1
|
Zhang H, Zhou R, Lu W, Su Y, Cai Y, Huang J, He S, Ding L, Wang Y, Zhang M, Wu Y, Peng D. Association of aberrant gray matter neurite density with neurovegetative symptom in atypical depression. J Affect Disord 2025; 382:98-106. [PMID: 40250813 DOI: 10.1016/j.jad.2025.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/17/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND The heterogeneity of symptoms in major depressive disorder is impeding progress toward patient-specific treatment strategies and course trajectories. Origins of such differential clinical manifestations likely have dissociable pathophysiologies, but neural substrates associated with specific atypical depressive symptoms remain elusive. METHODS The muti-shell diffusion MRI images were acquired from 50 patients with atypical depression (AD), 97 patients with non-atypical depression (non-AD), and 50 healthy controls (HCs). We used gray matter-specific multi-compartment diffusion models (cortical-neurite orientation dispersion and density imaging and free-water elimination model) to assess abnormalities of gray matter microstructure associated with AD. Superficial U-fibers analysis was performed to clarify short-range cortico-cortical connections. RESULTS Abnormalities in intracellular volume fraction (ICVF) and free-water fraction anisotropy were found in the superior frontal gyrus, middle frontal gyrus, inferior parietal gyrus, and superior parietal gyrus across three groups. Post-hoc pairwise comparative analysis yielded similar results. While adjusting for the effects of age, gender, education, and the ICVF mentioned above, AD patients showed significantly higher scores in reversed neurovegetative symptoms and leaden paralysis compared with non-AD patients. Moreover, diagnosis-related alterations in ICVF of right caudal middle frontal gyrus and education-related changes in ICVF of right superior frontal gyrus were significantly associated with hypersomnia. We also found that underlying superficial U-fibers reflected deficits in cortical-derived neurite density. CONCLUSIONS Cortical-derived neurite density abnormalities were significantly associated with atypical depressive symptoms, capturing interindividual etiological heterogeneity in patients with major depressive disorder. Cortical-derived neurite density within the medial prefrontal gyrus may be a robust biomarker for atypical depressive symptoms of AD.
Collapse
Affiliation(s)
- Huifeng Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Rubai Zhou
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenxian Lu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yousong Su
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yiyun Cai
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jia Huang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Shen He
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lei Ding
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yun Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Min Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ye Wu
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
2
|
Cai ZY, Chen C, Huang ZY, Ye XW, Jin XZ, Chen HR, Sha JM. Cerebral hemodynamic characteristics of patients with auditory verbal hallucinations and the construction of nomogram models. World J Psychiatry 2025; 15:106775. [DOI: 10.5498/wjp.v15.i6.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/07/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND The characteristics of cerebral hemodynamic indexes of patients with different types of auditory verbal hallucinations (AVHs) was not clear.
AIM To explore the characteristics of cerebral hemodynamic indexes of patients with different types of AVHs and construct the risk nomogram prediction model of patients with different types of AVHs.
METHODS Patients with different types of verbal hallucinations who visited Wenzhou Seventh People’s Hospital were retrospectively selected from March 2021 to March 2023, and these patients were classified into 117 cases of schizophrenia (SCZ) with AVHs, 108 cases of post-traumatic stress disorder (PTSD) with AVHs, and 105 cases of recurrent depressive disorder with AVHs according to type. Transcranial doppler was performed to measure the hemodynamic parameters of the anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery (PCA), basilar artery (BA) and vertebral artery (VA). Logistic regression modelling was used to explore the factors affecting patients with different types of AVHs and odds ratio, 95% confidence interval (CI). A clinical prediction model was constructed, and the efficacy of the clinical prediction model was evaluated by using receiver operating characteristic, Hosmer-Lemeshow Goodness-of-Fit test, calibration curves and decision curve analysis.
RESULTS The differences between the three groups of patients in mean velocity (Vm)-MCA, end-diastolic velocity (Vd)-MCA, Vm-ACA, pulsatility index (PI)-ACA, Vm-PCA, peak systolic velocity (Vs)-PCA, Vd-PCA, Vm-BA, Vs-BA, Vd-BA, PI-BA, resistance index (RI)-BA, Vm-VA, Vs-VA, Vd-VA, PI-VA, and RI-VA indexes were statistically significant. Rising Vm-ACA is an independent risk factor for SCZ with AVHs, and falling Vm-VA, Vd-MCA, and Vd-VA are independent risk factors for SCZ with AVHs. Rising Vm-ACA, Vm-PCA, Vs-PCA, Vd-PCA, Vm-BA, and Vs-BA are independent risk factors for PTSD with AVHs, and Vm-MCA, Vs-MCA, Vd-MCA, PI-PCA, and RI-BA are independent protective factors for PTSD with AVHs. Elevated Vm-MCA, Vd-MCA, RI-BA, Vm-VA, and Vd-VA were independent risk factors, and elevated Vm-ACA, Vs-ACA, Vm-PCA, Vs-PCA, and Vd-PCA were independent protective factors. The areas under the curve of the three models were 0.82 (95%CI: 0.76-0.87), 0.88 (95%CI: 0.83-0.92), and 0.81 (95%CI: 0.77-0.86), respectively; the Hosmer-Lemeshow Goodness-of-Fit test of the calibration curves of the three models suggests that P > 0.05.
CONCLUSION Monitoring the cerebral hemodynamic indexes of patients with AVHs is of practical significance in determining the type of mental disorder, which helps clinicians identify the type of AVHs and adopt more efficient treatment strategies to help patients recover.
Collapse
Affiliation(s)
- Zi-Yao Cai
- Department of Traditional Chinese Medicine Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou 325000, Zhejiang Province, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou 325000, Zhejiang Province, China
| | - Zi-Ye Huang
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou 325000, Zhejiang Province, China
| | - Xin-Wu Ye
- Department of Geriatric Psychiatry Ward of the Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou 325000, Zhejiang Province, China
| | - Xiao-Zhuang Jin
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou 325000, Zhejiang Province, China
| | - Hao-Ran Chen
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou 325000, Zhejiang Province, China
| | - Jian-Min Sha
- Department of Affective Disorders Ward of the Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
3
|
Zhang C, Li B, Ng KP, Huang G, Wang X, Kong M, Ba M. Plasma neurofilament light chain mediates the effect of subsyndromal symptomatic depression on cognitive decline in older adults. Front Aging Neurosci 2025; 17:1547394. [PMID: 40438503 PMCID: PMC12116622 DOI: 10.3389/fnagi.2025.1547394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
Objective Subsyndromal symptomatic depression (SSD) is associated with an increased risk of cognitive impairment in non-demented older adults. However, the mechanism underlying this relationship remains unclear. This study aimed to investigate whether plasma neurofilament light chain (NfL) mediates the relationship between SSD and cognitive decline. Materials and methods Data of 707 non-demented older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort were analyzed. Geriatric Depression Scale (GDS) scores were collected at baseline, while plasma NfL levels and cognitive assessments were obtained at baseline, 1-year, and 2-year follow-up visits. SSD was defined as a GDS score of 1-5. Mediation analyses were performed to examine whether the rate of change in plasma NfL levels mediated the relationship between SSD and cognitive decline. Results Participants with SSD exhibited a greater increase in plasma NfL levels and more pronounced declines in global cognition, memory, executive function, language, and processing speed over 2 years compared to non-SSD participants. The rate of change in plasma NfL levels significantly mediated the relationship between SSD and accelerated cognitive decline, particularly in global cognition, memory, language, and processing speed. Conclusion Plasma NfL, which is related to neuroaxonal damage, may partially mediate the association between SSD and accelerated cognitive decline in non-demented older adults. These findings suggest that dynamic changes in plasma NfL levels may reflect early neurobiological alterations associated with SSD and could help identify individuals at increased risk of cognitive deterioration over a 2-year period.
Collapse
Affiliation(s)
- Chunhua Zhang
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Neurology, Jiaozhou Branch of Shanghai East Hospital, Tongji University, Jiaozhou, China
| | - Bingyu Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Guojuan Huang
- Department of Neurology, Jiaozhou Branch of Shanghai East Hospital, Tongji University, Jiaozhou, China
| | - Xijin Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai, China
| | - Maowen Ba
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
| |
Collapse
|
4
|
Yang Z, Li L, Deng B, Xu Y, Du Y, Lv Y, Zhai X. Pharmacokinetics and brain distribution of ketamine after nasal administration. J Pharm Biomed Anal 2025; 264:116945. [PMID: 40375400 DOI: 10.1016/j.jpba.2025.116945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
Major depressive disorder is a severe mental condition characterized by abnormalities in the structure and function of the brain. Ketamine is a novel antidepressant that has rapid effects on depression. This drug is clinically used to treat depression in patients with acute suicidal ideation or behavior. It is typically administered at a dose of 84 mg. However, the distribution of ketamine in the body after intranasal administration, particularly in the brain, remains unknown. In the present study, we utilized a high-performance liquid chromatography-tandem mass spectrometry method to measure ketamine concentrations in rat plasma and several tissues. The measurement ranges were 5-8000 ng/mL for the plasma samples and 5-5000 ng/mL for the tissue samples. The pharmacokinetic profile revealed that the rat plasma ketamine concentration rapidly spiked to a peak of 8002 ng/mL within about 5 min, followed by a rapid decline, nearly reaching 0 ng/mL by about 3 h; the half-life was 27 min. Tissue distribution results revealed that ketamine concentrations in different tissues peaked at 5 min. The highest concentration was noted in the kidneys, followed by the liver. In the rat brain regions, ketamine was primarily concentrated in the hypothalamus and hippocampus, with lower concentrations in the striatum and prefrontal cortex. Our novel methodological approach and findings provide a significant theoretical foundation for using ketamine in clinical settings.
Collapse
Affiliation(s)
- Zihe Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linjie Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yusen Xu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujing Du
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongning Lv
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Centre for Precision Medicine for Critical Illness, Wuhan, China.
| | - Xuejia Zhai
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Centre for Precision Medicine for Critical Illness, Wuhan, China.
| |
Collapse
|
5
|
Pu J, Wang J, Yao C, Kuai C, Pan M, Xue SW. Edge-centric network reveals altered functional integration and dispersion in major depressive disorder. J Psychiatr Res 2025; 187:200-210. [PMID: 40381454 DOI: 10.1016/j.jpsychires.2025.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/16/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Brain networks are composed of nodes representing neural elements, such as brain regions, and edges indicating functional or anatomical connections between these nodes. By shifting our focus from traditional node-centric perspectives to examining second-order similarity patterns between pairs of network edges, we captured and illuminated the co-fluctuation profiles between brain regions, revealing overlapping communities and the intensity of interactions within brain networks. Specifically, we mapped edge-centric networks and then computed edge-community normalized entropy and edge functional connectivity (eFC) to assess perturbations in normal brain network organization associated with major depressive disorder (MDD). Sample data were sourced from a cohort of 400 MDD patients and 441 healthy controls. Edge-community entropy was measured by clustering edge time series derived from resting-state functional magnetic resonance imaging data, while eFC was quantified using the Pearson correlation coefficient between edge time series. Our results showed that MDD patients exhibited increased entropy in the subcortical and frontoparietal networks and decreased eFC within the visual and sensory-motor networks compared to controls. These differences were less evident in first-episode drug-naive patients. However, in recurrent patients, the same abnormalities were observed and the entropy of subcortical network was positively correlated with depression severity, while the eFC of visual network was negatively correlated with depression and anxiety scores. This study provides new insights into the abnormal changes in MDD from a spatiotemporal flexibility and diversity perspective based on high-order edge-centric networks and offering potential novel biomarkers for MDD.
Collapse
Affiliation(s)
- Jiayong Pu
- Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China
| | - Jinghua Wang
- Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China
| | - Chi Yao
- Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China
| | - Changxiao Kuai
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Minlie Pan
- Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
6
|
Bu J, Liu Y, Zhao Y, Liu L, Shen J, Li Y. Paroxetine ameliorates corticosterone-induced myelin damage by promoting the proliferation and differentiation of oligodendrocyte precursor cells. Neuroscience 2025; 573:344-354. [PMID: 40164278 DOI: 10.1016/j.neuroscience.2025.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Depression is frequently associated with demyelination in the prefrontal cortex (PFC), and promoting remyelination can improve neuronal signaling and alleviate depressive symptoms. Paroxetine, a classic selective serotonin reuptake inhibitor (SSRI), is known to exert its antidepressant effects by increasing serotonin levels. However, its potential to alleviate myelin damage in depression remains unclear. A corticosterone (CORT)-induced mouse model of depression was used in this study. Myelin staining and transmission electron microscopy (TEM) were employed to assess myelin damage in the PFC, while immunofluorescence and western blot were performed to evaluate the expression of myelin-associated proteins. The primary oligodendrocyte precursor cells (OPCs) were cultured in vitro. The results demonstrated that paroxetine significantly alleviated CORT-induced depressive-like behaviors, including increased sucrose preference and spontaneous activity in the open field, while reduced immobility time in the tail suspension and forced swimming tests. Paroxetine also increased myelin thickness and restoring myelin integrity in the PFC. Moreover, paroxetine upregulated the expression of MBP, MAG, and neurofilament light chain protein (NFEL). Immunofluorescence analysis that paroxetine significantly increased the number of OPC (Olig2+/NG2+) and promoted OL differentiation (Olig2+/CC-1+), as well as upregulating the expression of PDGFRα. BrdU assays further confirmed that paroxetine enhanced OPC proliferation. In vitro, paroxetine significantly increased the viability of primary OPCs and promoted their proliferation and differentiation, with the most potent effect observed at 20 nM. These findings suggest that paroxetine alleviates CORT-induced myelin damage and improves depressive-like behaviors by promoting OPC proliferation and differentiation, providing new insights into its antidepressant mechanisms.
Collapse
Affiliation(s)
- Jingjing Bu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuan Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yufang Zhao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liming Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiduo Shen
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yucheng Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
7
|
Joyce MKP, Datta D, Arellano JI, Duque A, Morozov YM, Morrison JH, Arnsten AFT. Contrasting patterns of extrasynaptic NMDAR-GluN2B expression in macaque subgenual cingulate and dorsolateral prefrontal cortices. Front Neuroanat 2025; 19:1553056. [PMID: 40255911 PMCID: PMC12006084 DOI: 10.3389/fnana.2025.1553056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Expression of the N-methyl-D-aspartate receptor, particularly when containing the GluN2B subunit (NMDAR-GluN2B), varies across the prefrontal cortex (PFC). In humans, the subgenual cingulate cortex (SGC) contains among the highest levels of NMDAR-GluN2B expression, while the dorsolateral prefrontal cortex (dlPFC) exhibits a more moderate level of NMDAR-GluN2B expression. NMDAR-GluN2B are commonly associated with ionotropic synaptic function and plasticity and are essential to the neurotransmission underlying working memory in the macaque dlPFC in the layer III circuits, which in humans are afflicted in schizophrenia. However, NMDAR-GluN2B can also be found at extrasynaptic sites, where they may trigger distinct events, including some linked to neurodegenerative processes. The SGC is an early site of tau pathology in sporadic Alzheimer's disease (sAD), which mirrors its high NMDAR-GluN2B expression. Additionally, the SGC is hyperactive in depression, which can be treated with NMDAR antagonists. Given the clinical relevance of NMDAR in the SGC and dlPFC, the current study used immunoelectron microscopy (immunoEM) to quantitatively compare the synaptic and extrasynaptic expression patterns of NMDAR-GluN2B across excitatory and inhibitory neuron dendrites in rhesus macaque layer III SGC and dlPFC. We found a larger population of extrasynaptic NMDAR-GluN2B in dendrites of putative pyramidal neurons in SGC as compared to the dlPFC, while the dlPFC had a higher proportion of synaptic NMDAR-GluN2B. In contrast, in putative inhibitory dendrites from both areas, extrasynaptic expression of NMDAR-GluN2B was far more frequently observed over synaptic expression. These findings may provide insight into varying cortical vulnerability to alterations in excitability and neurodegenerative forces.
Collapse
Affiliation(s)
- Mary Kate P. Joyce
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - Dibyadeep Datta
- Department of Psychiatry, Yale Medical School, New Haven, CT, United States
| | - Jon I. Arellano
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - Alvaro Duque
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - Yury M. Morozov
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - John H. Morrison
- Department of Neurology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| |
Collapse
|
8
|
Wang Z, Zou Y, Liu J, Peng W, Li M, Zou Z. Heart rate variability in mental disorders: an umbrella review of meta-analyses. Transl Psychiatry 2025; 15:104. [PMID: 40155386 PMCID: PMC11953273 DOI: 10.1038/s41398-025-03339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/21/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Heart rate variability (HRV) monitoring is increasingly applied in the realm of mental disorders; however, it remains a subject of controversy. This umbrella review summarizes HRV differences between individuals with mental disorders and healthy controls (HCs), as well as changes in HRV before and after treatment in patients with mental disorders. A literature search was conducted using Medline, PubMed, Embase, and the Cochrane Database. Meta-analyses on HRV changes in patients with mental disorders, as well as meta-analyses comparing HCs and patients with mental disorders were included. We computed the summary effect size using random effects models, along with 95% confidence and prediction intervals. We assessed heterogeneity, p value of the largest study, excess significance bias, and small-study effects. Evidence levels were classified as convincing, highly suggestive, suggestive, weak, or not significant. Twenty-one systematic reviews on HRV, covering 19 mental disorders (53 meta-analyses) and 8 treatment modalities (18 meta-analyses), included 442 primary studies and 34,625. For differences between mental disorders and HCs, evidence was suggestive for 7 (13.2%) pooled analyses, indicating decreased HRV in dementia, PTSD, somatic symptom disorders, functional somatic syndromes, and schizophrenia. For other disorders, including autism spectrum disorder, alcohol use disorder, bipolar disorder, generalized anxiety disorder, insomnia, and major depressive disorder, the evidence was weaker and below the suggestive level. For treatment effects, 5 pooled analyses (27.8%) had weak evidence, indicating altered HRV before and after antipsychotic treatment, repetitive transcranial magnetic stimulation treatment, physiotherapy, and psychotherapy. The credibility of HRV evidence in mental disorders varied across HRV variables and diseases. No two diseases exhibited identical altered HRV patterns, highlighting the potential significance of overall HRV profiles in delineating distinct disorders.
Collapse
Affiliation(s)
- Zuxing Wang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yazhu Zou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingwen Liu
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Peng
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingmei Li
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
9
|
Algaidi SA. Chronic stress-induced neuroplasticity in the prefrontal cortex: Structural, functional, and molecular mechanisms from development to aging. Brain Res 2025; 1851:149461. [PMID: 39864644 DOI: 10.1016/j.brainres.2025.149461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Chronic stress profoundly affects the structure and function of the prefrontal cortex (PFC), a brain region critical for executive functions and emotional regulation. This review synthesizes current knowledge on stress-induced PFC plasticity, encompassing structural, functional, and molecular changes. We examine how chronic stress leads to dendritic atrophy, spine loss, and alterations in neuronal connectivity within the PFC, particularly affecting the medial PFC. These structural changes are accompanied by disruptions in neurotransmitter systems, most notably glutamatergic and GABAergic signaling, and alterations in synaptic plasticity mechanisms. At the molecular level, we discuss the intricate interplay between stress hormones, neurotrophic factors, and epigenetic modifications that underlie these changes. The review highlights the significant behavioral and cognitive consequences of stress-induced PFC plasticity, including impairments in working memory, decision-making, and emotional regulation, which may contribute to the development of stress-related psychiatric disorders. We also explore individual differences in stress susceptibility, focusing on sex-specific effects and age-dependent variations in stress responses. The role of estrogens in conferring stress resilience in females and the unique vulnerabilities of the developing and aging PFC are discussed. Finally, we consider potential pharmacological and non-pharmacological interventions that may mitigate or reverse stress-induced changes in the PFC. The review concludes by identifying key areas for future research, including the need for more studies on the reversibility of stress effects and the potential of emerging technologies in unraveling the complexities of PFC plasticity. This comprehensive overview underscores the critical importance of understanding stress-induced PFC plasticity for developing more effective strategies to prevent and treat stress-related mental health disorders.
Collapse
Affiliation(s)
- Sami Awda Algaidi
- Department of Basic Medical Sciences Faculty of Medicine Taibah University Saudi Arabia.
| |
Collapse
|
10
|
Lupinsky D, Nasseef MT, Parent C, Craig K, Diorio J, Zhang TY, Meaney MJ. Resting-state fMRI reveals altered functional connectivity associated with resilience and susceptibility to chronic social defeat stress in mouse brain. Mol Psychiatry 2025:10.1038/s41380-025-02897-2. [PMID: 39984680 DOI: 10.1038/s41380-025-02897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 02/23/2025]
Abstract
Chronic stress is a causal antecedent condition for major depressive disorder and associates with altered patterns of neural connectivity. There are nevertheless important individual differences in susceptibility to chronic stress. How functional connectivity (FC) amongst interconnected, depression-related brain regions associates with resilience and susceptibility to chronic stress is largely unknown. We used resting-state functional magnetic resonance imaging (rs-fMRI) to examine FC between established depression-related regions in susceptible (SUS) and resilient (RES) adult mice following chronic social defeat stress (CSDS). Seed-seed FC analysis revealed that the ventral dentate gyrus (vDG) exhibited the greatest number of FC group differences with other stress-related limbic brain regions. SUS mice showed greater FC between the vDG and subcortical regions compared to both control (CON) or RES groups. Whole brain vDG seed-voxel analysis supported seed-seed findings in SUS mice but also indicated significantly decreased FC between the vDG and anterior cingulate area compared to CON mice. Interestingly, RES mice exhibited enhanced FC between the vDG and anterior cingulate area compared to SUS mice. Moreover, RES mice showed greater FC between the infralimbic prefrontal cortex and the nucleus accumbens shell compared to CON mice. These findings indicate unique differences in FC patterns in phenotypically distinct SUS and RES mice that could represent a neurobiological basis for depression, anxiety, and negative-coping behaviors that are associated with exposure to chronic stress.
Collapse
Affiliation(s)
- Derek Lupinsky
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada
| | - Md Taufiq Nasseef
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada
- Department of Mathematics, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Carine Parent
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada
| | - Kelly Craig
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Josie Diorio
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Tie-Yuan Zhang
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada.
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada.
| | - Michael J Meaney
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada.
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Brain-Body Initiative, Agency for Science, Technology & Research, Singapore, Singapore.
| |
Collapse
|
11
|
Joyce M, Datta D, Arellano J, Duque A, Morozov YM, Morrison JH, Arnsten A. Contrasting patterns of extrasynaptic NMDAR-GluN2B expression in macaque subgenual cingulate and dorsolateral prefrontal cortices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636752. [PMID: 39975025 PMCID: PMC11839065 DOI: 10.1101/2025.02.05.636752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Expression of the N-methyl-D-aspartate receptor, particularly when containing the GluN2B subunit (NMDAR-GluN2B) varies across the prefrontal cortex (PFC). In humans, the subgenual cingulate cortex (SGC) contains among the highest levels of NMDAR-GluN2B expression, while the dorsolateral prefrontal cortex (dlPFC) exhibits a more moderate level of NMDAR-GluN2B expression. NMDAR-GluN2B are commonly associated with ionotropic synaptic function and plasticity, and are essential to the neurotransmission underlying working memory in the macaque dlPFC in the layer III circuits afflicted in schizophrenia. However, NMDAR-GluN2B can also be found at extrasynaptic sites, where they may trigger distinct events, including some linked to neurodegenerative processes. The SGC is an early site of tau pathology in sporadic Alzheimer's Disease (sAD), which mirrors its high NMDAR-GluN2B expression. Additionally, the SGC is hyperactive in depression, which is treated with NMDAR antagonists. Given the clinical relevance of NMDAR in the SGC and dlPFC, the current study used immunoelectron microscopy (immunoEM) to quantitatively compare the synaptic and extrasynaptic expression patterns of NMDAR-GluN2B across excitatory and inhibitory neuron dendrites in the rhesus macaque SGC and dlPFC. We found a larger population of extrasynaptic NMDAR-GluN2B in dendritic shafts and spines of putative pyramidal neurons in SGC as compared to the dlPFC, while the dlPFC had a higher proportion of synaptic NMDAR-GluN2B. In contrast, in putative inhibitory dendrites from both areas, extrasynaptic expression of NMDAR-GluN2B was far more frequently observed over synaptic expression. These findings may provide insight into varying cortical vulnerability to alterations in excitability and to neurodegenerative forces. Scope Statement NMDAR are ionotropic receptors that contribute to neurotransmission and second messenger signaling events. NMDAR can induce a diverse array of neuronal events, in part due to variation in subunit composition and subcellular localization of receptor expression. Expression of the GluN2B subunit varies across the prefrontal cortex in humans. This subunit is highly expressed in the subgenual cingulate, an area associated with mood and emotion, and more moderately expressed in the dorsolateral prefrontal cortex, an area associated with cognitive processes. Extrasynaptic NMDAR, which often contain with the GluN2B subunit, have been linked to detrimental cellular events like neurodegeneration. Here, using high resolution electron microscopy in rhesus macaques, we found evidence that extrasynaptic NMDAR-GluN2B expression may be more prominent in subgenual cortex than in the dorsolateral prefrontal cortex. Conversely, synaptic NMDAR-GluN2B may be more prominent in the dorsolateral prefrontal cortex, consistent with their essential contribution to neuronal firing during working memory. These findings may help to illuminate the propensity of the subgenual cortex to tonic hyperactivity in major depression and its vulnerability to neurodegeneration in Alzheimer's disease, and may help to explain how rapid acting antidepressants exert therapeutic action across diverse neural circuits.
Collapse
|
12
|
Cheng X, Li X, Chen J, Qin X, Kang K, Zhang T, Jiang F, Bu S. Assessing the causal role of the structural connectome in temporomandibular disorders: A Mendelian randomization study. Cranio 2024:1-11. [PMID: 39520511 DOI: 10.1080/08869634.2024.2419866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
OBJECTIVE We examined the relationships between the structural connectome and temporomandibular disorders (TMDs). METHODS Bidirectional Mendelian randomization analyses were conducted using Genome-wide association studies data on the structural connectome and TMDs. RESULTS Positive associations with TMD risk were found for white matter structural connectivity from the left hemisphere limbic network to putamen, left hemisphere salience_ventral attention network to caudate, right hemisphere visual network to thalamus, and right hemisphere salience_ventral attention network to right hemisphere control network, while negative associations were observed for connectivity from the left hemisphere control and somatomotor networks to pallidum, left hemisphere somatomotor network to right hemisphere dorsal attention network, and right hemisphere somatomotor network to hippocampus (p< 0.05). In TMD patients, connectivity from the Left-hemisphere visual network to putamen was reduced, whereas connectivity from the Left-hemisphere limbic network to left-hemisphere control network was increased (p< 0.05). CONCLUSION Our findings provide insights into the TMD pathogenesis.
Collapse
Affiliation(s)
- Xiaofan Cheng
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xincong Li
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jialu Chen
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyuan Qin
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Kang
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianyu Zhang
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Shoushan Bu
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Tang L, Zhao P, Pan C, Song Y, Zheng J, Zhu R, Wang F, Tang Y. Epigenetic molecular underpinnings of brain structural-functional connectivity decoupling in patients with major depressive disorder. J Affect Disord 2024; 363:249-257. [PMID: 39029702 DOI: 10.1016/j.jad.2024.07.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is progressively recognized as a stress-related disorder characterized by aberrant brain network dynamics, encompassing both structural and functional domains. Yet, the intricate interplay between these dynamic networks and their molecular underpinnings remains predominantly unexplored. METHODS Both structural and functional networks were constructed using multimodal neuroimaging data from 183 MDD patients and 300 age- and gender-matched healthy controls (HC). structural-functional connectivity (SC-FC) coupling was evaluated at both the connectome- and nodal-levels. Methylation data of five HPA axis key genes, including NR3C1, FKBP5, CRHBP, CRHR1, and CRHR2, were analyzed using Illumina Infinium Methylation EPIC BeadChip. RESULTS We observed a significant reduction in SC-FC coupling at the connectome-level in patients with MDD compared to HC. At the nodal level, we found an imbalance in SC-FC coupling, with reduced coupling in cortical regions and increased coupling in subcortical regions. Furthermore, we identified 23 differentially methylated CpG sites on the HPA axis, following adjustment for multiple comparisons and control of age, gender, and medication status. Notably, three CpG sites on NR3C1 (cg01294526, cg19457823, and cg23430507), one CpG site on FKBP5 (cg25563198), one CpG site on CRHR1 (cg26656751), and one CpG site on CRHR2 (cg18351440) exhibited significant associations with SC-FC coupling in MDD patients. CONCLUSIONS These findings provide valuable insights into the connection between micro-scale epigenetic changes in the HPA axis and SC-FC coupling at macro-scale connectomes. They unveil the mechanisms underlying increased susceptibility to MDD resulting from chronic stress and may suggest potential pharmacological targets within the HPA-axis for MDD treatment.
Collapse
Affiliation(s)
- Lili Tang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China; Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Chunyu Pan
- School of Computer Science and Engineering, Northeastern University, Shenyang, PR China
| | - Yanzhuo Song
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China.
| | - Yanqing Tang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
14
|
Li L, Zhang S, Wang H, Zhang F, Dong B, Yang J, Liu X. Multi-scale modeling to investigate the effects of transcranial magnetic stimulation on morphologically-realistic neuron with depression. Cogn Neurodyn 2024; 18:3139-3156. [PMID: 39555260 PMCID: PMC11564609 DOI: 10.1007/s11571-024-10142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/05/2024] [Accepted: 06/05/2024] [Indexed: 11/19/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique to activate or inhibit the activity of neurons, and thereby regulate their excitability. This technique has demonstrated potential in the treatment of neuropsychiatric disorders, such as depression. However, the effect of TMS on neurons with different severity of depression is still unclear, limiting the development of efficient and personalized clinical application parameters. In this study, a multi-scale computational model was developed to investigate and quantify the differences in neuronal responses to TMS with different degrees of depression. The microscale neuronal models we constructed represent the hippocampal CA1 region in rats under normal conditions and with varying severities of depression (mild, moderate, and major depressive disorder). These models were then coupled to a macroscopic TMS-induced E-Fields model of a rat head comprising multiple types of tissue. Our results demonstrate alterations in neuronal membrane potential and calcium concentration across varying levels of depression severity. As depression severity increases, the peak membrane potential and polarization degree of neuronal soma and dendrites gradually decline, while the peak calcium concentration decreases and the peak arrival time prolongs. Concurrently, the electric fields thresholds and amplification coefficient gradually rise, indicating an increasing difficulty in activating neurons with depression. This study offers novel insights into the mechanisms of magnetic stimulation in depression treatment using multi-scale computational models. It underscores the importance of considering depression severity in treatment strategies, promising to optimize TMS therapeutic approaches.
Collapse
Affiliation(s)
- Licong Li
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
- College of Electronic Information Engineering, Hebei University, Baoding, China
| | - Shuaiyang Zhang
- College of Electronic Information Engineering, Hebei University, Baoding, China
| | - Hongbo Wang
- College of Electronic Information Engineering, Hebei University, Baoding, China
| | - Fukuan Zhang
- College of Electronic Information Engineering, Hebei University, Baoding, China
| | - Bin Dong
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
- College of Electronic Information Engineering, Hebei University, Baoding, China
- Affiliated Hospital of Hebei University, Baoding, China
| | - Jianli Yang
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
- College of Electronic Information Engineering, Hebei University, Baoding, China
| | - Xiuling Liu
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
- College of Electronic Information Engineering, Hebei University, Baoding, China
| |
Collapse
|
15
|
Miles AE, Rashid SS, Dos Santos FC, Clifford KP, Sibille E, Nikolova YS. Neurodevelopmental signature of a transcriptome-based polygenic risk score for depression. Psychiatry Res 2024; 339:116030. [PMID: 38909414 PMCID: PMC11440511 DOI: 10.1016/j.psychres.2024.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Disentangling the molecular underpinnings of major depressive disorder (MDD) is necessary for identifying new treatment and prevention targets. The functional impact of depression-related transcriptomic changes on the brain remains relatively unexplored. We recently developed a novel transcriptome-based polygenic risk score (tPRS) composed of genes transcriptionally altered in MDD. Here, we sought to investigate effects of tPRS on brain structure in a developmental cohort (Adolescent Brain Cognitive Development study; n = 5124; 2387 female) at baseline (9-10 years) and 2-year follow-up (11-12 years). We tested associations between tPRS and Freesurfer-derived measures of cortical thickness, cortical surface area, and subcortical volume. Across the whole sample, higher tPRS was significantly associated with thicker left posterior cingulate cortex at both baseline and 2-year follow-up. In females only, tPRS was associated with lower right hippocampal volume at baseline and 2-year follow-up, and lower right pallidal volume at baseline. Furthermore, regional subcortical volume significantly mediated an indirect effect of tPRS on depressive symptoms in females at both timepoints. Conversely, tPRS did not have significant effects on cortical surface area. These findings suggest the existence of a sex-specific neurodevelopmental signature associated with shifts towards a more depression-like brain transcriptome, and highlight novel pathways of developmentally mediated MDD risk.
Collapse
Affiliation(s)
- Amy E Miles
- Campbell Family Mental Health Research Institute at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sarah S Rashid
- Campbell Family Mental Health Research Institute at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernanda C Dos Santos
- Campbell Family Mental Health Research Institute at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kevan P Clifford
- Campbell Family Mental Health Research Institute at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Yuliya S Nikolova
- Campbell Family Mental Health Research Institute at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Bansal Y, Codeluppi SA, Banasr M. Astroglial Dysfunctions in Mood Disorders and Rodent Stress Models: Consequences on Behavior and Potential as Treatment Target. Int J Mol Sci 2024; 25:6357. [PMID: 38928062 PMCID: PMC11204179 DOI: 10.3390/ijms25126357] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Astrocyte dysfunctions have been consistently observed in patients affected with depression and other psychiatric illnesses. Although over the years our understanding of these changes, their origin, and their consequences on behavior and neuronal function has deepened, many aspects of the role of astroglial dysfunction in major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) remain unknown. In this review, we summarize the known astroglial dysfunctions associated with MDD and PTSD, highlight the impact of chronic stress on specific astroglial functions, and how astroglial dysfunctions are implicated in the expression of depressive- and anxiety-like behaviors, focusing on behavioral consequences of astroglial manipulation on emotion-related and fear-learning behaviors. We also offer a glance at potential astroglial functions that can be targeted for potential antidepressant treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Sierra A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M2J 4A6, Canada
| |
Collapse
|
17
|
Deng Y, Liang X, Li Y, Jiang L, Wang J, Tang J, Li J, Xie Y, Xiao K, Zhu P, Guo Y, Luo Y, Tang Y. PGC-1α in the hippocampus mediates depressive-like and stress-coping behaviours and regulates excitatory synapses in the dentate gyrus in mice. Neuropharmacology 2024; 250:109908. [PMID: 38492883 DOI: 10.1016/j.neuropharm.2024.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Decreased hippocampal synaptic plasticity is an important pathological change in stress-related mood disorders, including major depressive disorder. However, the underlying mechanism is unclear. PGC-1α, a transcriptional coactivator, is a key factor in synaptic plasticity. We investigated the relationships between changes in hippocampal PGC-1α expression and depressive-like and stress-coping behaviours, and whether they are related to hippocampal synapses. Adeno-associated virus was used to alter hippocampal PGC-1α expression in male C57BL/6 mice. The sucrose preference test and forced swimming test were used to assess their depressive-like and stress-coping behaviours, respectively. Immunohistochemistry and stereology were used to calculate the total number of excitatory synapses in each hippocampal subregion (the cornu ammonis (CA) 1, CA3, and dentate gyrus). Immunofluorescence was used to visualize the changes in dendritic structure. Western blotting was used to detect the expression of hippocampal PGC-1α and mitochondrial-associated proteins, such as UCP2, NRF1 and mtTFAs. Our results showed that mice with downregulated PGC-1α expression in the hippocampus exhibited depressive-like and passive stress-coping behaviours, while mice with upregulated PGC-1α in the hippocampus exhibited increased stress-coping behaviours. Moreover, the downregulation of hippocampal PGC-1α expression resulted in a decrease in the number of excitatory synapses in the DG and in the protein expression of UCP2 in the hippocampus. Alternatively, upregulation of hippocampal PGC-1α yielded the opposite results. This suggests that hippocampal PGC-1α is involved in regulating depressive-like and stress-coping behaviours and modulating the number of excitatory synapses in the DG. This provides new insight for the development of antidepressants.
Collapse
Affiliation(s)
- Yuhui Deng
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xin Liang
- Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yue Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lin Jiang
- Lab Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jin Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jing Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuhan Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Kai Xiao
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Peilin Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yijing Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yanmin Luo
- Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
18
|
Zhang L, Wang L, Yu M, Wu R, Steffens DC, Potter GG, Liu M. Hybrid representation learning for cognitive diagnosis in late-life depression over 5 years with structural MRI. Med Image Anal 2024; 94:103135. [PMID: 38461654 PMCID: PMC11016377 DOI: 10.1016/j.media.2024.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/14/2023] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
Collapse
Affiliation(s)
- Lintao Zhang
- School of Information Science and Engineering, Linyi University, Linyi, Shandong 27600, China; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut School of Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Minhui Yu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Rong Wu
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, United States
| | - David C Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Guy G Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
19
|
Zheng J, Womer FY, Tang L, Guo H, Zhang X, Tang Y, Wang F. Integrative omics analysis reveals epigenomic and transcriptomic signatures underlying brain structural deficits in major depressive disorder. Transl Psychiatry 2024; 14:17. [PMID: 38195555 PMCID: PMC10776753 DOI: 10.1038/s41398-023-02724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Several lines of evidence support the involvement of transcriptomic and epigenetic mechanisms in the brain structural deficits of major depressive disorder (MDD) separately. However, research in these two areas has remained isolated. In this study, we proposed an integrative strategy that combined neuroimaging, brain-wide gene expression, and peripheral DNA methylation data to investigate the genetic basis of gray matter abnormalities in MDD. The MRI T1-weighted images and Illumina 850 K DNA methylation microarrays were obtained from 269 patients and 416 healthy controls, and brain-wide transcriptomic data were collected from Allen Human Brain Atlas. The between-group differences in gray matter volume (GMV) and differentially methylated CpG positions (DMPs) were examined. The genes with their expression patterns spatially related to GMV changes and genes with DMPs were overlapped and selected. Using principal component regression, the associations between DMPs in overlapped genes and GMV across individual patients were investigated, and the region-specific correlations between methylation status and gene expression were examined. We found significant associations between the decreased GMV and DMPs methylation status in the anterior cingulate cortex, inferior frontal cortex, and fusiform face cortex regions. These DMPs genes were primarily enriched in the neurodevelopmental and synaptic transmission process. There was a significant negative correlation between DNA methylation and gene expression in genes associated with GMV changes of the frontal cortex in MDD. Our findings suggest that GMV abnormalities in MDD may have a transcriptomic and epigenetic basis. This imaging-transcriptomic-epigenetic integrative analysis provides spatial and biological links between cortical morphological deficits and peripheral epigenetic signatures in MDD.
Collapse
Affiliation(s)
- Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Fay Y Womer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lili Tang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Huiling Guo
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China.
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China.
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China.
- Shengjing Hospital of China Medical University, Shenyang, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Codeluppi SA, Xu M, Bansal Y, Lepack AE, Duric V, Chow M, Muir J, Bagot RC, Licznerski P, Wilber SL, Sanacora G, Sibille E, Duman RS, Pittenger C, Banasr M. Prefrontal cortex astroglia modulate anhedonia-like behavior. Mol Psychiatry 2023; 28:4632-4641. [PMID: 37696873 PMCID: PMC10914619 DOI: 10.1038/s41380-023-02246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Reductions of astroglia expressing glial fibrillary acidic protein (GFAP) are consistently found in the prefrontal cortex (PFC) of patients with depression and in rodent chronic stress models. Here, we examine the consequences of PFC GFAP+ cell depletion and cell activity enhancement on depressive-like behaviors in rodents. Using viral expression of diphtheria toxin receptor in PFC GFAP+ cells, which allows experimental depletion of these cells following diphtheria toxin administration, we demonstrated that PFC GFAP+ cell depletion induced anhedonia-like behavior within 2 days and lasting up to 8 days, but no anxiety-like deficits. Conversely, activating PFC GFAP+ cell activity for 3 weeks using designer receptor exclusively activated by designer drugs (DREADDs) reversed chronic restraint stress-induced anhedonia-like deficits, but not anxiety-like deficits. Our results highlight a critical role of cortical astroglia in the development of anhedonia and further support the idea of targeting astroglia for the treatment of depression.
Collapse
Affiliation(s)
- S A Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Xu
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Y Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - A E Lepack
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - V Duric
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Physiology and Pharmacology, Des Moines University, West Des Moines, IA, USA
| | - M Chow
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - J Muir
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - R C Bagot
- Department of Psychology, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - P Licznerski
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| | - S L Wilber
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - G Sanacora
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - E Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - R S Duman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - C Pittenger
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - M Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
da Costa VF, Ramírez JCC, Ramírez SV, Avalo-Zuluaga JH, Baptista-de-Souza D, Canto-de-Souza L, Planeta CS, Rodríguez JLR, Nunes-de-Souza RL. Emotional- and cognitive-like responses induced by social defeat stress in male mice are modulated by the BNST, amygdala, and hippocampus. Front Integr Neurosci 2023; 17:1168640. [PMID: 37377628 PMCID: PMC10291097 DOI: 10.3389/fnint.2023.1168640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Chronic exposure to social defeat stress (SDS) has been used to investigate the neurobiology of depressive- and anxiety-like responses and mnemonic processes. We hypothesized that these affective, emotional, and cognitive consequences induced by SDS are regulated via glutamatergic neurons located in the bed nucleus of the stria terminalis (BNST), amygdaloid complex, and hippocampus in mice. Methods Here, we investigated the influence of chronic SDS on (i) the avoidance behavior assessed in the social interaction test, (ii) the anxiety-like behavior (e.g., elevated plus-maze, and open field tests) (iii) depressive-like behaviors (e.g., coat state, sucrose splash, nesting building, and novel object exploration tests), (iv) the short-term memory (object recognition test), (v) ΔFosB, CaMKII as well as ΔFosB + CaMKII labeling in neurons located in the BNST, amygdaloid complex, dorsal (dHPC) and the ventral (vHPC) hippocampus. Results The main results showed that the exposure of mice to SDS (a) increased defensive and anxiety-like behaviors and led to memory impairment without eliciting clear depressive-like or anhedonic effects; (b) increased ΔFosB + CaMKII labeling in BNST and amygdala, suggesting that both areas are strongly involved in the modulation of this type of stress; and produced opposite effects on neuronal activation in the vHPC and dHPC, i.e., increasing and decreasing, respectively, ΔFosB labeling. The effects of SDS on the hippocampus suggest that the vHPC is likely related to the increase of defensive- and anxiety-related behaviors, whereas the dHPC seems to modulate the memory impairment. Discussion Present findings add to a growing body of evidence indicating the involvement of glutamatergic neurotransmission in the circuits that modulate emotional and cognitive consequences induced by social defeat stress.
Collapse
Affiliation(s)
- Vinícius Fresca da Costa
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | - Johana Caterin Caipa Ramírez
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | - Stephany Viatela Ramírez
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | - Julian Humberto Avalo-Zuluaga
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | - Daniela Baptista-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
| | - Cleopatra S. Planeta
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | | | - Ricardo Luiz Nunes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| |
Collapse
|
22
|
van der Velpen IF, de Feijter M, Raina R, Özel F, Perry M, Ikram MA, Vernooij MW, Luik AI. Psychosocial health modifies associations between HPA-axis function and brain structure in older age. Psychoneuroendocrinology 2023; 153:106106. [PMID: 37028139 DOI: 10.1016/j.psyneuen.2023.106106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/21/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Dysregulation of the negative feedback loop of the hypothalamic-pituitary-adrenal (HPA) axis may have damaging effects on the brain, potentially under influence of psychosocial health factors. We studied associations between functioning of the negative feedback loop of HPA-axis, measured with a very low-dose dexamethasone suppression test (DST), and brain structure in middle-aged and older adults, and whether these associations were modified by psychosocial health. METHODS From 2006 to 2008, 1259 participants (mean age 57.6 ± 6.4, 59.6 % female) of the population-based Rotterdam Study completed a very low-dose DST (0.25 mg) and underwent magnetic resonance imaging (MRI) of the brain. Self-reported psychosocial health (depressive symptoms, loneliness, marital status, perceived social support) were assessed in the same time period. Multivariable linear and logistic regression were used to study cross-sectional associations between cortisol response and brain volumetrics, cerebral small vessel disease markers and white matter structural integrity. To assess the effect of psychosocial health on these associations, analyses were further stratified for psychosocial health markers. RESULTS Cortisol response was not associated with markers of global brain structure in the overall study sample. However, in participants with clinically relevant depressive symptoms, a diminished cortisol response was associated with smaller white matter volume (mean difference: - 1.00 mL, 95 %CI = - 1.89;- 0.10) and smaller white matter hyperintensity volume (mean difference: - 0.03 mL (log), 95 %CI = - 0.05;0.00). In participants with low/moderate perceived social support compared to those with high social support, a diminished cortisol response was associated with larger gray matter volume (mean difference: 0.70 mL, 95 %CI = 0.01;1.39) and higher fractional anisotropy (standardized mean difference 0.03, 95 %CI = 0.00;0.06). CONCLUSION Diminished function of the HPA-axis is differently associated with brain structure in community-dwelling middle-aged and older adults with clinically relevant depressive symptoms or suboptimal social support, but not in adults without depressive symptoms or with optimal social support.
Collapse
Affiliation(s)
- Isabelle F van der Velpen
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Maud de Feijter
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Rutika Raina
- Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA; OPEN Health, 4350 East-West Highway, Suite 1100, Bethesda, MD 20814, USA
| | - Fatih Özel
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, 752 36 Uppsala, Sweden
| | - Marieke Perry
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Primary and Community Care, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Fang Q, Cai H, Jiang P, Zhao H, Song Y, Zhao W, Yu Y, Zhu J. Transcriptional substrates of brain structural and functional impairments in drug-naive first-episode patients with major depressive disorder. J Affect Disord 2023; 325:522-533. [PMID: 36657492 DOI: 10.1016/j.jad.2023.01.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Despite remarkable success in identifying genetic risk factors for depression, there are still open questions about the exact genetic mechanisms underlying certain disease phenotypes, such as brain structural and functional impairments. METHODS Comprehensive multi-modal neuroimaging meta-analyses were conducted to examine changes in brain structure and function in drug-naive first-episode patients with major depressive disorder (DF-MDD). Combined with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial association analyses were performed to identify genes whose expression related to these brain structural and functional changes, followed by a range of gene functional signature analyses. RESULTS Meta-analyses revealed gray matter atrophy in the insula, temporal pole, cerebellum and postcentral gyrus, and a complex pattern of hyper-function in the temporal pole and hypo-function in the cuneus/precuneus, angular gyrus and lingual gyrus in DF-MDD. Moreover, these brain structural and functional changes were spatially associated with the expression of 1194 and 1733 genes, respectively. Importantly, there were commonalities and differences in the two gene sets and their functional signatures including functional enrichment, specific expression, behavioral relevance, and constructed protein-protein interaction networks. LIMITATIONS The results merit further verification using a large sample of DF-MDD. CONCLUSIONS Our findings not only corroborate the polygenic nature of depression, but also suggest common and distinct genetic modulations of brain structural and functional impairments in this disorder.
Collapse
Affiliation(s)
- Qian Fang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Ping Jiang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yu Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
24
|
Understanding ayahuasca effects in major depressive disorder treatment through in vitro metabolomics and bioinformatics. Anal Bioanal Chem 2023:10.1007/s00216-023-04556-3. [PMID: 36717401 DOI: 10.1007/s00216-023-04556-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Emerging insights from metabolomic-based studies of major depression disorder (MDD) are mainly related to biochemical processes such as energy or oxidative stress, in addition to neurotransmission linked to specific metabolite intermediates. Hub metabolites represent nodes in the biochemical network playing a critical role in integrating the information flow in cells between metabolism and signaling pathways. Limited technical-scientific studies have been conducted to understand the effects of ayahuasca (Aya) administration in the metabolism considering MDD molecular context. Therefore, this work aims to investigate an in vitro primary astrocyte model by untargeted metabolomics of two cellular subfractions: secretome and intracellular content after pre-defined Aya treatments, based on DMT concentration. Mass spectrometry (MS)-based metabolomics data revealed significant hub metabolites, which were used to predict biochemical pathway alterations. Branched-chain amino acid (BCAA) metabolism, and vitamin B6 and B3 metabolism were associated to Aya treatment, as "housekeeping" pathways. Dopamine synthesis was overrepresented in the network results when considering the lowest tested DMT concentration (1 µmol L-1). Building reaction networks containing significant and differential metabolites, such as nicotinamide, L-DOPA, and L-leucine, is a useful approach to guide on dose decision and pathway selection in further analytical and molecular studies.
Collapse
|
25
|
Zhu Y, Wang R, Fan Z, Luo D, Cai G, Li X, Han J, Zhuo L, Zhang L, Zhang H, Li Y, Wu S. Taurine Alleviates Chronic Social Defeat Stress-Induced Depression by Protecting Cortical Neurons from Dendritic Spine Loss. Cell Mol Neurobiol 2023; 43:827-840. [PMID: 35435537 PMCID: PMC9958166 DOI: 10.1007/s10571-022-01218-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Abnormal amino acid metabolism in neural cells is involved in the occurrence and development of major depressive disorder. Taurine is an important amino acid required for brain development. Here, microdialysis combined with metabonomic analysis revealed that the level of taurine in the extracellular fluid of the cerebral medial prefrontal cortex (mPFC) was significantly reduced in mice with chronic social defeat stress (CSDS)-induced depression. Therefore, taurine supplementation may be usable an intervention for depression. We found that taurine supplementation effectively rescued immobility time during a tail suspension assay and improved social avoidance behaviors in CSDS mice. Moreover, taurine treatment protected CSDS mice from impairments in dendritic complexity, spine density, and the proportions of different types of spines. The expression of N-methyl D-aspartate receptor subunit 2A, an important synaptic receptor, was largely restored in the mPFC of these mice after taurine supplementation. These results demonstrated that taurine exerted an antidepressive effect by protecting cortical neurons from dendritic spine loss and synaptic protein deficits.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Rui Wang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Ze Fan
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China ,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Danlei Luo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Guohong Cai
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Xinyang Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Jiao Han
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lixia Zhuo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Li Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Haifeng Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Shengxi Wu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
26
|
Mendes-Silva AP, Prevot TD, Banasr M, Sibille E, Diniz BS. Abnormal expression of cortical cell cycle regulators underlying anxiety and depressive-like behavior in mice exposed to chronic stress. Front Cell Neurosci 2022; 16:999303. [PMID: 36568887 PMCID: PMC9772437 DOI: 10.3389/fncel.2022.999303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The cell cycle is a critical mechanism for proper cellular growth, development and viability. The p16INK4a and p21Waf1/Cip1 are important regulators of the cell cycle progression in response to internal and external stimuli (e.g., stress). Accumulating evidence indicates that the prefrontal cortex (PFC) is particularly vulnerable to stress, where stress induces, among others, molecular and morphological alterations, reflecting behavioral changes. Here, we investigated if the p16INK4a and p21Waf1/Cip1 expression are associated with behavioral outcomes. Methods Prefrontal cortex mRNA and protein levels of p16INK4A and p21Waf1/Cip1 of mice (six independent groups of C57BL/6J, eight mice/group, 50% female) exposed from 0 to 35 days of chronic restraint stress (CRS) were quantified by qPCR and Western Blot, respectively. Correlation analyses were used to investigate the associations between cyclin-dependent kinase inhibitors (CKIs) expression and anxiety- and depression-like behaviors. Results Our results showed that the PFC activated the cell cycle regulation pathways mediated by both CKIs p16INK4A and p21Waf1/Cip1 in mice exposed to CRS, with overall decreased mRNA expression and increased protein expression. Moreover, correlation analysis revealed that mRNA and protein levels are statistically significant correlated with anxiety and depressive-like behavior showing a greater effect in males than females. Conclusion Our present study extends the existing literature providing evidence that PFC cells respond to chronic stress exposure by overexpressing CKIs. Furthermore, our findings indicated that abnormal expression of p16INK4A and p21Waf1/Cip1 may significantly contribute to non-adaptive behavioral responses.
Collapse
Affiliation(s)
- Ana Paula Mendes-Silva
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,*Correspondence: Ana Paula Mendes-Silva,
| | - Thomas Damien Prevot
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mounira Banasr
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Breno Satler Diniz
- School of Medicine, Center on Aging, University of Connecticut Health Center, Farmington, CT, United States,Department of Psychiatry, School of Medicine, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
27
|
Besteher B, Machnik M, Troll M, Toepffer A, Zerekidze A, Rocktäschel T, Heller C, Kikinis Z, Brodoehl S, Finke K, Reuken PA, Opel N, Stallmach A, Gaser C, Walter M. Larger gray matter volumes in neuropsychiatric long-COVID syndrome. Psychiatry Res 2022; 317:114836. [PMID: 36087363 PMCID: PMC9444315 DOI: 10.1016/j.psychres.2022.114836] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 01/04/2023]
Abstract
Neuropsychiatric symptoms are the most common sequelae of long-COVID. As accumulating evidence suggests an impact of survived SARS-CoV-2-infection on brain physiology, it is necessary to further investigate brain structural changes in relation to course and neuropsychiatric symptom burden in long-COVID. To this end, the present study investigated 3T-MRI scans from long-COVID patients suffering from neuropsychiatric symptoms (n = 30), and healthy controls (n = 20). Whole-brain comparison of gray matter volume (GMV) was conducted by voxel-based morphometry. To determine whether changes in GMV are predicted by neuropsychiatric symptom burden and/or initial severity of symptoms of COVID-19 and time since onset of COVID-19 stepwise linear regression analysis was performed. Significantly enlarged GMV in long-COVID patients was present in several clusters (spanning fronto-temporal areas, insula, hippocampus, amygdala, basal ganglia, and thalamus in both hemispheres) when compared to controls. Time since onset of COVID-19 was a significant regressor in four of these clusters with an inverse relationship. No associations with clinical symptom burden were found. GMV alterations in limbic and secondary olfactory areas are present in long-COVID patients and might be dynamic over time. Larger samples and longitudinal data in long-COVID patients are required to further clarify the mediating mechanisms between COVID-19, GMV and neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena 07743, Germany.
| | - Marlene Machnik
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena 07743, Germany
| | - Marie Troll
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena 07743, Germany
| | - Antonia Toepffer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena 07743, Germany
| | - Ani Zerekidze
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena 07743, Germany
| | - Tonia Rocktäschel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena 07743, Germany
| | - Carina Heller
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena 07743, Germany,Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA,Department of Clinical Psychology, Friedrich-Schiller-University Jena, Germany
| | - Zora Kikinis
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | | | - Kathrin Finke
- Department of Neurology, Jena University Hospital, Germany
| | - Philipp A. Reuken
- Department of Internal Medicine IV, Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena 07743, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV, Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena 07743, Germany,Department of Neurology, Jena University Hospital, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena 07743, Germany
| |
Collapse
|
28
|
Zhang X, Shang X, Seth I, Huang Y, Wang Y, Liang Y, Du Z, Wu G, Hu Y, Liu S, Hu Y, He M, Zhu Z, Yang X, Yu H. Association of Visual Health With Depressive Symptoms and Brain Imaging Phenotypes Among Middle-Aged and Older Adults. JAMA Netw Open 2022; 5:e2235017. [PMID: 36201210 PMCID: PMC9539722 DOI: 10.1001/jamanetworkopen.2022.35017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Vision loss and depression are common conditions with major health implications. However, mechanisms of the association of visual health (across the full acuity spectrum) with depression remain unclear. OBJECTIVE To characterize the association between visual health and depression and investigate the association between depression and brain microstructure and macrostructure in subgroups divided by visual acuity. DESIGN, SETTING, AND PARTICIPANTS In the UK Biobank Study cohort, 114 583 volunteers were included at baseline from March to June 2006 to July 2010. Habitual distance visual acuity was examined using the logarithm of the minimum angle of resolution (LogMAR) characters. Depression was identified based on Patient Health Questionnaire (PHQ) or through an interview-based psychiatric diagnosis. Subgroup participants completed multimodal magnetic resonance imaging (MRI) of the brain and PHQ evaluation during the imaging visit after 2014. Data were analyzed from May 5 to August 9, 2022. MAIN OUTCOMES AND MEASURES Depression, depressive symptoms, and imaging-derived phenotypes from T1-weighted and diffusion MRI. RESULTS Of the 114 583 participants from the UK Biobank Study, 62 401 (54.5%) were women, and the mean (SD) age was 56.8 (8.1) years (range, 39-72 years). A 1-line worse visual acuity (0.1 LogMAR increase) was associated with 5% higher odds of depression (odds ratio, 1.05 [95% CI, 1.04-1.07]) after adjustment for age, sex, race and ethnicity, Townsend index, educational qualifications, smoking, alcohol consumption, obesity, physical activity, history of hypertension, diabetes, hyperlipidemia, and family history of depression. Of the 7844 participants eligible for MRI analysis, there were linear associations between PHQ score and the left volume of gray matter in supracalcarine cortex (coefficient, 7.61 [95% CI, 3.90-11.31]) and mean isotropic volume fraction (ISOVF) in the right fornix (cres) and/or stria terminalis (coefficient, 0.003 [95% CI, 0.001-0.004]) after correction for multiple comparison. In addition, their association could be moderated by visual acuity, whereby increased PHQ score was associated with higher ISOVF levels only among those with poorer visual acuity (P = .02 for interaction). CONCLUSIONS AND RELEVANCE This study suggests an association between visual health and depression and that the diffusion characteristic of ISOVF in the fornix (cres) and/or stria terminalis is associated with depressive symptoms in participants with poorer visual acuity.
Collapse
Affiliation(s)
- Xiayin Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xianwen Shang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ishith Seth
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yaxin Wang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingying Liang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zijing Du
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guanrong Wu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunyan Hu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shunming Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yijun Hu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingguang He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhuoting Zhu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
29
|
Zhang F, Zhu X, Yu P, Sheng T, Wang Y, Ye Y. Crocin ameliorates depressive-like behaviors induced by chronic restraint stress via the NAMPT-NAD+-SIRT1 pathway in mice. Neurochem Int 2022; 157:105343. [DOI: 10.1016/j.neuint.2022.105343] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/16/2022] [Accepted: 04/15/2022] [Indexed: 12/22/2022]
|
30
|
Uliana DL, Gomes FV, Grace AA. Nucleus reuniens inactivation reverses stress-induced hypodopaminergic state and altered hippocampal-accumbens synaptic plasticity. Neuropsychopharmacology 2022; 47:1513-1522. [PMID: 35488085 PMCID: PMC9205859 DOI: 10.1038/s41386-022-01333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/11/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
The nucleus reuniens of the thalamus (RE) is a pivotal area responsible for the connectivity of the prefrontal-hippocampus pathway that regulates cognitive, executive, and fear learning processes. Recently, it was proposed that the RE participates in the pathophysiological states related to affective dysregulation. We investigated the role of RE in motivational behavioral and electrophysiological dysregulation induced by stress. Adult Sprague-Dawley rats were exposed to a combination of stressors (restraint stress+footshock) for 10 days and tested one to two weeks later in the forced swim test (FST), ventral tegmental area (VTA)dopamine (DA) neuron electrophysiological activity, and hippocampal-nucleus accumbens plasticity. The RE was inactivated by injecting TTX prior to the procedures. The stress exposure increased the immobility in the FST and decreased VTA DA neuron population activity. Whereas an early long-term potentiation (e-LTP) in the ventral hippocampus-nucleus accumbens pathway was found after fimbria high-frequency stimulation in naïve animals, stressed animals showed an early long-term depression (e-LTD). Inactivation of the RE reversed the stress-induced changes in the FST and restored dopaminergic activity. RE inactivation partially recovered the stress-induced abnormal hippocampal-accumbens plasticity observed in controls. Our findings support the role of the RE in regulating affective dysregulation and blunted VTA DA system function induced by stress. Also, it points to the hippocampal-accumbens pathway as a potential neural circuit through which RE could modulate activity. Therefore, RE may represent a key brain region involved in the neurobiology of amotivational states and may provide insights into circuit dysfunction and markers of the maladaptive stress response.
Collapse
Affiliation(s)
- Daniela L. Uliana
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| | - Felipe V. Gomes
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA ,grid.11899.380000 0004 1937 0722Present Address: Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Anthony A. Grace
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
31
|
Nunes EJ, Kebede N, Bagdas D, Addy NA. Cholinergic and dopaminergic-mediated motivated behavior in healthy states and in substance use and mood disorders. J Exp Anal Behav 2022; 117:404-419. [PMID: 35286712 PMCID: PMC9743782 DOI: 10.1002/jeab.747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
Acetylcholine is an important neuromodulator of the mesolimbic dopamine (DA) system, which itself is a mediator of motivated behavior. Motivated behavior can be described by two primary components, termed directional and activational motivation, both of which can be examined and dissociated using effort-choice tasks. The directional component refers to motivated behavior directed towards reinforcing stimuli and away from aversive stimuli. Behaviors characterized by increased vigor, persistence, and work output are considered to reflect activational components of motivation. Disruption of DA signaling has been shown to decrease activational components of motivation, while leaving directional features intact. Facilitation of DA release promotes the activational aspects of motivated behavior. In this review, we discuss cholinergic and DA regulation of motivated behaviors. We place emphasis on effort-choice processes and the ability of effort-choice tasks to examine and dissociate changes of motivated behavior in the context of substance use and mood disorders. Furthermore, we consider how altered cholinergic transmission impacts motivated behavior across disease states, and the possible role of cholinergic dysregulation in the etiology of these illnesses. Finally, we suggest that treatments targeting cholinergic activity may be useful in ameliorating motivational disruptions associated with substance use and comorbid substance use and mood disorders.
Collapse
Affiliation(s)
- Eric J. Nunes
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nardos Kebede
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine,Department of Cellular and Molecular Physiology, Yale School of Medicine,Interdepartmental Neuroscience Program, Yale University,Wu Tsai Institute, Yale University
| |
Collapse
|
32
|
Li HZ, Liu KG, Zeng NX, Wu XF, Lu WJ, Xu HF, Yan C, Wu LL. Luteolin Enhances Choroid Plexus 5-MTHF Brain Transport to Promote Hippocampal Neurogenesis in LOD Rats. Front Pharmacol 2022; 13:826568. [PMID: 35401160 PMCID: PMC8993213 DOI: 10.3389/fphar.2022.826568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Folates, provided by food, are commonly used antidepressant synergists in late-onset depression (LOD). However, increased intake of folic acid in the elderly population might lead to the accumulation of unmetabolized folic acid in the systemic circulation, leading to enhanced deterioration of the central nervous system function. In addition, folates cannot access the brain directly because of the blood-brain barrier. Choroid plexus (CP) 5-methyltetrahydrofolate (5-MTHF) brain transport plays a critical role in regulating the cerebrospinal fluid (CSF) 5-MTHF content. Luteolin is a natural flavonoid that has antidepressant effects and is involved in the anti-folate resistance pathway. It remains unclear whether the antidepressant effects of luteolin are associated with the CP 5-MTHF brain transport. In this study, 20-21-month-old Wistar rats were exposed to the chronic unpredictable mild stress (CUMS) protocol for 6 consecutive weeks to explore the long-term effects of luteolin on behavior, 5-MTHF levels, hippocampal neurogenesis, and folate brain transport of the CP. In vitro primary hippocampal neural stem cells (NSCs) cultured in media containing 10% CSF from each group of rats and choroid plexus epithelial cells (CPECs) cultured in media containing 20 μM luteolin were treated with 100 μM corticosterone and 40 mg/ml D-galactose. We found that aged rats exposed to CUMS showed a significantly reduced sucrose preference, decreased locomotion activity in the open field test and accuracy of the Morris water maze test, increased immobility time in the forced swimming test, accelerated dysfunctional neurogenesis and neuronal loss in the dentate gyrus of LOD rats, as well as decreased CSF and hippocampus 5-MTHF levels, and zona occludens protein 1 (ZO-1), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC) protein levels. In vitro assays showed media containing 10% aged CSF or LOD+ Luteolin-CSF significantly increased the viability of CORT + D-gal-injured NSCs and alleviated dysfunctional neurogenesis and neuronal loss compared with the CORT + D-gal medium. However, media containing 10% LOD-CSF had no such effect. In the meantime, induction of CORT + D-gal significantly decreased the ZO-1, PCFT, RFC, and folate receptor alpha (FR-α) protein levels and transepithelial electrical resistance in rat CPECs. As expected, luteolin treatment was effective in improving these abnormal changes. These findings suggested that luteolin could ameliorate CUMS-induced LOD-like behaviors by enhancing the folate brain transport.
Collapse
Affiliation(s)
- Hui-Zhen Li
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai-Ge Liu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ning-Xi Zeng
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Feng Wu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Jun Lu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han-Fang Xu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can Yan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Wu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Abstract
In order to survive and thrive, organisms must adapt to constantly changing environmental pressures. When there are significant shifts in the environment, the brain and body engage a set of physiological and behavioral countermeasures collectively known as the "stress response". These responses, which include changes at the cellular, systems, and organismal level, are geared toward protecting homeostasis and adapting physiological operating parameters so as to enable the organism to overcome short-term challenges. It is the shift of these well-organized acute responses to dysregulated chronic responses that leads to pathologies. In a sense, the protective measures become destructive, causing the myriad health problems that are associated with chronic stress. To further complicate the situation, these challenges need not be purely physical in nature. Indeed, psychosocial stressors such as ruminating about challenges at work, resource insecurity, and unstable social environments can engage the very same emergency threat systems and eventually lead to the same types of pathologies that sometimes are described as "burnout" in humans. This short review focuses on very recent empirical work exploring the effects of chronic stress on key brain circuits, metabolism and metabolic function, and immune function.
Collapse
Affiliation(s)
- Brandon L Roberts
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ilia N Karatsoreos
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
34
|
Miles AE, Dos Santos FC, Byrne EM, Renteria ME, McIntosh AM, Adams MJ, Pistis G, Castelao E, Preisig M, Baune BT, Schubert KO, Lewis CM, Jones LA, Jones I, Uher R, Smoller JW, Perlis RH, Levinson DF, Potash JB, Weissman MM, Shi J, Lewis G, Penninx BWJH, Boomsma DI, Hamilton SP, Sibille E, Hariri AR, Nikolova YS. Transcriptome-based polygenic score links depression-related corticolimbic gene expression changes to sex-specific brain morphology and depression risk. Neuropsychopharmacology 2021; 46:2304-2311. [PMID: 34588609 PMCID: PMC8580972 DOI: 10.1038/s41386-021-01189-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Studies in post-mortem human brain tissue have associated major depressive disorder (MDD) with cortical transcriptomic changes, whose potential in vivo impact remains unexplored. To address this translational gap, we recently developed a transcriptome-based polygenic risk score (T-PRS) based on common functional variants capturing 'depression-like' shifts in cortical gene expression. Here, we used a non-clinical sample of young adults (n = 482, Duke Neurogenetics Study: 53% women; aged 19.8 ± 1.2 years) to map T-PRS onto brain morphology measures, including Freesurfer-derived subcortical volume, cortical thickness, surface area, and local gyrification index, as well as broad MDD risk, indexed by self-reported family history of depression. We conducted side-by-side comparisons with a PRS independently derived from a Psychiatric Genomics Consortium (PGC) MDD GWAS (PGC-PRS), and sought to link T-PRS with diagnosis and symptom severity directly in PGC-MDD participants (n = 29,340, 59% women; 12,923 MDD cases, 16,417 controls). T-PRS was associated with smaller amygdala volume in women (t = -3.478, p = 0.001) and lower prefrontal gyrification across sexes. In men, T-PRS was associated with hypergyrification in temporal and occipital regions. Prefrontal hypogyrification mediated a male-specific indirect link between T-PRS and familial depression (b = 0.005, p = 0.029). PGC-PRS was similarly associated with lower amygdala volume and cortical gyrification; however, both effects were male-specific and hypogyrification emerged in distinct parietal and temporo-occipital regions, unassociated with familial depression. In PGC-MDD, T-PRS did not predict diagnosis (OR = 1.007, 95% CI = [0.997-1.018]) but correlated with symptom severity in men (rho = 0.175, p = 7.957 × 10-4) in one cohort (N = 762, 48% men). Depression-like shifts in cortical gene expression have sex-specific effects on brain morphology and may contribute to broad depression vulnerability in men.
Collapse
Affiliation(s)
- Amy E Miles
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Fernanda C Dos Santos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Enda M Byrne
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Miguel E Renteria
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Giorgio Pistis
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Enrique Castelao
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Nordrhein-Westfalen, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - K Oliver Schubert
- Department of Psychiatry, University of Adelaide, Adelaide, Australia
- Northern Adelaide Mental Health Services, SA Health, Salisbury, Australia
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- Department of Medical & Molecular Genetics, King's College London, London, UK
| | - Lisa A Jones
- Department of Psychological Medicine, University of Worcester, Worcester, UK
| | - Ian Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Douglas F Levinson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Glyn Lewis
- Division of Psychiatry, University College London, Faculty of Brain Sciences, London, UK
| | - Brenda W J H Penninx
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Steven P Hamilton
- Department of Psychiatry, Kaiser Permanente Northern California, San Francisco, CA, USA
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
Zhou G, Hu Y, Wang A, Guo M, Du Y, Gong Y, Ding L, Feng Z, Hou X, Xu K, Yu F, Li Z, Ba Y. Fluoride Stimulates Anxiety- and Depression-like Behaviors Associated with SIK2-CRTC1 Signaling Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13618-13627. [PMID: 34735150 DOI: 10.1021/acs.jafc.1c04907] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using Sprague-Dawley rats and rat PC12 cells treated with sodium fluoride (NaF), we investigated the effects of SIK2-CRTC1 signaling on the neurobehavioral toxicity induced by fluoride. The in vivo results demonstrated that NaF treatment induced anxiety- and depression-like behaviors in juvenile rats, resulting in histological and ultrastructural abnormalities in the rat hippocampus and medial prefrontal cortex. Moreover, NaF exposure induced neuronal loss and excessive apoptosis. We also found that NaF elevated the expression of SIK2 and reduced the expression of CRTC1, brain-derived neurotrophic factor (BDNF), and VGF. The in vitro results showed that NaF suppressed cell viability, induced SIK2-CRTC1 signaling dysfunction, and caused excessive apoptosis in PC12 cells. Notably, targeted knockout of SIK2 with SIK2-siRNA or blocking of SIK2-CRTC1 signaling with 7,8-dihydroxyflavone (7,8-DHF) (as well as venlafaxine) can reduce apoptosis and increase cell viability in vitro. These findings suggest that neuronal death resulting from abnormal SIK2-CRTC1 signaling contributes to neurobehavioral toxicity induced by fluoride.
Collapse
Affiliation(s)
- Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yue Hu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Anqi Wang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Meng Guo
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yuhui Du
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yongxiang Gong
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Limin Ding
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zichen Feng
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiangbo Hou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kaihong Xu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Fangfang Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zhiyuan Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
36
|
Codeluppi SA, Chatterjee D, Prevot TD, Bansal Y, Misquitta KA, Sibille E, Banasr M. Chronic Stress Alters Astrocyte Morphology in Mouse Prefrontal Cortex. Int J Neuropsychopharmacol 2021; 24:842-853. [PMID: 34346493 PMCID: PMC8538896 DOI: 10.1093/ijnp/pyab052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/25/2021] [Accepted: 08/03/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neuromorphological changes are consistently reported in the prefrontal cortex of patients with stress-related disorders and in rodent stress models, but the effects of stress on astrocyte morphology and the potential link to behavioral deficits are relatively unknown. METHODS To answer these questions, transgenic mice expressing green fluorescent protein (GFP) under the glial fibrillary acid protein (GFAP) promotor were subjected to 7, 21, or 35 days of chronic restraint stress (CRS). CRS-induced behavioral effects on anhedonia- and anxiety-like behaviors were measured using the sucrose intake and the PhenoTyper tests, respectively. Prefrontal cortex GFP+ or GFAP+ cell morphology was assessed using Sholl analysis, and associations with behavior were determined using correlation analysis. RESULTS CRS-exposed male and female mice displayed anxiety-like behavior at 7, 21, and 35 days and anhedonia-like behavior at 35 days. Analysis of GFAP+ cell morphology revealed significant atrophy of distal processes following 21 and 35 days of CRS. CRS induced similar decreases in intersections at distal radii for GFP+ cells accompanied by increased proximal processes. In males, the number of intersections at the most distal radius step significantly correlated with anhedonia-like behavior (r = 0.622, P < .05) for GFP+ cells and with behavioral emotionality calculated by z-scoring all behavioral measured deficits (r = -0.667, P < .05). Similar but not significant correlations were observed in females. No correlation between GFP+ cell atrophy with anxiety-like behavior was found. CONCLUSION Chronic stress exposure induces a progressive atrophy of cortical astroglial cells, potentially contributing to maladaptive neuroplastic and behavioral changes associated with stress-related disorders.
Collapse
Affiliation(s)
- Sierra A Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Dipashree Chatterjee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Keith A Misquitta
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada,Department of Psychiatry, University of Toronto, Toronto, Canada,Correspondence: Mounira Banasr, PhD, CAMH, 250 College Street, Toronto, ON M5T 1R8, Canada ()
| |
Collapse
|