1
|
Ben-Zion Z, Levy I. Representation of Anticipated Rewards and Punishments in the Human Brain. Annu Rev Psychol 2025; 76:197-226. [PMID: 39418537 PMCID: PMC11930275 DOI: 10.1146/annurev-psych-022324-042614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Subjective value is a core concept in neuroeconomics, serving as the basis for decision making. Despite the extensive literature on the neural encoding of subjective reward value in humans, the neural representation of punishment value remains relatively understudied. This review synthesizes current knowledge on the neural representation of reward value, including methodologies, involved brain regions, and the concept of a common currency representation of diverse reward types in decision-making and learning processes. We then critically examine existing research on the neural representation of punishment value, highlighting conceptual and methodological challenges in human studies and insights gained from animal research. Finally, we explore how individual differences in reward and punishment processing may be linked to various mental illnesses, with a focus on stress-related psychopathologies. This review advocates for the integration of both rewards and punishments within value-based decision-making and learning frameworks, leveraging insights from cross-species studies and utilizing ecological gamified paradigms to reflect real-life scenarios.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, U.S. Department of Veterans Affairs, West Haven, Connecticut, USA
- Department of Comparative Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
- Clinical Neuroscience Division, National Center for PTSD, U.S. Department of Veterans Affairs, Orange, Connecticut, USA
| | - Ifat Levy
- Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychology, Yale University, New Haven, Connecticut, USA
- Department of Comparative Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
2
|
Webb EK, Stevens JS, Ely TD, Lebois LAM, van Rooij SJH, Bruce SE, House SL, Beaudoin FL, An X, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Bollen KA, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Swor RA, Murty VP, Hudak LA, Pascual JL, Seamon MJ, Datner EM, Pearson C, Peak DA, Domeier RM, Rathlev NK, O’Neil BJ, Sergot P, Sanchez LD, Joormann J, Pizzagalli DA, Harte SE, Kessler RC, Koenen KC, Ressler KJ, McLean SA, Harnett NG. Neighborhood Resources Associated With Psychological Trajectories and Neural Reactivity to Reward After Trauma. JAMA Psychiatry 2024; 81:1090-1100. [PMID: 39083325 PMCID: PMC11292566 DOI: 10.1001/jamapsychiatry.2024.2148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 08/03/2024]
Abstract
Importance Research on resilience after trauma has often focused on individual-level factors (eg, ability to cope with adversity) and overlooked influential neighborhood-level factors that may help mitigate the development of posttraumatic stress disorder (PTSD). Objective To investigate whether an interaction between residential greenspace and self-reported individual resources was associated with a resilient PTSD trajectory (ie, low/no symptoms) and to test if the association between greenspace and PTSD trajectory was mediated by neural reactivity to reward. Design, Setting, and Participants As part of a longitudinal cohort study, trauma survivors were recruited from emergency departments across the US. Two weeks after trauma, a subset of participants underwent functional magnetic resonance imaging during a monetary reward task. Study data were analyzed from January to November 2023. Exposures Residential greenspace within a 100-m buffer of each participant's home address was derived from satellite imagery and quantified using the Normalized Difference Vegetation Index and perceived individual resources measured by the Connor-Davidson Resilience Scale (CD-RISC). Main Outcome and Measures PTSD symptom severity measured at 2 weeks, 8 weeks, 3 months, and 6 months after trauma. Neural responses to monetary reward in reward-related regions (ie, amygdala, nucleus accumbens, orbitofrontal cortex) was a secondary outcome. Covariates included both geocoded (eg, area deprivation index) and self-reported characteristics (eg, childhood maltreatment, income). Results In 2597 trauma survivors (mean [SD] age, 36.5 [13.4] years; 1637 female [63%]; 1304 non-Hispanic Black [50.2%], 289 Hispanic [11.1%], 901 non-Hispanic White [34.7%], 93 non-Hispanic other race [3.6%], and 10 missing/unreported [0.4%]), 6 PTSD trajectories (resilient, nonremitting high, nonremitting moderate, slow recovery, rapid recovery, delayed) were identified through latent-class mixed-effect modeling. Multinominal logistic regressions revealed that for individuals with higher CD-RISC scores, greenspace was associated with a greater likelihood of assignment in a resilient trajectory compared with nonremitting high (Wald z test = -3.92; P < .001), nonremitting moderate (Wald z test = -2.24; P = .03), or slow recovery (Wald z test = -2.27; P = .02) classes. Greenspace was also associated with greater neural reactivity to reward in the amygdala (n = 288; t277 = 2.83; adjusted P value = 0.02); however, reward reactivity did not differ by PTSD trajectory. Conclusions and Relevance In this cohort study, greenspace and self-reported individual resources were significantly associated with PTSD trajectories. These findings suggest that factors at multiple ecological levels may contribute to the likelihood of resiliency to PTSD after trauma.
Collapse
Affiliation(s)
- E. Kate Webb
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Timothy D. Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Lauren A. M. Lebois
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts
| | - Sanne J H. van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Steven E. Bruce
- Department of Psychological Sciences, University of Missouri-St Louis, St Louis
| | - Stacey L. House
- Department of Emergency Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Francesca L. Beaudoin
- Department of Epidemiology, Brown University, Providence, Rhode Island
- Department of Emergency Medicine, Brown University, Providence, Rhode Island
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill
| | - Thomas C. Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco
| | - Gari D. Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta
| | - Sarah D. Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill
| | - Laura T. Germine
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts
- The Many Brains Project, Belmont, Massachusetts
| | - Kenneth A. Bollen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill
| | - Scott L. Rauch
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, McLean Hospital, Belmont, Massachusetts
| | - John P. Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester
| | - Alan B. Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Paul I. Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis
| | - Phyllis L. Hendry
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville
| | - Christopher W. Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Brittany E. Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus
- Ohio State University College of Nursing, Columbus
| | - Robert A. Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Vishnu P. Murty
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Lauren A. Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jose L. Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Mark J. Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia
| | - Elizabeth M. Datner
- Department of Emergency Medicine, Jefferson Einstein Hospital, Jefferson Health, Philadelphia, Pennsylvania
- Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St John Hospital, Detroit, Michigan
| | - David A. Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston
| | - Robert M. Domeier
- Department of Emergency Medicine, Trinity Health-Ann Arbor, Ypsilanti, Michigan
| | - Niels K. Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield
| | - Brian J. O’Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, Michigan
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, Texas
| | - Leon D. Sanchez
- Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Diego A. Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts
| | - Steven E. Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor
| | - Ronald C. Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - Karestan C. Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts
| | - Samuel A. McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill
| | - Nathaniel G. Harnett
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts
| |
Collapse
|
3
|
Gupta T, Eckstrand KL, Forbes EE. Annual Research Review: Puberty and the development of anhedonia - considering childhood adversity and inflammation. J Child Psychol Psychiatry 2024; 65:459-480. [PMID: 38391011 PMCID: PMC10939801 DOI: 10.1111/jcpp.13955] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Anhedonia, or diminished pleasure and motivation, is a symptom of severe mental illness (e.g., depressive disorder, bipolar disorder, schizophrenia) that emerges during adolescence. Anhedonia is a pernicious symptom that is related to social impairments, treatment resistance, and suicide. As the mechanisms of anhedonia are postulated to include the frontostriatal circuitry and the dopamine neuromodulatory system, the development and plasticity of these systems during the vulnerable period of adolescence, as well as their sensitivity to pubertal hormones, suggest that pubertal maturation could play a role in the development of anhedonia. This review takes a developmental perspective, considering the possibility that anhedonia emerges in the context of pubertal maturation and adolescent development, with childhood adversity and chronic inflammation influencing neural reward systems to accelerate anhedonia's progression. Here, we review the relevant extant literature on the components of this model and suggest directions for future research.
Collapse
Affiliation(s)
- Tina Gupta
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, PA USA
| | | | - Erika E. Forbes
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, PA USA
- University of Pittsburgh, Department of Psychology, Pittsburgh, PA USA
- University of Pittsburgh, Department of Pediatrics, Pittsburgh PA USA
- University of Pittsburgh, Department of Clinical and Translational Science, Pittsburgh PA USA
| |
Collapse
|
4
|
Soehner AM, Wallace ML, Edmiston K, Chase HW, Lockovich J, Aslam H, Stiffler R, Graur S, Skeba A, Bebko G, Benjamin OE, Wang Y, Phillips ML. Neurobehavioral Reward and Sleep-Circadian Profiles Predict Present and Next-Year Mania/Hypomania Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1251-1261. [PMID: 37230386 PMCID: PMC10665544 DOI: 10.1016/j.bpsc.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Heightened reward sensitivity/impulsivity, related neural activity, and sleep-circadian disruption are important risk factors for bipolar spectrum disorders, the defining feature of which is mania/hypomania. Our goal was to identify neurobehavioral profiles based on reward and sleep-circadian features and examine their specificity to mania/hypomania versus depression vulnerability. METHODS At baseline, a transdiagnostic sample of 324 adults (18-25 years) completed trait measures of reward sensitivity (Behavioral Activation Scale), impulsivity (UPPS-P-Negative Urgency), and a functional magnetic resonance imaging card-guessing reward task (left ventrolateral prefrontal activity to reward expectancy, a neural correlate of reward motivation and impulsivity, was extracted). At baseline, 6-month follow-up, and 12-month follow-up, the Mood Spectrum Self-Report Measure - Lifetime Version assessed lifetime predisposition to subthreshold-syndromal mania/hypomania, depression, and sleep-circadian disturbances (insomnia, sleepiness, reduced sleep need, rhythm disruption). Mixture models derived profiles from baseline reward, impulsivity, and sleep-circadian variables. RESULTS Three profiles were identified: 1) healthy (no reward or sleep-circadian disruption; n = 162); 2) moderate-risk (moderate reward and sleep-circadian disruption; n = 109); and 3) high-risk (high impulsivity and sleep-circadian disruption; n = 53). At baseline, the high-risk group had significantly higher mania/hypomania scores than the other groups but did not differ from the moderate-risk group in depression scores. Over the follow-up period, the high-risk and moderate-risk groups exhibited elevated mania/hypomania scores, whereas depression scores increased at a faster rate in the healthy group than in the other groups. CONCLUSIONS Cross-sectional and next-year predisposition to mania/hypomania is associated with a combination of heightened reward sensitivity and impulsivity, related reward circuitry activity, and sleep-circadian disturbances. These measures can be used to detect mania/hypomania risk and provide targets to guide and monitor interventions.
Collapse
Affiliation(s)
- Adriane M Soehner
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Meredith L Wallace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kale Edmiston
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jeannette Lockovich
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Haris Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richelle Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simona Graur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alex Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Osasumwen E Benjamin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yiming Wang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Eckstrand KL, Silk JS, Nance M, Wallace ML, Buckley N, Lindenmuth M, Flores L, Alarcón G, Quevedo K, Phillips ML, Lenniger CJ, Sammon MM, Brostowin A, Ryan N, Jones N, Forbes EE. Medial Prefrontal Cortex Activity to Reward Outcome Moderates the Association Between Victimization Due to Sexual Orientation and Depression in Youth. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1289-1297. [PMID: 36064188 PMCID: PMC9842132 DOI: 10.1016/j.bpsc.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Sexual minority youth (SMY) are 3 times more likely to experience depression than heterosexual peers. Minority stress theory posits that this association is explained by sexual orientation victimization, which acts as a stressor to impact depression. For those vulnerable to the effects of stress, victimization may worsen depression by altering activity in neural reward systems. This study examines whether neural reward systems moderate the influence of sexual orientation victimization, a common and distressing experience in SMY, on depression. METHODS A total of 81 participants ages 15 to 22 years (41% SMY, 52% marginalized race) reported sexual orientation victimization, depression severity, and anhedonia severity, and underwent a monetary reward functional magnetic resonance imaging task. Significant activation to reward > neutral outcome (pfamilywise error < .05) was determined within a meta-analytically derived Neurosynth reward mask. A univariate linear model examined the impact of reward activation and identity on victimization-depression relationships. RESULTS SMY reported higher depression (p < .001), anhedonia (p = .03), and orientation victimization (p < .001) than heterosexual youth. The bilateral ventral striatum, medial prefrontal cortex (mPFC), anterior cingulate cortex, and right orbitofrontal cortex were significantly active to reward. mPFC activation moderated associations between sexual orientation victimization and depression (p = .03), with higher depression severity observed in those with a combination of higher mPFC activation and greater orientation victimization. CONCLUSIONS Sexual orientation victimization was related to depression but only in the context of higher mPFC activation, a pattern observed in depressed youth. These novel results provide evidence for neural reward sensitivity as a vulnerability factor for depression in SMY, suggesting mechanisms for disparities, and are a first step toward a clinical neuroscience understanding of minority stress in SMY.
Collapse
Affiliation(s)
| | - Jennifer S. Silk
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Melissa Nance
- Department of Psychology, University of Missouri St. Louis, St. Louis, MO
| | | | - Nicole Buckley
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - Luis Flores
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
| | - Gabriela Alarcón
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Karina Quevedo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - M. McLean Sammon
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Alyssa Brostowin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Neal Ryan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Neil Jones
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Erika E. Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Caetano I, Amorim L, Castanho TC, Coelho A, Ferreira S, Portugal-Nunes C, Soares JM, Gonçalves N, Sousa R, Reis J, Lima C, Marques P, Moreira PS, Rodrigues AJ, Santos NC, Morgado P, Esteves M, Magalhães R, Picó-Pérez M, Sousa N. Association of amygdala size with stress perception: Findings of a transversal study across the lifespan. Eur J Neurosci 2022; 56:5287-5298. [PMID: 36017669 DOI: 10.1111/ejn.15809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022]
Abstract
Daily routines are getting increasingly stressful. Interestingly, associations between stress perception and amygdala volume, a brain region implicated in emotional behaviour, have been observed in both younger and older adults. Life stress, on the other hand, has become pervasive and is no longer restricted to a specific age group or life stage. As a result, it is vital to consider stress as a continuum across the lifespan. In this study, we investigated the relationship between perceived stress and amygdala size in 272 healthy participants with a broad age range. Participants were submitted to a structural magnetic resonance imaging (MRI) to extract amygdala volume, and the Perceived Stress Scale (PSS) scores were used as the independent variable in volumetric regressions. We found that perceived stress is positively associated with the right amygdala volume throughout life.
Collapse
Affiliation(s)
- Inês Caetano
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Liliana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), Braga, Portugal
| | - Teresa Costa Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), Braga, Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Carlos Portugal-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,CECAV-Veterinary and Animal Science Research Centre, Vila Real, Portugal
| | - José Miguel Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nuno Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Rui Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | - Joana Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Catarina Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nadine Correia Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), Braga, Portugal
| |
Collapse
|
7
|
Santos JPL, Versace A, Stiffler RS, Aslam HA, Lockovich JC, Bonar L, Bertocci M, Iyengar S, Bebko G, Skeba A, Gill MK, Monk K, Hickey MB, Birmaher B, Phillips ML. White matter predictors of worsening of subthreshold hypomania severity in non-bipolar young adults parallel abnormalities in individuals with bipolar disorder. J Affect Disord 2022; 306:148-156. [PMID: 35331820 PMCID: PMC9008581 DOI: 10.1016/j.jad.2022.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Identifying neural predictors of worsening subthreshold hypomania severity can help identify risk of progression to BD. While diffusion Magnetic Resonance Imaging (dMRI) studies reported white matter microstructural abnormalities in tracts supporting emotional regulation in individuals with BD, it remains unknown whether similar patterns of white matter microstructure predict worsening of subthreshold hypomania severity in non-BD individuals. METHODS dMRI data were collected in: 81 non-BD individuals recruited across a range of subthreshold depression and hypomania, and followed for six months; and independent samples of 75 BD and 58 healthy individuals. All individuals were assessed using standardized diagnostic assessments, mood and anxiety symptom rating scales. Global probabilistic tractography and a tract-profile approach examined fractional anisotropy (FA), a measure of fiber collinearity, in tracts supporting emotional regulation shown to have abnormalities in BD: forceps minor (FMIN), anterior thalamic radiation (ATR), cingulum bundle (CB), and uncinate fasciculus (UF). RESULTS Lower FA in left CB (middle, β = -0.22, P = 0.022; posterior, β = -0.32, P < 0.001), right CB (anterior, β = -0.30, P = 0.003; posterior, β = -0.27, P = 0.005), and right UF (frontal, β = -0.29, P = 0.002; temporal, β = -0.40, P < 0.001) predicted worsening of subthreshold hypomania severity in non-BD individuals. BD versus healthy individuals showed lower FA in several of these segments: middle left CB (F = 8.7, P = 0.004), anterior right CB (F = 9.8, P = 0.002), and frontal right UF (F = 7.0, P = 0.009). Non-BD individuals with worsening 6-month hypomania had lower FA in these three segments versus HC and non-BD individuals without worsening hypomania, but similar FA to BD individuals. LIMITATIONS Relatively short follow-up. CONCLUSIONS White matter predictors of worsening subthreshold hypomania in non-BD individuals parallel abnormalities in BD individuals, and can guide early risk identification and interventions.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haris A Aslam
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeanette C Lockovich
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Bonar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michele Bertocci
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Genna Bebko
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander Skeba
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary Kay Gill
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelly Monk
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary Beth Hickey
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Boris Birmaher
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Millman ZB, Schiffman J, Gold JM, Akouri-Shan L, Demro C, Fitzgerald J, Rakhshan Rouhakhtar PJ, Klaunig M, Rowland LM, Waltz JA. Linking Salience Signaling With Early Adversity and Affective Distress in Individuals at Clinical High Risk for Psychosis: Results From an Event-Related fMRI Study. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac039. [PMID: 35799887 PMCID: PMC9250803 DOI: 10.1093/schizbullopen/sgac039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Evidence suggests dysregulation of the salience network in individuals with psychosis, but few studies have examined the intersection of stress exposure and affective distress with prediction error (PE) signals among youth at clinical high-risk (CHR). Here, 26 individuals at CHR and 19 healthy volunteers (HVs) completed a monetary incentive delay task in conjunction with fMRI. We compared these groups on the amplitudes of neural responses to surprising outcomes-PEs without respect to their valence-across the whole brain and in two regions of interest, the anterior insula and amygdala. We then examined relations of these signals to the severity of depression, anxiety, and trauma histories in the CHR group. Relative to HV, youth at CHR presented with aberrant PE-evoked activation of the temporoparietal junction and weaker deactivation of the precentral gyrus, posterior insula, and associative striatum. No between-group differences were observed in the amygdala or anterior insula. Among youth at CHR, greater trauma histories were correlated with stronger PE-evoked amygdala activation. No associations were found between affective symptoms and the neural responses to PE. Our results suggest that unvalenced PE signals may provide unique information about the neurobiology of CHR syndromes and that early adversity exposure may contribute to neurobiological heterogeneity in this group. Longitudinal studies of young people with a range of risk syndromes are needed to further disentangle the contributions of distinct aspects of salience signaling to the development of psychopathology.
Collapse
Affiliation(s)
- Zachary B Millman
- Psychotic Disorders Division, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02114, USA
| | - Jason Schiffman
- Department of Psychological Science, University of California, Irvine, 4201 Social and Behavioral Sciences Gateway, Irvine, CA 92697-7085, USA
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - James M Gold
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, USA
| | - LeeAnn Akouri-Shan
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Caroline Demro
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - John Fitzgerald
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Pamela J Rakhshan Rouhakhtar
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Mallory Klaunig
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, USA
| | - James A Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, USA
| |
Collapse
|
9
|
Kelly JR, Gillan CM, Prenderville J, Kelly C, Harkin A, Clarke G, O'Keane V. Psychedelic Therapy's Transdiagnostic Effects: A Research Domain Criteria (RDoC) Perspective. Front Psychiatry 2021; 12:800072. [PMID: 34975593 PMCID: PMC8718877 DOI: 10.3389/fpsyt.2021.800072] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating clinical evidence shows that psychedelic therapy, by synergistically combining psychopharmacology and psychological support, offers a promising transdiagnostic treatment strategy for a range of disorders with restricted and/or maladaptive habitual patterns of emotion, cognition and behavior, notably, depression (MDD), treatment resistant depression (TRD) and addiction disorders, but perhaps also anxiety disorders, obsessive-compulsive disorder (OCD), Post-Traumatic Stress Disorder (PTSD) and eating disorders. Despite the emergent transdiagnostic evidence, the specific clinical dimensions that psychedelics are efficacious for, and associated underlying neurobiological pathways, remain to be well-characterized. To this end, this review focuses on pre-clinical and clinical evidence of the acute and sustained therapeutic potential of psychedelic therapy in the context of a transdiagnostic dimensional systems framework. Focusing on the Research Domain Criteria (RDoC) as a template, we will describe the multimodal mechanisms underlying the transdiagnostic therapeutic effects of psychedelic therapy, traversing molecular, cellular and network levels. These levels will be mapped to the RDoC constructs of negative and positive valence systems, arousal regulation, social processing, cognitive and sensorimotor systems. In summarizing this literature and framing it transdiagnostically, we hope we can assist the field in moving toward a mechanistic understanding of how psychedelics work for patients and eventually toward a precise-personalized psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Department of Psychiatry, Tallaght University Hospital, Dublin, Ireland
| | - Claire M. Gillan
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Psychology, Trinity College, Dublin, Ireland
- Global Brain Health Institute, Trinity College, Dublin, Ireland
| | - Jack Prenderville
- Transpharmation Ireland Ltd, Institute of Neuroscience, Trinity College, Dublin, Ireland
- Discipline of Physiology, School of Medicine, Trinity College, Dublin, Ireland
| | - Clare Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Psychology, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Department of Psychiatry, Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
10
|
Holt-Gosselin B, Keller AS, Chesnut M, Ling R, Grisanzio KA, Williams LM. Greater baseline connectivity of the salience and negative affect circuits are associated with natural improvements in anxiety over time in untreated participants. J Affect Disord 2021; 295:366-376. [PMID: 34492429 PMCID: PMC11890217 DOI: 10.1016/j.jad.2021.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND There is limited research examining the natural trajectories of depression and anxiety, how these trajectories relate to baseline neural circuit function, and how symptom trajectory-circuit relationships are impacted by engagement in lifestyle activities including exercise, hobbies, and social interactions. To address these gaps, we assessed these relations over three months in untreated participants. METHODS 262 adults (59.5% female, mean age 35) with symptoms of anxiety and depression, untreated with pharmacotherapy or behavioral therapy, completed the DASS-42, WHOQOL, and custom surveys at baseline and follow-up to assess symptoms, psychosocial function, and lifestyle activity engagement. At baseline, participants underwent fMRI under task-free and task-evoked conditions. We quantified six circuits implicated in these symptoms: default mode, salience, negative and positive affect, attention, and cognitive control. RESULTS From baseline to 3 months, some participants demonstrated a natural improvement in anxiety (24%) and depression (26%) symptoms. Greater baseline salience circuit connectivity (pFDR=0.045), specifically between the left and right insula (pFDR=0.045), and greater negative affect circuit connectivity elicited by sad faces (pFDR=0.030) were associated with anxiety symptom improvement. While engagement in lifestyle activities were not associated with anxiety improvements, engagement in hobbies moderated the association between negative affect circuit connectivity and anxiety symptom improvement (p = 0.048). LIMITATIONS The observational design limits causal inference. CONCLUSIONS Our findings highlight the role of the salience and negative affect circuits as potential circuit markers of natural anxiety symptom improvements over time. Future studies that identify biomarkers associated with symptom improvements are critical for the development of personalized treatment targets.
Collapse
Affiliation(s)
- Bailey Holt-Gosselin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Interdepartmental Neuroscience Graduate Program, Yale University, New Haven, CT, United States
| | - Arielle S Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Neurosciences PhD Program, Stanford University, Stanford CA, United States
| | - Megan Chesnut
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Ruth Ling
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Katherine A Grisanzio
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Mental Illness Research, Education and Clinical Center, Palo Alto VA Healthcare System, Palo Alto, CA, United States.
| |
Collapse
|
11
|
Ben-Zion Z, Shany O, Admon R, Keynan NJ, Avisdris N, Balter SR, Shalev AY, Liberzon I, Hendler T. Neural Responsivity to Reward versus Punishment Shortly after Trauma Predicts Long-term Development of Post-Traumatic Stress Symptoms. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:150-161. [PMID: 34534702 DOI: 10.1016/j.bpsc.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/11/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Processing negative and positive valenced stimuli involve multiple brain regions including the amygdala and ventral striatum (VS). Post-Traumatic Stress Disorder (PTSD) is often associated with hyper-responsivity to negatively valenced, yet recent evidence also points to deficient positive valence functioning. It is yet unclear what is the relative contribution of such opposing valence processing shortly after trauma to the development of chronic PTSD. METHODS Neurobehavioral indicators of motivational positive vs. negative valence sensitivities were longitudinally assessed in 171 adults (87 females, age=34.19±11.47 years) at 1-, 6-, and 14-months following trauma exposure (TP1, TP2, TP3). Using a gambling fMRI paradigm, amygdala and VS functionality (activity and functional connectivity with the prefrontal cortex) in response to rewards vs. punishments were assessed with relation to PTSD severity at different time-points. The effect of valence processing was depicted behaviorally by the amount of risk taken to maximize reward. RESULTS PTSD severity at TP1 was associated with greater neural functionality in the amygdala (but not the VS) towards punishments vs. rewards, and fewer risky choices. PTSD severity at TP3 was associated with decreased neural functionality in both the VS and amygdala towards rewards vs. punishments at TP1 (but not with risky behavior). Explainable machine learning revealed the primacy of VS biased processing, over the amygdala, in predicting PTSD severity at TP3. CONCLUSIONS These results highlight the importance of biased neural responsivity to positive relative to negative motivational outcomes in PTSD development. Novel therapeutic strategies early after trauma may thus target both valence fronts.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; Yale School of Medicine, Yale University, New Haven, Connecticut, United States; United States Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Ofir Shany
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; School of Psychological Sciences, Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Nimrod Jackob Keynan
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Netanell Avisdris
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shira Reznik Balter
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Arieh Y Shalev
- Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M Health Science Center, TX, USA
| | - Talma Hendler
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; School of Psychological Sciences, Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|