy PA, Gonzalez-Pinto A, Gottlieb JF, Grof P, Haarman BCM, Harima H, Hasse-Sousa M, Henry C, Høffding L, Houenou J, Imbesi M, Isometsä ET, Ivkovic M, Janno S, Johnsen S, Kapczinski F, Karakatsoulis GN, Kardell M, Kessing LV, Kim SJ, König B, Kot TL, Koval M, Kunz M, Lafer B, Landén M, Larsen ER, Lenger M, Lewitzka U, Licht RW, Lopez-Jaramillo C, MacKenzie A, Madsen HØ, Madsen SAKA, Mahadevan J, Mahardika A, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Martiny K, Mashima Y, McLoughlin DM, Meesters Y, Melle I, Meza-Urzúa F, Ming MY, Monteith S, Moorthy M, Morken G, et alBauer M, Glenn T, Achtyes ED, Alda M, Agaoglu E, Altınbaş K, Andreassen OA, Angelopoulos E, Ardau R, Vares EA, Aydin M, Ayhan Y, Baethge C, Bauer R, Baune BT, Balaban C, Becerra-Palars C, Behere AP, Behere PB, Belete H, Belete T, Belizario GO, Bellivier F, Belmaker RH, Benedetti F, Berk M, Bersudsky Y, Bicakci Ş, Birabwa-Oketcho H, Bjella TD, Brady C, Cabrera J, Cappucciati M, Castro AMP, Chen WL, Cheung EYW, Chiesa S, Crowe M, Cuomo A, Dallaspezia S, Del Zompo M, Desai P, Dodd S, Donix M, Etain B, Fagiolini A, Fellendorf FT, Ferensztajn-Rochowiak E, Fiedorowicz JG, Fountoulakis KN, Frye MA, Geoffroy PA, Gonzalez-Pinto A, Gottlieb JF, Grof P, Haarman BCM, Harima H, Hasse-Sousa M, Henry C, Høffding L, Houenou J, Imbesi M, Isometsä ET, Ivkovic M, Janno S, Johnsen S, Kapczinski F, Karakatsoulis GN, Kardell M, Kessing LV, Kim SJ, König B, Kot TL, Koval M, Kunz M, Lafer B, Landén M, Larsen ER, Lenger M, Lewitzka U, Licht RW, Lopez-Jaramillo C, MacKenzie A, Madsen HØ, Madsen SAKA, Mahadevan J, Mahardika A, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Martiny K, Mashima Y, McLoughlin DM, Meesters Y, Melle I, Meza-Urzúa F, Ming MY, Monteith S, Moorthy M, Morken G, Mosca E, Mozzhegorov AA, Munoz R, Mythri SV, Nacef F, Nadella RK, Nakanotani T, Nielsen RE, O'Donovan C, Omrani A, Osher Y, Ouali U, Pantovic-Stefanovic M, Pariwatcharakul P, Petite J, Pfennig A, Ruiz YP, Pilhatsch M, Pinna M, Pompili M, Porter R, Quiroz D, Rabelo-da-Ponte FD, Ramesar R, Rasgon N, Ratta-Apha W, Ratzenhofer M, Redahan M, Reddy MS, Reif A, Reininghaus EZ, Richards JG, Ritter P, Rybakowski JK, Sathyaputri L, Scippa ÂM, Simhandl C, Severus E, Smith D, Smith J, Stackhouse PW, Stein DJ, Stilwell K, Strejilevich S, Su KP, Subramaniam M, Sulaiman AH, Suominen K, Tanra AJ, Tatebayashi Y, Teh WL, Tondo L, Torrent C, Tuinstra D, Uchida T, Vaaler AE, Veeh J, Vieta E, Viswanath B, Yoldi-Negrete M, Yalcinkaya OK, Young AH, Zgueb Y, Whybrow PC. Variations in seasonal solar insolation are associated with a history of suicide attempts in bipolar I disorder. Int J Bipolar Disord 2021; 9:26. [PMID: 34467430 PMCID: PMC8408297 DOI: 10.1186/s40345-021-00231-7] [Show More Authors] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 01/09/2023] Open
Abstract
Background Bipolar disorder is associated with circadian disruption and a high risk of suicidal behavior. In a previous exploratory study of patients with bipolar I disorder, we found that a history of suicide attempts was associated with differences between winter and summer levels of solar insolation. The purpose of this study was to confirm this finding using international data from 42% more collection sites and 25% more countries. Methods Data analyzed were from 71 prior and new collection sites in 40 countries at a wide range of latitudes. The analysis included 4876 patients with bipolar I disorder, 45% more data than previously analyzed. Of the patients, 1496 (30.7%) had a history of suicide attempt. Solar insolation data, the amount of the sun’s electromagnetic energy striking the surface of the earth, was obtained for each onset location (479 locations in 64 countries). Results This analysis confirmed the results of the exploratory study with the same best model and slightly better statistical significance. There was a significant inverse association between a history of suicide attempts and the ratio of mean winter insolation to mean summer insolation (mean winter insolation/mean summer insolation). This ratio is largest near the equator which has little change in solar insolation over the year, and smallest near the poles where the winter insolation is very small compared to the summer insolation. Other variables in the model associated with an increased risk of suicide attempts were a history of alcohol or substance abuse, female gender, and younger birth cohort. The winter/summer insolation ratio was also replaced with the ratio of minimum mean monthly insolation to the maximum mean monthly insolation to accommodate insolation patterns in the tropics, and nearly identical results were found. All estimated coefficients were significant at p < 0.01. Conclusion A large change in solar insolation, both between winter and summer and between the minimum and maximum monthly values, may increase the risk of suicide attempts in bipolar I disorder. With frequent circadian rhythm dysfunction and suicidal behavior in bipolar disorder, greater understanding of the optimal roles of daylight and electric lighting in circadian entrainment is needed.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Tasha Glenn
- ChronoRecord Association, Fullerton, CA, USA
| | - Eric D Achtyes
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Esen Agaoglu
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kürşat Altınbaş
- Department of Psychiatry, Selcuk University Faculty of Medicine, Mazhar Osman Mood Center, Konya, Turkey
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elias Angelopoulos
- Department of Psychiatry, National and Capodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Raffaella Ardau
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | - Edgar Arrua Vares
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Memduha Aydin
- Department of Psychiatry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Yavuz Ayhan
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Christopher Baethge
- Department of Psychiatry and Psychotherapy, University of Cologne Medical School, Cologne, Germany
| | - Rita Bauer
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Munster, Germany.,Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ceylan Balaban
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | | - Aniruddh P Behere
- Child and Adolescent Psychiatry, Helen DeVos Children's Hospital, Michigan State University-CHM, Grand Rapids, MI, USA
| | - Prakash B Behere
- Department of Psychiatry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed University), Wardha, India
| | - Habte Belete
- Department of Psychiatry, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Tilahun Belete
- Department of Psychiatry, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Gabriel Okawa Belizario
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, Assistance Publique-Hôpitaux de Paris, INSERM UMR-S1144, Université de Paris, FondaMental Foundation, Paris, France
| | - Robert H Belmaker
- Professor Emeritus of Psychiatry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Francesco Benedetti
- University Vita-Salute San Raffaele, Milan, Italy.,Psychiatry and Clinical Psychobiology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Michael Berk
- Deakin University, IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Yuly Bersudsky
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Şule Bicakci
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
| | | | - Thomas D Bjella
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Conan Brady
- Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin, Ireland
| | - Jorge Cabrera
- Mood Disorders Clinic, Dr. Jose Horwitz Psychiatric Institute, Santiago de Chile, Chile
| | | | - Angela Marianne Paredes Castro
- Deakin University, IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wei-Ling Chen
- Department of Psychiatry, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan
| | | | - Silvia Chiesa
- Department of Mental Health and Substance Abuse, Piacenza, Italy
| | - Marie Crowe
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Alessandro Cuomo
- Department of Molecular Medicine, University of Siena School of Medicine, Siena, Italy
| | - Sara Dallaspezia
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Del Zompo
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | | | - Seetal Dodd
- Deakin University, IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.,Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Markus Donix
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bruno Etain
- Département de Psychiatrie et de Médecine Addictologique, Assistance Publique-Hôpitaux de Paris, INSERM UMR-S1144, Université de Paris, FondaMental Foundation, Paris, France
| | - Andrea Fagiolini
- Department of Molecular Medicine, University of Siena School of Medicine, Siena, Italy
| | - Frederike T Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | | | - Jess G Fiedorowicz
- Department of Psychiatry, School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Kostas N Fountoulakis
- 3rd Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Pierre A Geoffroy
- Département de Psychiatrie et d'addictologie, AP-HP, Hopital Bichat-Claude Bernard, Paris, France.,GHU Paris-Psychiatry and Neurosciences, 75014, Paris, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Ana Gonzalez-Pinto
- BIOARABA, Department of Psychiatry, University Hospital of Alava, University of the Basque Country, CIBERSAM, Vitoria, Spain
| | - John F Gottlieb
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul Grof
- Mood Disorders Center of Ottawa and the Department of Psychiatry, University of Toronto, Ottawa, Canada
| | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hirohiko Harima
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Mathias Hasse-Sousa
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Chantal Henry
- Department of Psychiatry, GHU Paris Psychiatrie & Neurosciences, 75014, Paris, France.,Université de Paris, 75006, Paris, France
| | - Lone Høffding
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Josselin Houenou
- Université Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, 94010, Créteil, France.,Université Paris Saclay, CEA, Neurospin, 91191, Gif-sur-Yvette, France
| | | | - Erkki T Isometsä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,National Institute for Health and Welfare, Helsinki, Finland
| | - Maja Ivkovic
- University Clinical Center of Serbia, Clinic for Psychiatry, Belgrade, Serbia
| | - Sven Janno
- Department of Psychiatry, University of Tartu, Tartu, Estonia
| | - Simon Johnsen
- Unit for Psychiatric Research, Aalborg University Hospital, Aalborg, Denmark
| | - Flávio Kapczinski
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gregory N Karakatsoulis
- 3rd Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mathias Kardell
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Seong Jae Kim
- Department of Psychiatry, Cheongju Hospital, Cheongju, South Korea
| | - Barbara König
- BIPOLAR Zentrum Wiener Neustadt, Wiener Neustadt, Austria
| | - Timur L Kot
- Khanty-Mansiysk Clinical Psychoneurological Hospital, Khanty-Mansiysk, Russia
| | - Michael Koval
- Department of Neuroscience, Michigan State University, East Lansing, MI, USA
| | - Mauricio Kunz
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Beny Lafer
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erik R Larsen
- Mental Health Department Odense, University Clinic and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| | - Melanie Lenger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Ute Lewitzka
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rasmus W Licht
- Psychiatry, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carlos Lopez-Jaramillo
- Mood Disorders Program, Hospital Universitario San Vicente Fundación, Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Alan MacKenzie
- Forensic Psychiatry, University of Glasgow, NHS Greater Glasgow and Clyde, Glasgow, UK
| | | | | | - Jayant Mahadevan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Agustine Mahardika
- Department of Psychiatry, Faculty of Medicine, Mataram University, Mataram, Indonesia
| | - Mirko Manchia
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Wendy Marsh
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Klaus Martiny
- Copenhagen University Hospitals, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Yuki Mashima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Declan M McLoughlin
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, St Patrick's University Hospital, Dublin, Ireland
| | - Ybe Meesters
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ingrid Melle
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fátima Meza-Urzúa
- National Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico
| | - Mok Yee Ming
- Department of General Psychiatry, Mood Disorders Unit, Institute of Mental Health, Singapore City, Singapore
| | - Scott Monteith
- Michigan State University College of Human Medicine, Traverse City Campus, Traverse City, MI, USA
| | - Muthukumaran Moorthy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology-NTNU, Trondheim, Norway.,Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Enrica Mosca
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | | | - Rodrigo Munoz
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | | | - Fethi Nacef
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Ravi K Nadella
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Takako Nakanotani
- Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - René Ernst Nielsen
- Psychiatry, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Adel Omrani
- Tunisian Bipolar Forum, Érable Médical Cabinet 324, Lac 2, Tunis, Tunisia
| | - Yamima Osher
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Uta Ouali
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | | | - Pornjira Pariwatcharakul
- Department of Psychiatry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne Petite
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Maximilian Pilhatsch
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Psychiatry and Psychotherapy, Elblandklinikum Radebeul, Radebeul, Germany
| | - Marco Pinna
- Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy.,Lucio Bini Mood Disorder Center, Cagliari, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Richard Porter
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Danilo Quiroz
- Deparment of Psychiatry, Diego Portales University, Santiago de Chile, Chile
| | | | - Raj Ramesar
- SA MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Natalie Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Palo Alto, CA, USA
| | - Woraphat Ratta-Apha
- Department of Psychiatry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Michaela Ratzenhofer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Maria Redahan
- Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin, Ireland
| | - M S Reddy
- Asha Bipolar Clinic, Asha Hospital, Hyderabad, Telangana, India
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Jenny Gringer Richards
- Departments of Psychiatry, Epidemiology, and Internal Medicine, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Leela Sathyaputri
- Departments of Psychiatry, Epidemiology, and Internal Medicine, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Ângela M Scippa
- Department of Neuroscience and Mental Health, Federal University of Bahia, Salvador, Brazil
| | - Christian Simhandl
- Bipolar Zentrum Wiener Neustadt, Sigmund Freud Privat Universität, Vienna, Austria
| | - Emanuel Severus
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniel Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - José Smith
- Bipolar Disorder Program, Neuroscience Institute, Favaloro University, Buenos Aires, Argentina
| | - Paul W Stackhouse
- Science Directorate/Climate Science Branch, NASA Langley Research Center, Hampton, VA, USA
| | - Dan J Stein
- Department of Psychiatry, MRC Unit On Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kellen Stilwell
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Sergio Strejilevich
- Bipolar Disorder Program, Neuroscience Institute, Favaloro University, Buenos Aires, Argentina
| | - Kuan-Pin Su
- College of Medicine, China Medical University (CMU), Taichung, Taiwan.,An-Nan Hospital, China Medical University, Tainan, Taiwan
| | | | - Ahmad Hatim Sulaiman
- Department of Psychological Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kirsi Suominen
- Department of Social Services and Health Care, Psychiatry, City of Helsinki, Helsinki, Finland
| | - Andi J Tanra
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Yoshitaka Tatebayashi
- Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Wen Lin Teh
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - Leonardo Tondo
- McLean Hospital-Harvard Medical School, Boston, MA, USA.,Mood Disorder Lucio Bini Centers, Cagliari e Roma, Italy
| | - Carla Torrent
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Daniel Tuinstra
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Takahito Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology-NTNU, Trondheim, Norway.,Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Julia Veeh
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Maria Yoldi-Negrete
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City, Mexico
| | - Oguz Kaan Yalcinkaya
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Yosra Zgueb
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Peter C Whybrow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
21
|
Bertrand L, d'Ortho MP, Reynaud E, Lejoyeux M, Bourgin P, Geoffroy PA. Polysomnography in seasonal affective disorder: A systematic review and meta-analysis. J Affect Disord 2021; 292:405-415. [PMID: 34144365 DOI: 10.1016/j.jad.2021.05.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/26/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND . Although sleep disturbances are ubiquitous in depression, studies assessing sleep architecture lead to conflicting results, possibly because of the heterogeneity in this disorder. We aimed to focus on Seasonal Affective Disorder (SAD), which is directly associated with circadian and sleep homeostasis impairments. METHODS . A systematic search was conducted in July 2019. Original papers reporting data about night sleep architecture using polysomnography (PSG), in SAD or remitted-SAD and controls, were included. RESULTS . Seven studies were retained and included 183 individuals, including 109 patients with SAD and 74 healthy controls. The random-effects meta-analysis showed that rapid eye movement sleep (REM) was significantly increased in SAD compared to controls (REM amount: SMD=1[0.11,1.88], p = 0.027; REM percentage: SMD=0.71[0.02,1.40], p = 0.045). Remitted SAD patients, compared to controls, also had a significantly increased REM sleep (REM amount: SMD=1.84[0.78,2.90], p<0.001; REM percentage: SMD=1.27[0.51,2.03], p = 0.001) and a significantly decreased REM latency (SMD=-0.93[-1.73,-0.13], p = 0.022). No differences were observed for total sleep time, sleep efficiency, and slow-wave-sleep. LIMITATIONS . Most studies had small sample size, with no placebo group and with open designs. CONCLUSIONS . REM sleep amount and latency appear altered both during the acute and remitted phase of SAD, representing trait markers with interesting diagnosis and therapeutic implications.
Collapse
Affiliation(s)
- Léa Bertrand
- Department of Psychiatry and Addictive Medicine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hospital Bichat - Claude Bernard, 46 rue Henri Huchard, 75018 Paris, France
| | - Marie-Pia d'Ortho
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France; Department of Sleep Disorders, Physiology and Functionnal Explorations, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bichat - Claude Bernard, 46 rue Henri Huchard, 75018 Paris, France
| | - Eve Reynaud
- CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 5 rue Blaise Pascal, 67000, Strasbourg, France
| | - Michel Lejoyeux
- Department of Psychiatry and Addictive Medicine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hospital Bichat - Claude Bernard, 46 rue Henri Huchard, 75018 Paris, France
| | - Patrice Bourgin
- CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 5 rue Blaise Pascal, 67000, Strasbourg, France; Sleep Disorders Center & CIRCSom (International Research Center for ChronoSomnology), Strasbourg University Hospital, 1 place de l'hôpital, 67000, Strasbourg, France
| | - Pierre A Geoffroy
- Department of Psychiatry and Addictive Medicine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hospital Bichat - Claude Bernard, 46 rue Henri Huchard, 75018 Paris, France; Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France; CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 5 rue Blaise Pascal, 67000, Strasbourg, France.
| |
Collapse
|
22
|
Enlightened: addressing circadian and seasonal changes in photoperiod in animal models of bipolar disorder. Transl Psychiatry 2021; 11:373. [PMID: 34226504 PMCID: PMC8257630 DOI: 10.1038/s41398-021-01494-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Bipolar disorders (BDs) exhibit high heritability and symptoms typically first occur during late adolescence or early adulthood. Affected individuals may experience alternating bouts of mania/hypomania and depression, with euthymic periods of varying lengths interspersed between these extremes of mood. Clinical research studies have consistently demonstrated that BD patients have disturbances in circadian and seasonal rhythms, even when they are free of symptoms. In addition, some BD patients display seasonal patterns in the occurrence of manic/hypomanic and depressive episodes as well as the time of year when symptoms initially occur. Finally, the age of onset of BD symptoms is strongly influenced by the distance one lives from the equator. With few exceptions, animal models useful in the study of BD have not capitalized on these clinical findings regarding seasonal patterns in BD to explore molecular mechanisms associated with the expression of mania- and depression-like behaviors in laboratory animals. In particular, animal models would be especially useful in studying how rates of change in photoperiod that occur during early spring and fall interact with risk genes to increase the occurrence of mania- and depression-like phenotypes, respectively. Another unanswered question relates to the ways in which seasonally relevant changes in photoperiod affect responses to acute and chronic stressors in animal models. Going forward, we suggest ways in which translational research with animal models of BD could be strengthened through carefully controlled manipulations of photoperiod to enhance our understanding of mechanisms underlying seasonal patterns of BD symptoms in humans. In addition, we emphasize the value of incorporating diurnal rodent species as more appropriate animal models to study the effects of seasonal changes in light on symptoms of depression and mania that are characteristic of BD in humans.
Collapse
|
23
|
Caruso D, Palagini L, Miniati M, Massa L, Marazziti D, Geoffroy PA, Etain B. Early Life Stress and Chronobiological Rhythms Desynchronization: Possible Impact on Mood Symptoms and Suicidal Ideation in Bipolar Disorder. J Nerv Ment Dis 2021; 209:518-524. [PMID: 34170861 DOI: 10.1097/nmd.0000000000001333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ABSTRACT The study aimed at investigating the potential impact of early stressful events on the clinical manifestations of bipolar disorder (BD). A sample of 162 adult individuals with BD was assessed using the Structural Clinical Interview for DSM-5, the Beck Depression Inventory-II, the Young Mania Rating Scale, the Early Trauma Inventory Self Report-Short Form, the Biological Rhythms Interview of Assessment in Neuropsychiatry, the Insomnia Severity Index, and the Scale for Suicide Ideation. A significant path coefficient indicated a direct effect of early life stressors on biological rhythms (coeff. = 0.26; p < 0.001) and of biological rhythms on depressive symptoms (coeff. = 0.5; p < 0.001), suicidal risk (coeff. = 0.3; p < 0.001), and insomnia (coeff. = 0.34; p < 0.001). Data suggested that the desynchronization of chronobiological rhythms might be one mediator of the association between early life stress and the severity of mood symptoms/suicidal ideation in BD. Addressing circadian rhythm alterations in subjects exposed to early stressors would help in preventing consequences of those stressors on BD.
Collapse
Affiliation(s)
- Danila Caruso
- Psychiatric Section, Department of Clinical and Experimental Medicine, University of Pisa, Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy
| | - Laura Palagini
- Psychiatric Section, Department of Clinical and Experimental Medicine, University of Pisa, Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy
| | - Mario Miniati
- Psychiatric Section, Department of Clinical and Experimental Medicine, University of Pisa, Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy
| | - Lucia Massa
- Psychiatric Section, Department of Clinical and Experimental Medicine, University of Pisa, Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy
| | - Donatella Marazziti
- Psychiatric Section, Department of Clinical and Experimental Medicine, University of Pisa, Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy
| | | | - Bruno Etain
- Département de Psychiatrie et de Médecine Addictologique, AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Paris, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| |
Collapse
|
24
|
Palagini L, Manni R, Aguglia E, Amore M, Brugnoli R, Bioulac S, Bourgin P, Micoulaud Franchi JA, Girardi P, Grassi L, Lopez R, Mencacci C, Plazzi G, Maruani J, Minervino A, Philip P, Royant Parola S, Poirot I, Nobili L, Biggio G, Schroder CM, Geoffroy PA. International Expert Opinions and Recommendations on the Use of Melatonin in the Treatment of Insomnia and Circadian Sleep Disturbances in Adult Neuropsychiatric Disorders. Front Psychiatry 2021; 12:688890. [PMID: 34177671 PMCID: PMC8222620 DOI: 10.3389/fpsyt.2021.688890] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction: Insomnia and circadian rhythm disorders, such as the delayed sleep phase syndrome, are frequent in psychiatric disorders and their evaluation and management in early stages should be a priority. The aim of this paper was to express recommendations on the use of exogenous melatonin, which exhibits both chronobiotic and sleep-promoting actions, for the treatment of these sleep disturbances in psychiatric disorders. Methods: To this aim, we conducted a systematic review according to PRISMA on the use of melatonin for the treatment of insomnia and circadian sleep disorders in neuropsychiatry. We expressed recommendations for the use of melatonin in psychiatric clinical practice for each disorder using the RAND/UCLA appropriateness method. Results: We selected 41 studies, which included mood disorders, schizophrenia, substance use disorders, attention deficit hyperactivity disorders, autism spectrum disorders, neurocognitive disorders, and delirium; no studies were found for both anxiety and eating disorders. Conclusion: The administration of prolonged release melatonin at 2-10 mg, 1-2 h before bedtime, might be used in the treatment of insomnia symptoms or comorbid insomnia in mood disorders, schizophrenia, in adults with autism spectrum disorders, neurocognitive disorders and during sedative-hypnotics discontinuation. Immediate release melatonin at <1 mg might be useful in the treatment of circadian sleep disturbances of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Laura Palagini
- Psychiatry Division, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Raffaele Manni
- Unit of Sleep Medicine and Epilepsy, Istituto di Ricovero e Cura a Carattere Scientifico Mondino Foundation, Pavia, Italy
| | - Eugenio Aguglia
- Department of Experimental and Clinical Medicine, Psychiatric Clinic University Hospital “Gaspare Rodolico”, University of Catania, Catania, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Brugnoli
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sant'Andrea University Hospital, Sapienza University, Rome, Italy
| | - Stéphanie Bioulac
- University Sleep Clinic, Services of Functional Exploration of the Nervous System, University Hospital of Bordeaux, and USR CNRS 3413 SANPSY, University Hospital Pellegrin, University of Bordeaux, Bordeaux, France
| | - Patrice Bourgin
- Institut des Neurosciences Cellulaires et Intégratives, CNRS-UPR 3212, Strasbourg, France
- Centre des troubles du sommeil - CIRCSom, Strasbourg University Hospitals, Strasbourg, France
| | - Jean-Arthur Micoulaud Franchi
- University Sleep Clinic, Services of Functional Exploration of the Nervous System, University Hospital of Bordeaux, and USR CNRS 3413 SANPSY, University Hospital Pellegrin, University of Bordeaux, Bordeaux, France
| | - Paolo Girardi
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sant'Andrea University Hospital, Sapienza University, Rome, Italy
| | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Régis Lopez
- Service de Neurologie, Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Hôpital Gui-de-Chauliac Montpellier, Montpellier, France
- PSNREC, Univ Montpellier, INSERM, Montpellier, France
| | - Claudio Mencacci
- Department of Neuroscience, Aziende Socio Sanitarie Territoriali Fatebenefratelli Sacco, Milan, Italy
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Julia Maruani
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, Paris, France
| | - Antonino Minervino
- Department of Psychiatry, Italian Society of Psychosomatic Medicine (SIMP), Parma, Italy
| | - Pierre Philip
- University Sleep Clinic, Services of Functional Exploration of the Nervous System, University Hospital of Bordeaux, and USR CNRS 3413 SANPSY, University Hospital Pellegrin, University of Bordeaux, Bordeaux, France
| | | | - Isabelle Poirot
- Service de psychiatrie adulte, Hôpital Fontan, CHU de Lille, Lille, France
| | - Lino Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Child Neuropsychiatry Unit, Giannina Gaslini Institute, Genoa, Italy
| | - Giovanni Biggio
- Department of Life and Environmental Sciences, Institute of Neuroscience, CNR, University of Cagliari, Cagliari, Italy
| | - Carmen M. Schroder
- Institut des Neurosciences Cellulaires et Intégratives, CNRS-UPR 3212, Strasbourg, France
- Department of Child and Adolescent Psychiatry, Strasbourg University Hospitals, Strasbourg, France
| | - Pierre A. Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, Paris, France
- GHU Paris - Psychiatry & Neurosciences, Paris, France
- CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| |
Collapse
|
25
|
Esaki Y, Obayashi K, Saeki K, Fujita K, Iwata N, Kitajima T. Preventive effect of morning light exposure on relapse into depressive episode in bipolar disorder. Acta Psychiatr Scand 2021; 143:328-338. [PMID: 33587769 DOI: 10.1111/acps.13287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Light therapy has been suggested to have a curative effect on bipolar depression; however, preventive effects of light exposure on depressive episodes remain unclear. This study evaluated whether daytime light exposure in real-life situations was associated with a preventive effect on relapse into depressive episodes in patients with bipolar disorder. METHODS This prospective, naturalistic, observational study was conducted in Japan between August 2017 and June 2020. Outpatients with bipolar disorder were objectively evaluated for daytime light exposure over 7 consecutive days using an actigraph that could measure ambient light at baseline assessment and then assessed at 12-month follow-up for relapse into mood episodes. RESULTS Of 202 participants, 198 (98%) completed follow-up at 12 months and 78 (38%) experienced relapse into depressive episodes during follow-up. In a Cox proportional hazards model adjusting for potential confounders, a longer time above 1000 lux at daytime was significantly associated with decrease in relapse into depressive episodes (per log min; hazard ratio, 0.66; 95% confidence interval, 0.50-0.91). In addition, a higher average illuminance and longer time above 1000 lux in the morning exhibited a significant decrease in relapse into depressive episodes (per log lux and per log min; hazard ratio, 0.65 and 0.61; 95% confidence interval, 0.49-0.86 and 0.47-0.78, respectively). The association between daytime light exposure and relapse into manic/hypomanic/mixed episodes was not significantly different. CONCLUSION A significant association was observed between increased daytime light exposure, mainly in the morning, and decreased relapse into depressive episodes.
Collapse
Affiliation(s)
- Yuichi Esaki
- Department of Psychiatry, Okehazama Hospital, Aichi, Japan.,Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Kenji Obayashi
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Kiyoshi Fujita
- Department of Psychiatry, Okehazama Hospital, Aichi, Japan.,The Neuroscience Research Center, Aichi, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Tsuyoshi Kitajima
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
26
|
Geoffroy PA, Palagini L. Biological rhythms and chronotherapeutics in depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110158. [PMID: 33152388 DOI: 10.1016/j.pnpbp.2020.110158] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022]
Abstract
Depressive syndromes are frequent and heterogeneous brain conditions with more than 90% of patients suffering from sleep complaints. Better characterizing this "sleep" domain may allow to both better treat acute episodes with existing chronotherapeutics, but also to prevent the manifestation or recurrences of mood disorders. This work aims to i) review theoretical and fundamental data of chronotherapeutics, and ii) provide practical recommendations. Light therapy (LT) can be used as a first-line monotherapy of moderate to severe depression of all subtypes. LT can be also used as a combination with antidepressant to maximize patients' response rates, which has a clear superiority to antidepressant alone. Sleep deprivation (SD) is a rapid and powerful chronotherapeutic with antidepressant responses within hours in 45-60% of patients with unipolar or bipolar depression. Different strategies should be combined to stabilize the SD antidepressant effect, including concomitant medications, repeated SD, combination with sleep phase advance and/or LT (triple chronotherapy). Melatonin treatment is of interest in remitted patients with mood disorder to prevent relapses or recurrences, if a complaint of insomnia, poor sleep quality or phase delay syndrome is associated. During the acute phase, melatonin could be used as an adjuvant treatment for symptoms of insomnia associated with depression. The cognitive behavioral therapy for insomnia (CBT-I) can be recommend to treat insomnia during euthymic phases. The Interpersonal and social rhythm therapy (IPSRT) is indicated for the acute treatment of bipolar depression and for the prevention of mood episodes. Chronotherapeutics should always be associated with behavioral measures for healthy sleep.
Collapse
Affiliation(s)
- Pierre A Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018 Paris, France; GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France; Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, Psychiatric Section, University of Pisa; Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy
| |
Collapse
|
27
|
Aguglia A, Cuomo A, Amerio A, Bolognesi S, Di Salvo G, Fusar-Poli L, Goracci A, Surace T, Serafini G, Aguglia E, Amore M, Fagiolini A, Maina G. A new approach for seasonal pattern: is it related to bipolarity dimension? Findings from an Italian multicenter study. Int J Psychiatry Clin Pract 2021; 25:73-81. [PMID: 33399494 DOI: 10.1080/13651501.2020.1862235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aims of this study were to assess the impact of seasonal pattern on several clinical dimensions in inpatients with a current major depressive episode and to evaluate clinical differences between unipolar and bipolar depression according to seasonal pattern. METHODS Study participants were 300 patients affected by major depressive disorder (MDD) or bipolar disorder (BD) currently experiencing a major depressive episode (MDE) and were recruited at three University Medical Centres in Italy. All study subjects completed several evaluation scales for depressive and hypomanic symptoms, quality of life and functioning, impulsiveness, and seasonal pattern. RESULTS Several differences between BD with and without seasonal pattern, MDD with and without seasonal pattern but in particular between BD and MDD with seasonal pattern were found. Patients with MDE with seasonal pattern had more frequently received a longitudinal diagnosis of BD. CONCLUSIONS A large number of patients with BD and seasonal pattern, but also a considerable number of patients with MDD and seasonal pattern, endorsed manic items during a current MDE. Seasonal pattern should be associated with a concept of bipolarity in mood disorders and not only related to bipolar disorder. A correct identification of seasonal patterns may lead to the implementation of personalised pharmacological treatment approaches.KEY POINTSHigh prevalence of mixed features in mood disorders with seasonal pattern, supporting the need for a dimensional approach to major depressive disorder and bipolar disorder.Significant percentage of patients with a primary diagnosis of major depressive disorder had seasonal pattern.Significant percentage of patients with a primary diagnosis of major depressive disorder reported (hypo)manic symptomatology.
Collapse
Affiliation(s)
- Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessandro Cuomo
- Department of Molecular Medicine, University of Siena, Siena, Italy
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Mood Disorders Program, Tufs Medical center, Boston, MA, USA
| | - Simone Bolognesi
- Department of Molecular Medicine, University of Siena, Siena, Italy
| | - Gabriele Di Salvo
- Rita Levi Montalcini Department of Neuroscience, University of Turin, University Hospital San Luigi Gonzaga, Turin, Italy
| | - Laura Fusar-Poli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Arianna Goracci
- Department of Molecular Medicine, University of Siena, Siena, Italy
| | - Teresa Surace
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Fagiolini
- Department of Molecular Medicine, University of Siena, Siena, Italy
| | - Giuseppe Maina
- Rita Levi Montalcini Department of Neuroscience, University of Turin, University Hospital San Luigi Gonzaga, Turin, Italy
| |
Collapse
|
28
|
Scaini G, Andrews T, Lima CNC, Benevenuto D, Streck EL, Quevedo J. Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion 2021; 57:23-36. [PMID: 33340709 PMCID: PMC10494232 DOI: 10.1016/j.mito.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023]
Abstract
The understanding of the pathophysiology of bipolar disorder (BD) remains modest, despite recent advances in neurobiological research. The mitochondrial dysfunction hypothesis of bipolar disorder has been corroborated by several studies involving postmortem brain analysis, neuroimaging, and specific biomarkers in both rodent models and humans. Evidence suggests that BD might be related to abnormal mitochondrial morphology and dynamics, neuroimmune dysfunction, and atypical mitochondrial metabolism and oxidative stress pathways. Mitochondrial dysfunction in mood disorders is also associated with abnormal Ca2+ levels, glutamate excitotoxicity, an imbalance between pro- and antiapoptotic proteins towards apoptosis, abnormal gene expression of electron transport chain complexes, and decreased ATP synthesis. This paper aims to review and discuss the implications of mitochondrial dysfunction in BD etiology and to explore mitochondria as a potential target for novel therapeutic agents.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Taylor Andrews
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Camila N C Lima
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Deborah Benevenuto
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Emilio L Streck
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
29
|
Veyrier M, Ariouat I, Jacob A, Trout H, Bloch V, Delavest M, Bellivier F, Geoffroy PA. Use of immediate release melatonin in psychiatry: BMI impacts the daily-dose. Encephale 2020; 47:96-101. [PMID: 33349460 DOI: 10.1016/j.encep.2020.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/28/2020] [Accepted: 08/08/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE There is a growing interest in psychiatry regarding melatonin use both for its soporific and chronobiotic effects. This study aimed to evaluate factors impacting the daily-dose. METHODS In a university department of psychiatry in Paris (France), we conducted a posteriori naturalistic observational study from April 03, 2017 to January 31, 2018. We assessed links between sociodemographic and clinical characteristics and daily dose of melatonin (the daily-dose of melatonin initiation and the daily-dose at Hospital discharge). A survey of drug interactions was performed regarding metabolic inducers and inhibitors of the cytochrome P450 1A2. RESULTS Forty patients were included and treated with immediate-release melatonin. For patients with no history of melatonin use, the initiation dose of was 2 or 4mg, with no effects of age, weight, BMI, melatonin indication, cause of hospitalization. We found that higher discharge dose was associated with higher BMI (P=0.036) and more reevaluations of melatonin dose (P=0.00019). All patients with a moderate inducer (n=3, here lansoprazole) were significantly more associated with the discontinuation melatonin group (P=0.002). CONCLUSION The BMI and the number of reevaluations impact the daily dose of melatonin. Two mechanisms may explain that BMI may need higher doses: (i) melatonin diffuses into the fat mass, (ii) the variant 24E on melatonin receptor MT2, more frequent in obese patients, leads to a decrease of the receptor signal.
Collapse
Affiliation(s)
- M Veyrier
- Service Pharmacie, AP-HP, GH Saint-Louis-Lariboisière-F. Widal, 75475 Paris cedex 10, France.
| | - I Ariouat
- Service Pharmacie, AP-HP, GH Saint-Louis-Lariboisière-F. Widal, 75475 Paris cedex 10, France
| | - A Jacob
- Service Pharmacie, AP-HP, GH Saint-Louis-Lariboisière-F. Widal, 75475 Paris cedex 10, France; Iserm U1144 optimisation thérapeutique en neuropsychopharmacologie, université Paris Descartes, université Paris Diderot, université Sorbonne Paris Cité, Paris, France
| | - H Trout
- Service Pharmacie, AP-HP, GH Saint-Louis-Lariboisière-F. Widal, 75475 Paris cedex 10, France
| | - V Bloch
- Service Pharmacie, AP-HP, GH Saint-Louis-Lariboisière-F. Widal, 75475 Paris cedex 10, France; Iserm U1144 optimisation thérapeutique en neuropsychopharmacologie, université Paris Descartes, université Paris Diderot, université Sorbonne Paris Cité, Paris, France
| | - M Delavest
- Département de Psychiatrie et de Médecine Addictologique, AP-HP, GH Saint-Louis-Lariboisière-F. Widal, 75475 Paris cedex 10, France
| | - F Bellivier
- Iserm U1144 optimisation thérapeutique en neuropsychopharmacologie, université Paris Descartes, université Paris Diderot, université Sorbonne Paris Cité, Paris, France; Département de Psychiatrie et de Médecine Addictologique, AP-HP, GH Saint-Louis-Lariboisière-F. Widal, 75475 Paris cedex 10, France
| | - P A Geoffroy
- Iserm U1144 optimisation thérapeutique en neuropsychopharmacologie, université Paris Descartes, université Paris Diderot, université Sorbonne Paris Cité, Paris, France; Département de Psychiatrie et de Médecine Addictologique, AP-HP, GH Saint-Louis-Lariboisière-F. Widal, 75475 Paris cedex 10, France.
| |
Collapse
|
30
|
Murray G, Gottlieb J, Hidalgo MP, Etain B, Ritter P, Skene DJ, Garbazza C, Bullock B, Merikangas K, Zipunnikov V, Shou H, Gonzalez R, Scott J, Geoffroy PA, Frey BN. Measuring circadian function in bipolar disorders: Empirical and conceptual review of physiological, actigraphic, and self-report approaches. Bipolar Disord 2020; 22:693-710. [PMID: 32564457 DOI: 10.1111/bdi.12963] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Interest in biological clock pathways in bipolar disorders (BD) continues to grow, but there has yet to be an audit of circadian measurement tools for use in BD research and practice. PROCEDURE The International Society for Bipolar Disorders Chronobiology Task Force conducted a critical integrative review of circadian methods that have real-world applicability. Consensus discussion led to the selection of three domains to review-melatonin assessment, actigraphy, and self-report. RESULTS Measurement approaches used to quantify circadian function in BD are described in sufficient detail for researchers and clinicians to make pragmatic decisions about their use. A novel integration of the measurement literature is offered in the form of a provisional taxonomy distinguishing between circadian measures (the instruments and methods used to quantify circadian function, such as dim light melatonin onset) and circadian constructs (the biobehavioral processes to be measured, such as circadian phase). CONCLUSIONS Circadian variables are an important target of measurement in clinical practice and biomarker research. To improve reproducibility and clinical application of circadian constructs, an informed systematic approach to measurement is required. We trust that this review will decrease ambiguity in the literature and support theory-based consideration of measurement options.
Collapse
Affiliation(s)
- Greg Murray
- Centre for Mental Health, Swinburne University of Technology, Victoria, Australia
| | - John Gottlieb
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Chicago Psychiatry Associates, Chicago, IL, USA
| | - Maria Paz Hidalgo
- Laboratorio de Cronobiologia e Sono, Hospital de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruno Etain
- Département de Psychiatrie et de Médecine Addictologique and INSERM UMRS 1144, Université de Paris, AP-HP, Groupe Hospitalo-universitaire AP-HP Nord, Paris, France
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Corrado Garbazza
- Centre for Chronobiology, University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Ben Bullock
- Centre for Mental Health, Swinburne University of Technology, Victoria, Australia
| | - Kathleen Merikangas
- Genetic Epidemiology Research Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, USA
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Gonzalez
- Department of Psychiatry and Behavioral Health, Penn State Health Milton S. Hershey Medical Center, Hershey, PA
| | - Jan Scott
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Pierre A Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, Hopital Bichat - Claude Bernard, Paris, France.,Université de Paris, NeuroDiderot, France
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, ON, Canada
| |
Collapse
|
31
|
Yeom JW, Jeong S, Seo JY, Jeon S, Lee HJ. Association of the Serotonin 2A Receptor rs6311 Polymorphism with Diurnal Preference in Koreans. Psychiatry Investig 2020; 17:1137-1142. [PMID: 33115187 PMCID: PMC7711123 DOI: 10.30773/pi.2020.0358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Evidence for the association between circadian rhythm delay and depression is accumulating. Genetic studies have shown that certain polymorphisms in circadian genes are potential genetic markers of diurnal preference. Along with circadian genes, there is a growing interest in other genetic effects on circadian rhythms. This study evaluated whether the HTR2A rs6311 (-1438C/T) polymorphism is associated with diurnal preference in a Korean population. METHODS A total of 510 healthy subjects were included in this study. All subjects were genotyped for the HTR2A rs6311 polymorphism and they completed the Korean version of the composite scale of morningness (CSM). RESULTS The C allele carriers (C/C+C/T) showed significantly higher CSM scores compared to C allele non-carriers (T/T) (t=2.22, p= 0.03), suggesting the existence of a morning chronotype tendency in C allele carriers. In other words, the T/T genotype may be associated with the evening chronotype. CONCLUSION These results suggest that the HTR2A rs6311 polymorphism may be associated with diurnal preference in a healthy Korean population. The absence of the C allele may be responsible for the increasing susceptibility to eveningness in the Korean population. Further studies on HTR2A polymorphisms that evaluate their interactions with various candidate genes and differences in phenotypic expression of polymorphisms according to ethnic groups are warranted to fully understand their association with diurnal preference.
Collapse
Affiliation(s)
- Ji Won Yeom
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seunghwa Jeong
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Ju Yeon Seo
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Sehyun Jeon
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Geoffroy PA, Gottlieb J. Activity, cognition, and emotion: Three dimensional pillars of the natural presentations of mood disorders enriched by the "sleep" fourth dimension (ACES). Bipolar Disord 2020; 22:631-632. [PMID: 32558090 DOI: 10.1111/bdi.12957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Pierre A Geoffroy
- Université de Paris, NeuroDiderot, UMR 1141, Paris, France.,Department of Psychiatry and Addictive Medicine, Assistance Publique-Hôpitaux de Paris (AP-HP), UniversityHospital Bichat-Claude Bernard, Paris, France.,Centre des troubles du sommeil-CIRCSom and Institut des Neurosciences Cellulaires et Intégratives, CNRS-UPR 3212, Strasbourg, France
| | - John Gottlieb
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
33
|
Rosenthal SJ, Josephs T, Kovtun O, McCarty R. Seasonal effects on bipolar disorder: A closer look. Neurosci Biobehav Rev 2020; 115:199-219. [DOI: 10.1016/j.neubiorev.2020.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
|
34
|
Kirlioglu SS, Balcioglu YH. Chronobiology Revisited in Psychiatric Disorders: From a Translational Perspective. Psychiatry Investig 2020; 17:725-743. [PMID: 32750762 PMCID: PMC7449842 DOI: 10.30773/pi.2020.0129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Several lines of evidence support a relationship between circadian rhythms disruption in the onset, course, and maintenance of mental disorders. Despite the study of circadian phenotypes promising a decent understanding of the pathophysiologic or etiologic mechanisms of psychiatric entities, several questions still need to be addressed. In this review, we aimed to synthesize the literature investigating chronobiologic theories and their associations with psychiatric entities. METHODS The Medline, Embase, PsycInfo, and Scopus databases were comprehensively and systematically searched and articles published between January 1990 and October 2019 were reviewed. Different combinations of the relevant keywords were polled. We first introduced molecular elements and mechanisms of the circadian system to promote a better understanding of the chronobiologic implications of mental disorders. Then, we comprehensively and systematically reviewed circadian system studies in mood disorders, schizophrenia, and anxiety disorders. RESULTS Although subject characteristics and study designs vary across studies, current research has demonstrated that circadian pathologies, including genetic and neurohumoral alterations, represent the neural substrates of the pathophysiology of many psychiatric disorders. Impaired HPA-axis function-related glucocorticoid rhythm and disrupted melatonin homeostasis have been prominently demonstrated in schizophrenia and other psychotic disorders, while alterations of molecular expressions of circadian rhythm genes including CLOCK, PER, and CRY have been reported to be involved in the pathogenesis of mood disorders. CONCLUSION Further translational work is needed to identify the causal relationship between circadian physiology abnormalities and mental disorders and related psychopathology, and to develop sound pharmacologic interventions.
Collapse
Affiliation(s)
- Simge Seren Kirlioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Yasin Hasan Balcioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
35
|
|
36
|
Geoffroy PA, Tebeka S, Blanco C, Dubertret C, Le Strat Y. Shorter and longer durations of sleep are associated with an increased twelve-month prevalence of psychiatric and substance use disorders: Findings from a nationally representative survey of US adults (NESARC-III). J Psychiatr Res 2020; 124:34-41. [PMID: 32114030 DOI: 10.1016/j.jpsychires.2020.02.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/15/2023]
Abstract
The lack of comprehensive data on the association between psychiatric and substance use disorders and habitual sleep duration represents a major health information gap. This study examines the 12-month prevalence of mental disorders stratified by duration of sleep. Data were drawn from face-to-face interviews conducted in the National Epidemiologic Survey on Alcohol and Related Conditions III, a nationally representative survey of US adults (N = 36,309). There were 1893 (5.26%) participants who reported <5h of sleep/night; 2434(6.76%) 5 h/night; 7621(21.17%) 6 h/night; 9620(26.72%) 7 h/night; 11,186(31.07%) 8 h/night, and 3245(9.01%) ≥9 h/night. A U-shaped association was observed between sleep duration and all mental disorders. The prevalence of mental disorders was 55% for individuals with <5 h/night and 47.81% for ≥9 h/night, versus 28.24% for the 7 h/night (aOR = 1.90 and 1.39 respectively). The greatest odds ratios were for the <5 h/night group, with an increased risk above 3-fold for panic disorder (PD), post-traumatic stress disorder (PTSD), psychotic disorder, and suicide attempt; between 2 and 3 fold for major depressive disorder (MDD), bipolar disorder (BD), and generalized anxiety disorder (GAD); and between 1 and 2 fold for tobacco and drug use disorders, specific and social phobias. The ≥9 h/night group had an increased risk above 1 to 2-fold regarding tobacco and drug use disorders, MDD, BD, PD, social phobia, GAD, PTSD, psychotic disorder, and suicide attempt. U-shaped associations exist between sleep duration and mental disorders, calling for respect to recommendations for adequate sleep duration in routine clinical care as well as to actions for primary prevention in public health settings.
Collapse
Affiliation(s)
- Pierre A Geoffroy
- Département de Psychiatrie et D'addictologie, AP-HP, Hopital Bichat - Claude Bernard, F-75018, Paris, France; Université de Paris, NeuroDiderot, Inserm, F-75019, Paris, France.
| | - Sarah Tebeka
- Paris Diderot University - Paris VII, 5 Rue Thomas Mann, 75013, Paris, France; Department of Psychiatry, Assistance Publique-Hôpitaux de Paris (AP-HP), Louis Mourier Hospital, 178 Rue des Renouillers, 92700, Colombes, France
| | - Carlos Blanco
- National Institute on Drug Abuse, 6001 Executive Boulevard, Bethesda, MD, 20892, USA
| | - Caroline Dubertret
- Paris Diderot University - Paris VII, 5 Rue Thomas Mann, 75013, Paris, France; Department of Psychiatry, Assistance Publique-Hôpitaux de Paris (AP-HP), Louis Mourier Hospital, 178 Rue des Renouillers, 92700, Colombes, France
| | - Yann Le Strat
- Paris Diderot University - Paris VII, 5 Rue Thomas Mann, 75013, Paris, France; Department of Psychiatry, Assistance Publique-Hôpitaux de Paris (AP-HP), Louis Mourier Hospital, 178 Rue des Renouillers, 92700, Colombes, France
| |
Collapse
|
37
|
Gardea-Resendez M, Kucuker MU, Blacker CJ, Ho AMC, Croarkin PE, Frye MA, Veldic M. Dissecting the Epigenetic Changes Induced by Non-Antipsychotic Mood Stabilizers on Schizophrenia and Affective Disorders: A Systematic Review. Front Pharmacol 2020; 11:467. [PMID: 32390836 PMCID: PMC7189731 DOI: 10.3389/fphar.2020.00467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epimutations secondary to gene-environment interactions have a key role in the pathophysiology of major psychiatric disorders. In vivo and in vitro evidence suggest that mood stabilizers can potentially reverse epigenetic deregulations found in patients with schizophrenia or mood disorders through mechanisms that are not yet fully understood. However, their activity on epigenetic processes has made them a research target for therapeutic approaches. METHODS We conducted a comprehensive literature search of PubMed and EMBASE for studies investigating the specific epigenetic changes induced by non-antipsychotic mood stabilizers (valproate, lithium, lamotrigine, and carbamazepine) in animal models, human cell lines, or patients with schizophrenia, bipolar disorder, or major depressive disorder. Each paper was reviewed for the nature of research, the species and tissue examined, sample size, mood stabilizer, targeted gene, epigenetic changes found, and associated psychiatric disorder. Every article was appraised for quality using a modified published process and those who met a quality score of moderate or high were included. RESULTS A total of 2,429 records were identified; 1,956 records remained after duplicates were removed and were screened via title, abstract and keywords; 129 records were selected for full-text screening and a remaining of 38 articles were included in the qualitative synthesis. Valproate and lithium were found to induce broader epigenetic changes through different mechanisms, mainly DNA demethylation and histones acetylation. There was less literature and hence smaller effects attributable to lamotrigine and carbamazepine could be associated overall with the small number of studies on these agents. Findings were congruent across sample types. CONCLUSIONS An advanced understanding of the specific epigenetic changes induced by classic mood stabilizers in patients with major psychiatric disorders will facilitate personalized interventions. Further related drug discovery should target the induction of selective chromatin remodeling and gene-specific expression effects.
Collapse
Affiliation(s)
| | - Mehmet Utku Kucuker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Caren J. Blacker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Ada M.-C. Ho
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
38
|
Esaki Y, Obayashi K, Saeki K, Fujita K, Iwata N, Kitajima T. Association between light exposure at night and manic symptoms in bipolar disorder: cross-sectional analysis of the APPLE cohort. Chronobiol Int 2020; 37:887-896. [DOI: 10.1080/07420528.2020.1746799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yuichi Esaki
- Department of Psychiatry, Okehazama Hospital, Aichi, Japan
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Kenji Obayashi
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Kiyoshi Fujita
- Department of Psychiatry, Okehazama Hospital, Aichi, Japan
- Department of Psychiatry, The Neuroscience Research Center, Aichi, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Tsuyoshi Kitajima
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
39
|
Efficacy of light therapy versus antidepressant drugs, and of the combination versus monotherapy, in major depressive episodes: A systematic review and meta-analysis. Sleep Med Rev 2019; 48:101213. [DOI: 10.1016/j.smrv.2019.101213] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/24/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023]
|
40
|
Geoffroy PA, Micoulaud Franchi JA, Lopez R, Schroder CM. The use of melatonin in adult psychiatric disorders: Expert recommendations by the French institute of medical research on sleep (SFRMS). L'ENCEPHALE 2019; 45:413-423. [PMID: 31248601 DOI: 10.1016/j.encep.2019.04.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
Melatonin is a hormone secreted by the pineal gland at night. This hormone has many physiological functions, the main one being to synchronise individuals' biological rhythms. Exogenous melatonin has the same chronobiotic action, even at small doses (0.125mg). In addition, a sleep-inducing (soporific) action appears to occur in a dose-effect relationship, i.e. as the dose increases. In psychiatric disorders, these two effects could have interesting applications in clinical practice. The French institute of medical research on sleep (SFRMS) appointed a group of experts to conduct a consensus conference to study the indications of melatonin and the conditions of its prescription. An account of the conclusions on adult psychiatric disorders (presented orally at the Congress on Sleep in Marseille, 23 November 2017) is given here. Exogenous melatonin proves to be useful among patients with a stabilized psychiatric disorder or in remission, to prevent relapse in case of associated complaints of insomnia, poor quality sleep or delayed sleep phase syndrome. During acute phases, melatonin could be used as an adjuvant treatment when there are insomnia symptoms, in mood disorders (bipolar disorder, major depressive disorder, seasonal affective disorder), in attention deficit hyperactivity disorder (ADHD), in peri-surgical anxiety and in schizophrenia. In somatoform disorders, melatonin is a possible treatment for painful symptoms in fibromyalgia, irritable bowel syndrome, functional dyspeptic syndrome and temporomandibular joint dysfunction.
Collapse
Affiliation(s)
- P A Geoffroy
- Sleep Disorders Center & CIRCSom (International Research Center for ChronoSomnology), University Hospital, 1, place de l'hôpital, 67000 Strasbourg, France; CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 5, rue Blaise-Pascal, 67000 Strasbourg, France; Paris Diderot University - Paris VII, 5, rue Thomas-Mann, 75013 Paris, France.
| | - J-A Micoulaud Franchi
- Services d'explorations fonctionnelles du système nerveux, clinique du sommeil, CHU de Bordeaux, 33076 Bordeaux, France; USR CNRS 3413 SANPSY, université de Bordeaux, CHU de Pellegrin, 33076 Bordeaux, France
| | - R Lopez
- Unité des troubles du sommeil, département de neurologie, centre national de référence narcolepsie, hypersomnies rares, hôpital Gui de Chauliac, 34000 Montpellier, France; Inserm U1061, 34000 Montpellier, France
| | - C M Schroder
- Sleep Disorders Center & CIRCSom (International Research Center for ChronoSomnology), University Hospital, 1, place de l'hôpital, 67000 Strasbourg, France; CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 5, rue Blaise-Pascal, 67000 Strasbourg, France; Department of Child and Adolescent Psychiatry, Strasbourg University Hospital, 1, place de l'hôpital, 67091 Strasbourg cedex, France
| |
Collapse
|
41
|
Maruani J, Geoffroy PA. Bright Light as a Personalized Precision Treatment of Mood Disorders. Front Psychiatry 2019; 10:85. [PMID: 30881318 PMCID: PMC6405415 DOI: 10.3389/fpsyt.2019.00085] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/06/2019] [Indexed: 01/10/2023] Open
Abstract
Background: The use of light for its antidepressant action dates back to the beginnings of civilization. Three decades ago, the use of bright-light therapy (BLT) for treating Seasonal Affective Disorder (SAD) was officially proposed. Since then, a growing scientific literature reports its antidepressant efficacy in both unipolar and bipolar disorders (BD), with or without seasonal patterns. This review aims to examine the management of BLT as a personalized and precision treatment in SAD, unipolar, and BD. Methods: We conducted a narrative review using Medline and Google Scholar databases up to June 2018. Results: BLT has physiological effects by resynchronizing the biological clock (circadian system), enhancing alertness, increasing sleep pressure (homeostatic system), and acting on serotonin, and other monoaminergic pathways. Effects of BLT on mood depend on several factors such as light intensity, wavelength spectrum, illumination duration, time of the day, and individual circadian rhythms. A growing body of evidence has been generated over the last decade about BLT evolving as an effective depression treatment not only to be used in SAD, but also in non-seasonal depression, with efficiency comparable to fluoxetine, and possibly more robust in patients with BD. The antidepressant action of BLT is fast (within 1-week) and safe, with the need in BD to protect against manic switch with mood stabilizers. Side effects might be nausea, diarrhea, headache, and eye irritation, and are generally mild and rare. This good safety profile may be of particular interest, especially in women during the perinatal period or for the elderly. The management of BLT needs to be clarified across mood disorders and future studies are expected to compare different dose-titration protocols, to validate its use as a maintenance treatment, and also to identify predictive biomarkers of response and tolerability. We propose clinical guidelines for BLT use in SAD, non-seasonal depression, and BD. Conclusions : BLT is an efficient antidepressant strategy in mono- or adjunct-therapy, that should be personalized according the unipolar or bipolar subtype, the presence or absence of seasonal patterns, and also regarding its efficacy and tolerability.
Collapse
Affiliation(s)
- Julia Maruani
- Inserm, U1144, Paris, France.,Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France.,AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
| | - Pierre Alexis Geoffroy
- Inserm, U1144, Paris, France.,Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France.,AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
| |
Collapse
|