1
|
Wachholz F, Wilhelm M, Frühauf A, Niedermeier M, Kopp M. Decision-making , affective states, and self-efficacy of students in the high-stress situation of a 192 m bungee jump - a randomised crossover trial. Cogn Emot 2025:1-11. [PMID: 40294342 DOI: 10.1080/02699931.2025.2496822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Decision-making involves rational and affective pathways, with high-stress potentially altering decision - making and affective states, alongside affecting behavioural variables. This study aims to analyze decision-making, affective states, and variables related to behaviour in a real-life high-stress scenario (bungee - jumping).Using a within-subject crossover-design, 19 participants (47% female, aged 23.0 ± 2.1 years) completed a 192 m bungee-jump and a 1 m control jump. Decision-making tests, affective states, and behavioural variables were assessed. Condition-by-time fully repeated measures analyses of variance were employed.Balloon Analogue Risk Task (BART) revealed significantly higher values pre - and post-bungee-jump compared to the control jump. Accuracy and average reaction time on the Go/No-Go task remained consistent across conditions and time points. Pre-action self-efficacy was significantly higher after the bungee - jump compared to the control jump. Affective valence demonstrated a significant condition-by-time interaction, presenting low values immediately before the bungee-jump.A high-stress situation impacted risk-taking but not inhibition in decision-making, associated with heightened arousal and affective valence. Anticipatory effects emerged significantly in decision-making and affective states. Furthermore, participants exhibited increased confidence in approaching subsequent tasks post - bungee - jump. Therefore, high-stress situations may enhance pre-action self-efficacy, although potential implications for riskier decision-making should be acknowledged.
Collapse
Affiliation(s)
- Felix Wachholz
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Mavin Wilhelm
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Anika Frühauf
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Martin Niedermeier
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Grey DK, Purcell JB, Buford KN, Schuster MA, Elliott MN, Emery ST, Mrug S, Knight DC. Discrimination Exposure, Neural Reactivity to Stress, and Psychological Distress. Am J Psychiatry 2024; 181:1112-1126. [PMID: 39473266 DOI: 10.1176/appi.ajp.20220884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
OBJECTIVE Discrimination exposure has a detrimental impact on mental health, increasing the risk of depression, anxiety, and posttraumatic stress. The impact discrimination exposure has on mental health is likely mediated by neural processes associated with emotion expression and regulation. However, the specific neural processes that mediate the relationship between discrimination exposure and mental health remain to be determined. The present study investigated the relationship adolescent discrimination exposure has with stress-elicited brain activity and mental health symptoms in young adulthood. METHODS A total of 301 participants completed the Montreal Imaging Stress Task while functional MRI data were collected. Discrimination exposure was measured four times from ages 11 to 19, and stress-elicited brain activity and psychological distress (depression, anxiety, posttraumatic stress) were assessed in young adulthood (age 20). RESULTS Stress-elicited dorsolateral and dorsomedial prefrontal cortex (PFC), inferior parietal lobule (IPL), and hippocampal activity varied with discrimination exposure. Activity within these brain regions varied with the cumulative amount and trajectory of discrimination exposure across adolescence (initial exposure, change in exposure, and acceleration of exposure). Depression, anxiety, and posttraumatic stress symptoms varied with discrimination exposure. Stress-elicited activity within the dorsolateral PFC and the IPL statistically mediated the relationship between discrimination exposure and psychological distress. CONCLUSIONS The findings suggest that adolescent discrimination exposure may alter the neural response to future stressors (i.e., within regions associated with emotion expression and regulation), which may in turn modify susceptibility and resilience to psychological distress. Thus, differences in stress-elicited neural reactivity may represent an important neurobiological mechanism underlying discrimination-related mental health disparities.
Collapse
Affiliation(s)
- Devon K Grey
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Juliann B Purcell
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Kristen N Buford
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Mark A Schuster
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Marc N Elliott
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Susan Tortolero Emery
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - David C Knight
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| |
Collapse
|
3
|
Liu P, Shen Q, Chen H, Yuan C, Zhu T, Hu Y, Xiong Y, Zhao Y, Xu J, Tan S. Maternal emotion regulation abilities affect adolescent depressive symptoms by mediating their emotion regulation ability: An ERP study. Asian J Psychiatr 2024; 102:104190. [PMID: 39288639 DOI: 10.1016/j.ajp.2024.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Adolescents with major depressive disorder (MDD) experience significant difficulties in emotion regulation. This study aimed to explore emotion regulation in adolescents with depression using an emotion regulation paradigm combined with event-related potentials (ERP) while investigating the relationship between maternal emotion regulation and adolescent depressive symptoms through a mediation model. Overall, 38 healthy controls (HC) and 57 adolescents with depression (MDD) rated the pictures they saw according to aversive reappraisal (reappraisal of an aversive picture or down-regulate aversive emotions), aversive watch, and neutral conditions. Adolescents with depression gave more negative ratings to aversive images, and the emotional regulation success index (ERSI) of adolescents with depression was lower than that of healthy individuals. ERP data revealed an elevation in late positive potential (LPP) amplitude during the aversive reappraisal and aversive watch conditions compared with that in the neutral condition in the MDD group. Compared with the HC group, adolescents with depression showed larger LPP amplitudes under aversive watch conditions. The aversive reappraisal condition evoked a larger LPP than that in the other conditions in the HC group in the late time windows. The ΔLPP (separating the variability in the ERP wave associated with emotion regulation) was larger in the HC group than in the MDD group. Mediation analysis revealed that maternal emotion regulation influenced adolescent depression levels through its effect on the adolescent's emotion regulation. These findings provide important insights into the emotion regulation process in adolescents with depression and offer suggestions for clinical interventions.
Collapse
Affiliation(s)
- Panqi Liu
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, China.
| | - Qing Shen
- North China University of Science and Technology, Tangshan 063210, China
| | - Haitao Chen
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, China
| | - Chunyu Yuan
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, China
| | - Tianyi Zhu
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, China
| | - Yannan Hu
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, China
| | - Yuanlu Xiong
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, China
| | - Yanli Zhao
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, China
| | - Jiahua Xu
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, China
| | - Shuping Tan
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, China.
| |
Collapse
|
4
|
Lu Q, Zhu Z, Zhang H, Gan C, Shan A, Gao M, Sun H, Cao X, Yuan Y, Tracy JI, Zhang Q, Zhang K. Shared and distinct cortical morphometric alterations in five neuropsychiatric symptoms of Parkinson's disease. Transl Psychiatry 2024; 14:347. [PMID: 39214962 PMCID: PMC11364691 DOI: 10.1038/s41398-024-03070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropsychiatric symptoms (including anxiety, depression, apathy, impulse-compulsive behaviors and hallucinations) are among the most common non-motor features of Parkinson's disease. Whether these symptoms should be considered as a direct consequence of the pathophysiologic mechanisms of Parkinson's disease is controversial. Morphometric similarity network analysis and epicenter mapping approach were performed on T1-weighted images of 505 patients with Parkinson's disease and 167 age- and sex-matched healthy participants from Parkinson's Progression Markers Initiative database to reveal the commonalities and specificities of distinct neuropsychiatric symptoms. Abnormal cortical co-alteration pattern in patients with neuropsychiatric symptoms was in somatomotor, vision and frontoparietal regions, with epicenters in somatomotor regions. Apathy, impulse-compulsive behaviors and hallucinations shares structural abnormalities in somatomotor and vision regions, with epicenters in somatomotor regions. In contrast, the cortical abnormalities and epicenters of anxiety and depression were prominent in the default mode network regions. By embedding each symptom within their co-alteration space, we observed a cluster composed of apathy, impulse-compulsive behaviors and hallucinations, while anxiety and depression remained separate. Our findings indicate different structural mechanisms underlie the occurrence and progression of different neuropsychiatric symptoms. Based upon these results, we propose that apathy, impulse-compulsive behaviors and hallucinations are directly related to damage of motor circuit, while anxiety and depression may be the combination effects of primary pathophysiology of Parkinson's disease and psychosocial causes.
Collapse
Affiliation(s)
- Qianling Lu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhuang Zhu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aidi Shan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengxi Gao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Joseph I Tracy
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qirui Zhang
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
McCurdy BH, Bradley T, Matlow R, Rettger JP, Espil FM, Weems CF, Carrion VG. Program evaluation of a school-based mental health and wellness curriculum featuring yoga and mindfulness. PLoS One 2024; 19:e0301028. [PMID: 38574083 PMCID: PMC10994323 DOI: 10.1371/journal.pone.0301028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Interest in the effectiveness of mindfulness-based interventions such as yoga in primary schools has grown. Evidence shows promise, as youth who engage in yoga to promote mindfulness show improved coping skills, increased socio-emotional competence and prosocial skills, academic performance, attention span, and ability to deal with stress. OBJECTIVE This study reports the results of a program evaluation of a universal health and wellness curriculum, Pure Power, designed to teach youth yoga techniques, mindfulness, and emotion regulation. METHODS A non-randomized comparison design examined outcomes among participants from schools that completed the intervention with highest fidelity of implementation (n = 461) and from students in matched comparison schools (n = 420). Standard measures of coping, emotion regulation and emotion dysregulation, spelling, and math achievement were collected. RESULTS Analyses suggest the youth in the intervention schools demonstrated relative improvement on measures of emotion regulation, spelling, and math. CONCLUSIONS Challenges in implementation in real-life settings are vital to identify. The data provide some real-world evidence for the effectiveness of a universal health and wellness curriculum on emotion regulation and positive academic outcomes. Training school staff to deliver the intervention may foster implementation. Future research should test the effectiveness of who delivers the intervention; for example, teacher-delivered groups vs. other wellness personnel.
Collapse
Affiliation(s)
- Bethany H. McCurdy
- Human Development and Family Studies, Iowa State University, Ames, Iowa, United States of America
| | - Travis Bradley
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Ryan Matlow
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, United States of America
| | - John P. Rettger
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Flint M. Espil
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Carl F. Weems
- Human Development and Family Studies, Iowa State University, Ames, Iowa, United States of America
| | - Victor G. Carrion
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
6
|
Yu Z, Yang H, Liu LY, Chen L, Su MH, Yang L, Zhu MJ, Yang LL, Liang F, Yu S, Yang J. Altered cognitive control network mediates the association between long-term pain and anxiety symptoms in primary dysmenorrhea. Neuroreport 2024; 35:9-16. [PMID: 37994619 PMCID: PMC10702699 DOI: 10.1097/wnr.0000000000001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 11/24/2023]
Abstract
Neuroimaging studies have demonstrated the association of the cognitive control network (CCN) with the maintenance of chronic pain. However, whether and how dorsolateral prefrontal cortex (DLPFC), a key region within the CCN, is altered in menstrual pain is unclear. In this study, we aimed to investigate alterations in the DLPFC functional connectivity network in patients with primary dysmenorrhea (PDM). The study comprised 41 PDM patients and 39 matched healthy controls (HCs), all of whom underwent a resting-state functional MRI scan during the menstrual stage. All participants were instructed to complete the clinical assessment before the MRI scan. We used the DLPFC as the seed in resting-state functional connectivity (rsFC) analysis to investigate the difference between PDM patients and HCs. Compared to HCs, PDM patients showed increased right DLPFC rsFC at the bilateral lingual gyrus, dorsal anterior cingulate cortex (dACC), and middle cingulate cortex, and decreased left DLPFC rsFC at the right orbital frontal cortex. In addition, increased right DLPFC-bilateral dACC connectivity mediated the association between disease duration and the self-rating anxiety scale (SAS) scores in PDM patients. We confirmed that the DLPFC-dACC rsFC was associated with higher SAS scores, which could mediate the association between disease duration and anxiety symptoms in patients with PDM. Our findings provide central pathological evidence for an abnormal rsFC of the CCN in PDM patients, which may contribute to a better understanding of the neuropathophysiological mechanisms underlying PDM.
Collapse
Affiliation(s)
- Zheng Yu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Han Yang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University
| | - Li-ying Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Lin Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Meng-hua Su
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Lu Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Man-jia Zhu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Li-li Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Fanrong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Siyi Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Jie Yang
- Traditional Chinese Medicine Department, Sichuan Jinxin Xi’nan Women’s and Children’s Hospital
| |
Collapse
|
7
|
Deng K, Jin W, Jiang K, Li Z, Im H, Chen S, Du H, Guan S, Ge W, Wei C, Zhang B, Wang P, Zhao G, Chen C, Liu L, Wang Q. Reactivity of the ventromedial prefrontal cortex, but not the amygdala, to negative emotion faces predicts greed personality trait. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:21. [PMID: 38041182 PMCID: PMC10690991 DOI: 10.1186/s12993-023-00223-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
This study explored whether amygdala reactivity predicted the greed personality trait (GPT) using both task-based and resting-state functional connectivity analyses (ntotal = 452). In Cohort 1 (n = 83), task-based functional magnetic resonance imaging (t-fMRI) results from a region-of-interest (ROI) analysis revealed no direct correlation between amygdala reactivity to fearful and angry faces and GPT. Instead, whole-brain analyses revealed GPT to robustly negatively vary with activations in the right ventromedial prefrontal cortex (vmPFC), supramarginal gyrus, and angular gyrus in the contrast of fearful + angry faces > shapes. Moreover, task-based psychophysiological interaction (PPI) analyses showed that the high GPT group showed weaker functional connectivity of the vmPFC seed with a top-down control network and visual pathways when processing fearful or angry faces compared to their lower GPT counterparts. In Cohort 2, resting-state functional connectivity (rs-FC) analyses indicated stronger connectivity between the vmPFC seed and the top-down control network and visual pathways in individuals with higher GPT. Comparing the two cohorts, bilateral amygdala seeds showed weaker associations with the top-down control network in the high group via PPI analyses in Cohort 1. Yet, they exhibited distinct rs-FC patterns in Cohort 2 (e.g., positive associations of GPT with the left amygdala-top-down network FC but negative associations with the right amygdala-visual pathway FC). The study underscores the role of the vmPFC and its functional connectivity in understanding GPT, rather than amygdala reactivity.
Collapse
Affiliation(s)
- Kun Deng
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Weipeng Jin
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300060, China
| | - Keying Jiang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Zixi Li
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Hohjin Im
- Department of Psychological Science, University of California, Irvine, CA, 92697-7085, USA
| | - Shuning Chen
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Hanxiao Du
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Shunping Guan
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Wei Ge
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Chuqiao Wei
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Bin Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Pinchun Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Guang Zhao
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China
- Tianjin Social Science Laboratory of Students' Mental Development and Learning, Tianjin, 300387, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Liqing Liu
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China.
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China.
- Tianjin Social Science Laboratory of Students' Mental Development and Learning, Tianjin, 300387, China.
| | - Qiang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China.
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China.
- Tianjin Social Science Laboratory of Students' Mental Development and Learning, Tianjin, 300387, China.
| |
Collapse
|
8
|
Mao Y, Li L, Li Y, Hou X, Duan S. Cognitive reappraisal and corresponding neural basis mediate the association between childhood maltreatment and depression. Biol Psychol 2023; 184:108716. [PMID: 37924935 DOI: 10.1016/j.biopsycho.2023.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Childhood maltreatment is considered as a robust predictor of depression. However, the underlying psychological and neurological mechanisms linking childhood maltreatment and depression remain poorly understood. Sufficient evidence demonstrates emotion dysregulation in individuals who have experienced childhood maltreatment, but it is unknown whether these changes represent vulnerability for depression. Here we speculated that decreased cognitive reappraisal and its corresponding neural basis might explain the relationship between childhood maltreatment and follow-up depression. METHODS First, we investigated whether cognitive reappraisal can explain the relationship between childhood maltreatment and depression, with a cross-sectional (n = 657) behavioral sample. Then we recruit 38 maltreated participants and 27 controls to complete the cognitive reappraisal functional magnetic resonance imaging (fMRI) task. The between-group difference in brain activation and functional connectivity (FC) were tested using independent t-tests. Finally, we investigated the relationship between childhood maltreatment, task-based brain activity and depression. RESULTS The behavior results suggested that cognitive reappraisal mediates the association between childhood maltreatment and depression. In addition, the maltreated group exhibited lower activation of orbitofrontal cortex (OFC) and higher FC of between the dorsolateral prefrontal cortex (DLPFC), posterior cingulate cortex (PCC), OFC, and amygdala during cognitive reappraisal, compared with healthy controls. Furthermore, the FC of DLPFC-amygdala mediates the association between childhood maltreatment and depression. CONCLUSION In summary, childhood maltreatment is associated with inefficient cognitive reappraisal ability, manifesting as aberrant modulation of cortical areas on amygdala. These cognitive and neural deficits might explain the relationship between childhood maltreatment and risk of depression in later life.
Collapse
Affiliation(s)
- Yu Mao
- College of Computer and Information Science, School of Software, Southwest University, Chongqing, China; College of Artificial Intelligence, Southwest University, Chongqing, China
| | - Ling Li
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China; Department of Medical Psychology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuan Li
- School of Education, Chongqing Normal University, Chongqing, China
| | - Xin Hou
- School of Education, Chongqing Normal University, Chongqing, China
| | - Shukai Duan
- College of Artificial Intelligence, Southwest University, Chongqing, China.
| |
Collapse
|
9
|
Wang Y, Zhang J, Li Y, Qi S, Zhang F, Ball LJ, Duan H. Preventing prefrontal dysfunction by tDCS modulates stress-induced creativity impairment in women: an fNIRS study. Cereb Cortex 2023; 33:10528-10545. [PMID: 37585735 DOI: 10.1093/cercor/bhad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
Stress is a major external factor threatening creative activity. The study explored whether left-lateralized activation in the dorsolateral prefrontal cortex manipulated through transcranial direct current stimulation could alleviate stress-induced impairment in creativity. Functional near-infrared spectroscopy was used to explore the underlying neural mechanisms. Ninety female participants were randomly assigned to three groups that received stress induction with sham stimulation, stress induction with true stimulation (anode over the left and cathode over the right dorsolateral prefrontal cortex), and control manipulation with sham stimulation, respectively. Participants underwent the stress or control task after the transcranial direct current stimulation manipulation, and then completed the Alternative Uses Task to measure creativity. Behavioral results showed that transcranial direct current stimulation reduced stress responses in heart rate and anxiety. The functional near-infrared spectroscopy results revealed that transcranial direct current stimulation alleviated dysfunction of the prefrontal cortex under stress, as evidenced by higher activation of the dorsolateral prefrontal cortex and frontopolar cortex, as well as stronger inter-hemispheric and intra-hemispheric functional connectivity within the prefrontal cortex. Further analysis demonstrated that the cortical regulatory effect prevented creativity impairment induced by stress. The findings validated the hemispheric asymmetry hypothesis regarding stress and highlighted the potential for brain stimulation to alleviate stress-related mental disorders and enhance creativity.
Collapse
Affiliation(s)
- Yifan Wang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| | - Jiaqi Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| | - Yadan Li
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| | - Senqing Qi
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| | - Fengqing Zhang
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA 19104, USA
| | - Linden J Ball
- School of Psychology & Computer Science, University of Central Lancashire, Preston PR1 2HE, UK
| | - Haijun Duan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| |
Collapse
|
10
|
Smucny J, Hanks TD, Lesh TA, Carter CS. Altered Associations Between Task Performance and Dorsolateral Prefrontal Cortex Activation During Cognitive Control in Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1050-1057. [PMID: 37295646 PMCID: PMC11189634 DOI: 10.1016/j.bpsc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Dysfunctional cognitive control processes are now well understood to be core features of schizophrenia (SZ). A body of work suggests that the dorsolateral prefrontal cortex (DLPFC) plays a critical role in explaining cognitive control disruptions in SZ. Here, we examined relationships between DLPFC activation and drift rate (DR), a model-based performance measure that combines reaction time and accuracy, in people with SZ and healthy control (HC) participants. METHODS One hundred fifty-one people with recent-onset SZ spectrum disorders and 118 HC participants performed the AX-Continuous Performance Task during functional magnetic resonance imaging scanning. Proactive cognitive control-associated activation was extracted from left and right DLPFC regions of interest. Individual behavior was fit using a drift diffusion model, allowing DR to vary between task conditions. RESULTS Behaviorally, people with SZ showed significantly lower DRs than HC participants, particularly during high proactive control trial types ("B" trials). Recapitulating previous findings, the SZ group also demonstrated reduced cognitive control-associated DLPFC activation compared with HC participants. Furthermore, significant group differences were also observed in the relationship between left and right DLPFC activation with DR, such that positive relationships between DR and activation were found in HC participants but not in people with SZ. CONCLUSIONS These results suggest that DLPFC activation is less associated with cognitive control-related behavioral performance enhancements in SZ. Potential mechanisms and implications are discussed.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; Center for Neuroscience, University of California, Davis, Davis, California.
| | - Timothy D Hanks
- Center for Neuroscience, University of California, Davis, Davis, California; Department of Neurology, University of California, Davis, Davis, California
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; Center for Neuroscience, University of California, Davis, Davis, California
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; Center for Neuroscience, University of California, Davis, Davis, California
| |
Collapse
|
11
|
González-García I, Visser M. A Semantic Cognition Contribution to Mood and Anxiety Disorder Pathophysiology. Healthcare (Basel) 2023; 11:healthcare11060821. [PMID: 36981478 PMCID: PMC10047953 DOI: 10.3390/healthcare11060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Over the last two decades, the functional role of the bilateral anterior temporal lobes (bATLs) has been receiving more attention. They have been associated with semantics and social concept processing, and are regarded as a core region for depression. In the past, the role of the ATL has often been overlooked in semantic models based on functional magnetic resonance imaging (fMRI) due to geometric distortions in the BOLD signal. However, previous work has unequivocally associated the bATLs with these higher-order cognitive functions following advances in neuroimaging techniques to overcome the geometric distortions. At the same time, the importance of the neural basis of conceptual knowledge in understanding mood disorders became apparent. Theoretical models of the neural basis of mood and anxiety disorders have been classically studied from the emotion perspective, without concentrating on conceptual processing. However, recent work suggests that the ATL, a brain region underlying conceptual knowledge, plays an essential role in mood and anxiety disorders. Patients with anxiety and depression often cope with self-blaming biases and guilt. The theory is that in order to experience guilt, the brain needs to access the related conceptual information via the ATL. This narrative review describes how aberrant interactions of the ATL with the fronto–limbic emotional system could underlie mood and anxiety disorders.
Collapse
|
12
|
Allison-Burbank JD, Reid T. Prioritizing Connectedness and Equity in Speech-Language Services for American Indian and Alaska Native Children. Lang Speech Hear Serv Sch 2023; 54:368-374. [PMID: 36827518 DOI: 10.1044/2022_lshss-22-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
PURPOSE American Indian and Alaska Native (AI/AN; Indigenous) students are at a high risk for language and learning disorders. This article aims to highlight how clinicians can use decolonization and Indigenization pedagogies when planning and delivering speech-language services to Indigenous students from the perspectives of Indigenous professionals. These efforts can help promote student resilience, well-being, and identity and are critical to addressing educational inequity and provide culturally responsive services to Indigenous children. Many AI/AN students receive IDEA Part B special education services including speech and language therapy. Many of these students are misidentified as needing special education due to unique learning and language environments (Soto-Boykin et al., 2021). These students bring a unique cultural heritage that is vital to their identity, well-being, health, and school success. Therefore, the goal should be to provide evidence-based services that are culturally tailored and meet the whole child. Using a precision public health approach to consider social determinants of health and historical trauma allows for leveraging of a multilayered, trauma-informed approach to addressing educational inequities. CONCLUSIONS An Indigenous connectedness framework can be used to indicate how connectedness is essential to AI/AN child well-being. This framework can be interlaced with existing learning theories to shape instruction where indigenization is a cornerstone of learning. Further examined was the influence of historical trauma, racism, socioeconomic status, and culture loss on learning and language development in AI/AN children in the context of settler colonialism. Strategies on how to use Indigenous knowledge and evidence-based teaching practices were applied to therapeutic services offered by speech-language pathologists and educators.
Collapse
Affiliation(s)
- Joshuaa D Allison-Burbank
- Center for Indigenous Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Traci Reid
- Department of Communication Sciences and Disorders, Northern Arizona University, Flagstaff
| |
Collapse
|
13
|
Seok D, Beer J, Jaskir M, Smyk N, Jaganjac A, Makhoul W, Cook P, Elliott M, Shinohara R, Sheline YI. Differential Impact of Anxious Misery Psychopathology on Multiple Representations of the Functional Connectome. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:489-499. [PMID: 36324648 PMCID: PMC9616351 DOI: 10.1016/j.bpsgos.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/27/2022] Open
Abstract
Background One aim of characterizing dimensional psychopathology is associating different domains of affective dysfunction with brain circuitry. The functional connectome, as measured by functional magnetic resonance imaging, can be modeled and associated with psychopathology through multiple methods; some methods assess univariate relationships while others summarize broad patterns of activity. It remains unclear whether different dimensions of psychopathology require different representations of the connectome to generate reproducible associations. Methods Patients experiencing anxious misery symptomology (depression, anxiety, and trauma; n = 192) received resting-state functional magnetic resonance imaging scans. Three modeling approaches (seed-based correlation analysis, edgewise regression, and brain basis set modeling), each relying on increasingly broader representations of the functional connectome, were used to associate connectivity patterns with six data-driven dimensions of psychopathology: anxiety sensitivity, anxious arousal, rumination, anhedonia, insomnia, and negative affect. To protect against overfitting, 50 participants were held out in a testing dataset, leaving 142 participants as training data. Results Different modeling approaches varied in the extent to which they could model different symptom dimensions: seed-based correlation analysis failed to reproducibly model any symptoms, subsets of the connectome (edgewise regression) were sufficient to model insomnia and anxious arousal, and broad representations of the entire connectome (brain basis set modeling) were necessary to model negative affect and ruminative thought. Conclusions These results indicate that different methods of representing the functional connectome differ in the degree that they can model different symptom dimensions, highlighting the potential sufficiency of subsets of connections for some dimensions and the necessity of connectome-wide approaches in others.
Collapse
Affiliation(s)
- Darsol Seok
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joanne Beer
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marc Jaskir
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nathan Smyk
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adna Jaganjac
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Walid Makhoul
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Philip Cook
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Russell Shinohara
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yvette I. Sheline
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Chang W, Lv Z, Pang X, Nie L, Zheng J. The local neural markers of MRI in patients with temporal lobe epilepsy presenting ictal panic: A resting resting-state postictal fMRI study. Epilepsy Behav 2022; 129:108490. [PMID: 35180570 DOI: 10.1016/j.yebeh.2021.108490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Temporal lobe epilepsy (TLE) is one of the most common focal epilepsies. Some patients with TLE have ictal panic (IP), which is often confused with panic attack (PA) in panic disorder (PD). Previous studies have described temporal lobe epilepsy with ictal panic (TLEIP), but the specific mechanisms remain unclear. Here, we used resting-state functional magnetic resonance imaging (rs-fMRI) to investigate local brain abnormalities in patients with TLEIP and tried to find neural markers to explore the mechanism of IP in patients with TLE. METHODS A total of 40 patients with TLE, including 28 patients with TLE and 12 patients with TLEIP along with 30 age- and gender-matched healthy controls were included. We collected clinical/physiological/neuropsychological and rs-fMRI data. Fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated. ANOVA was used to find different areas and t-tests used to compare differences among fALFF, ReHo, and DC. Correlation analyses explored the relationship between local brain abnormalities and patient characteristics. RESULTS No significant differences in age and gender were found among the three groups, nor were there differences in education level, Montreal Cognitive Assessment (MOCA) and Hamilton Anxiety Scale (HAMA) between the TLEIP and TLE groups. All the onset sites of patients with TLEIP were on the right. In addition to fear, other symptoms observed included nausea, palpitations, rising epigastric sensation, and dyspnea. There were no correlations between duration of IP and HAMA (p = 0.659). Moreover, all IP durations were <2 min and most <1 min. Compared to the HCs group, the ReHo value of the TLEIP group in the right middle frontal gyrus was significantly decreased (GRF correction, two-tailed, voxel level P < 0.005, cluster level P < 0.05). Compared to the HCs and TLE groups, the DC value of the TLEIP group in the left middle temporal gyrus (MTG) was significantly increased (GRF correction, two-tailed, voxel level P < 0.005, cluster level P < 0.05). No regions showed any significant fALFF difference between HCs and TLE groups (GRF correction, two-tailed, voxel level P < 0.005, cluster level P < 0.05). CONCLUSIONS This research describes local brain abnormalities in patients with TLE presenting as IP. These results will be preliminarily conducive to understand the seizure mechanism of IP in patients with TLE, find out the MRI neural markers, and to further explore the neurophysiological mechanisms of IP in patients with TLE.
Collapse
Affiliation(s)
- Weiwei Chang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, People's Republic of China
| | - Zongxia Lv
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, People's Republic of China
| | - Xiaomin Pang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, People's Republic of China
| | - Liluo Nie
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, People's Republic of China
| | - Jinou Zheng
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, People's Republic of China.
| |
Collapse
|
15
|
Xu J, Hao L, Chen M, He Y, Jiang M, Tian T, Wang H, Wang Y, Wang D, Han ZR, Tan S, Men W, Gao J, He Y, Tao S, Dong Q, Qin S. Developmental Sex Differences in Negative Emotion Decision-Making Dynamics: Computational Evidence and Amygdala-Prefrontal Pathways. Cereb Cortex 2021; 32:2478-2491. [PMID: 34643680 DOI: 10.1093/cercor/bhab359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Sex differences in human emotion and related decision-making behaviors are recognized, which can be traced back early in development. However, our understanding of their underlying neurodevelopmental mechanisms remains elusive. Using developmental functional magnetic resonance imaging and computational approach, we investigated developmental sex differences in latent decision-making dynamics during negative emotion processing and related neurocognitive pathways in 243 school-aged children and 78 young adults. Behaviorally, girls exhibit higher response caution and more effective evidence accumulation, whereas boys show more impulsive response to negative facial expression stimuli. These effects parallel sex differences in emotion-related brain maturity linking to evidence accumulation, along with age-related decrease in emotional response in the basolateral amygdala and medial prefrontal cortex (MPFC) in girls and an increase in the centromedial amygdala (CMA) in boys. Moreover, girls exhibit age-related decreases in BLA-MPFC coupling linked to evidence accumulation, but boys exhibit increases in CMA-insula coupling associated with response caution. Our findings highlight the neurocomputational accounts for developmental sex differences in emotion and emotion-related behaviors and provide important implications into the neurodevelopmental mechanisms of sex differences in latent emotional decision-making dynamics. This informs the emergence of sex differences in typical and atypical neurodevelopment of children's emotion and related functions.
Collapse
Affiliation(s)
- Jiahua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Key Laboratory of Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Lei Hao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Key Laboratory of Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Menglu Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Key Laboratory of Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Ying He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Key Laboratory of Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Min Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Key Laboratory of Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Ting Tian
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Key Laboratory of Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Hui Wang
- Faculty of Psychology, School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Daoyang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Department of Psychology, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhuo Rachel Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Key Laboratory of Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies & McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Jiahong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies & McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Key Laboratory of Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Key Laboratory of Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.,Chinese Institute for Brain Research, Beijing, 102206, China
| |
Collapse
|
16
|
Differential involvement of frontoparietal network and insula cortex in emotion regulation. Neuropsychologia 2021; 161:107991. [PMID: 34391808 DOI: 10.1016/j.neuropsychologia.2021.107991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022]
Abstract
Emotion regulation (ER) is an essential part of our daily life. To effectively regulate emotions, different types of strategies may be adopted. Although previous neuroimaging studies have shown that the frontoparietal cortex is critical for the regulation of emotions, reports about the specific brain regions involved in each strategy remain inconsistent. Therefore, the present study recruited 32 healthy participants to directly examine three typical ER strategies (distraction, reappraisal, and suppression) with an emotional regulation paradigm using functional magnetic resonance imaging (fMRI). Our results show that the three ER strategies recruited differential activation in the frontoparietal and insular cortex. Specifically, distraction evoked stronger activation in the parietal cortex, while reappraisal triggered stronger activation in most parts of the frontal cortex. Importantly, suppression predominantly recruited the left inferior frontal gyrus (IFG), while reappraisal caused more activation than suppression in bilateral medial superior frontal gyrus and IFG. Besides, functional connectivity analysis found that the connectivity between the right insular and the right IFG was negatively correlated with reappraisal effect, while that between the left insular and the left IFG was negatively correlated with suppression effect. These results suggest that the successful implementation of distraction, reappraisal, and suppression specifically employ different parts of the frontoparietal network. Overall, our findings may have potential implications for clinical practice by providing specific neural targets for clinical intervention.
Collapse
|
17
|
Wang HY, Xu GQ, Ni MF, Zhang CH, Li XL, Chang Y, Sun XP, Zhang BW. Neural basis of implicit cognitive reappraisal in panic disorder: an event-related fMRI study. J Transl Med 2021; 19:304. [PMID: 34256777 PMCID: PMC8276458 DOI: 10.1186/s12967-021-02968-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
Background Panic disorder (PD) is thought to be related with deficits in emotion regulation, especially in cognitive reappraisal. According to the cognitive model, PD patients’ intrinsic and unconscious misappraisal strategies are the cause of panic attacks. However, no studies have yet been performed to explore the underlying neuromechanism of cognitive reappraisal that occur on an unconscious level in PD patients. Methods Twenty-six patients with PD and 25 healthy controls (HC) performed a fully-verified event-block design emotional regulation task aimed at investigating responses of implicit cognitive reappraisal during an fMRI scan. Participants passively viewed negatively valanced pictures that were beforehand neutrally, positively, or adversely portrayed in the task. Results Whole-brain analysis of fMRI data showed that PD patients exhibited less activation in the right dorsolateral prefrontal cortex (dlPFC) and right dorsomedial prefrontal cortex (dmPFC) compared to HC, but presented greater activation in parietal cortex when negative pictures were preceded by positive/neutral vs negative descriptions. Simultaneously, interactive effects of Group × Condition were observed in the right amygdala across both groups. Furthermore, activation in dlPFC and dmPFC was is negatively correlated to severity of anxiety and panic in PD when negative images were preceded by non-negative vs negative descriptions. Conclusions Emotional dysregulation in PD is likely the result of deficient activation in dlPFC and dmPFC during implicit cognitive reappraisal, in line with impaired automatic top-down regulation. Correlations between severity of anxiety and panic attack and activation of right dlPFC and dmPFC suggest that the failure to engage prefrontal region during implicit cognitive reappraisal might be associated wtih the severity of anxiety and panic; such functional patterns might be the target of possible treatments.
Collapse
Affiliation(s)
- Hai-Yang Wang
- Department of Neurology, Jining No. 1 People's Hospital, Jining, 272000, China.,Department of Neurology and Psychiatry, The First Affiliated Hospital of Dalian Medical University, No.222, Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Guo-Qing Xu
- Department of Psychology, Dalian Medical University, Dalian, 116044, China
| | - Ming-Fei Ni
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Cui-Hong Zhang
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Dalian Medical University, No.222, Zhongshan Road, Dalian, 116011, Liaoning Province, China.,Department of Geriatric Medicine, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516000, China
| | - Xue-Lin Li
- Department of Intensive Care Unit, Jining No. 1 People's Hospital, Jining, 272000, China
| | - Yi Chang
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Dalian Medical University, No.222, Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Xiao-Pei Sun
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Dalian Medical University, No.222, Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Bing-Wei Zhang
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Dalian Medical University, No.222, Zhongshan Road, Dalian, 116011, Liaoning Province, China. .,Department of Psychology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
18
|
GENÇ M, TOLAN Ö. Okul Öncesi Dönemde Sık Görülen Psikolojik ve Gelişimsel Bozukluklarda Oyun Terapisi Uygulamaları. PSIKIYATRIDE GUNCEL YAKLASIMLAR - CURRENT APPROACHES IN PSYCHIATRY 2021. [DOI: 10.18863/pgy.757366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Haller SP, Stoddard J, Pagliaccio D, Bui H, MacGillivray C, Jones M, Brotman MA. Computational Modeling of Attentional Impairments in Disruptive Mood Dysregulation and Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2021; 60:637-645. [PMID: 33242544 PMCID: PMC8096646 DOI: 10.1016/j.jaac.2020.08.468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/04/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Computational models provide information about cognitive components underlying behavior. When applied to psychopathology-relevant processes, they offer additional insight to observed differences in behavioral performance. Drift diffusion models have been successfully applied to investigate processing efficiency during binary choice tasks. Using these models, we examine the association between psychopathology (irritability and inattention/hyperactivity) and processing efficiency under different attentional demands. METHOD A total of 187 youths with attention-deficit/hyperactivity disorder (ADHD), disruptive mood dysregulation disorder (DMDD), both disorders, or no major psychopathology (age, mean ± SD, 13.09 ± 2.55 y, 34% female) completed an Eriksen Flanker task. Of these, 87 youths provided complete data on dimensional measures of the core symptom of DMDD (irritability) and those of ADHD (inattention and hyperactivity). RESULTS In a categorical diagnosis-based analysis (n = 187), we found significant interactive effects among ADHD, DMDD, and task condition on processing efficiency, whereby changes in processing efficiency between conflict and nonconflict conditions were larger in youths without psychopathology compared with patients. Analysis of symptom severity (n = 87) across diagnoses similarly revealed an interaction between symptom dimensions and task condition on processing efficiency. Irritability moderated the magnitude of association between inattention symptoms and difference in processing efficiency between conflict and nonconflict conditions. CONCLUSION Adapting processing efficiency to cognitive demands may represent a shared cognitive endophenotype for both ADHD and DMDD. Highly irritable and/or inattentive youth may have difficulty adjusting processing efficiency to changing task demands, possibly reflecting impairments in cognitive flexibility.
Collapse
Affiliation(s)
| | - Joel Stoddard
- University of Colorado, Aurora.; University of Colorado, Colorado
| | - David Pagliaccio
- New York State Psychiatric Institute, Columbia University, New York
| | - Hong Bui
- National Institute of Mental Health, Bethesda, Maryland
| | | | - Matt Jones
- University of Colorado Boulder.; University of Colorado, Colorado
| | | |
Collapse
|
20
|
Seo H, Oemisch M. Decoding Emotion: The Amygdala-Prefrontal Cortex Pathway for Emotion Regulation of Children. Biol Psychiatry 2020; 88:517-519. [PMID: 32912425 DOI: 10.1016/j.biopsych.2020.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Hyojung Seo
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.
| | - Mariann Oemisch
- Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|